1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-14 11:59:58 +03:00

merged changes from multiwii_dev 20120504. this means new serial protocol, new buzzer code

fixed spacing in ledring.c
defaulted acc_lpf to 100
correction in vtail4 mix (from multiwii_dev)
trashed more unused LOG_VALUES crap
no binary build since this is untested / non-flight-tested.

git-svn-id: https://afrodevices.googlecode.com/svn/trunk/baseflight@152 7c89a4a9-59b9-e629-4cfe-3a2d53b20e61
This commit is contained in:
timecop 2012-05-05 12:47:52 +00:00
parent 910df63a7f
commit 0d7460960e
13 changed files with 694 additions and 172 deletions

View file

@ -1,26 +1,361 @@
#include "board.h"
#include "mw.h"
// signal that we're in cli mode
uint8_t cliMode = 0;
#define MSP_IDENT 100 //out message multitype + version
#define MSP_STATUS 101 //out message cycletime & errors_count & sensor present & box activation
#define MSP_RAW_IMU 102 //out message 9 DOF
#define MSP_SERVO 103 //out message 8 servos
#define MSP_MOTOR 104 //out message 8 motors
#define MSP_RC 105 //out message 8 rc chan
#define MSP_RAW_GPS 106 //out message fix, numsat, lat, lon, alt, speed
#define MSP_COMP_GPS 107 //out message distance home, direction home
#define MSP_ATTITUDE 108 //out message 2 angles 1 heading
#define MSP_ALTITUDE 109 //out message 1 altitude
#define MSP_BAT 110 //out message vbat, powermetersum
#define MSP_RC_TUNING 111 //out message rc rate, rc expo, rollpitch rate, yaw rate, dyn throttle PID
#define MSP_PID 112 //out message up to 16 P I D (8 are used)
#define MSP_BOX 113 //out message up to 16 checkbox (11 are used)
#define MSP_MISC 114 //out message powermeter trig + 8 free for future use
#define MSP_SET_RAW_RC 200 //in message 8 rc chan
#define MSP_SET_RAW_GPS 201 //in message fix, numsat, lat, lon, alt, speed
#define MSP_SET_PID 202 //in message up to 16 P I D (8 are used)
#define MSP_SET_BOX 203 //in message up to 16 checkbox (11 are used)
#define MSP_SET_RC_TUNING 204 //in message rc rate, rc expo, rollpitch rate, yaw rate, dyn throttle PID
#define MSP_ACC_CALIBRATION 205 //in message no param
#define MSP_MAG_CALIBRATION 206 //in message no param
#define MSP_SET_MISC 207 //in message powermeter trig + 8 free for future use
#define MSP_RESET_CONF 208 //in message no param
#define MSP_EEPROM_WRITE 250 //in message no param
#define MSP_DEBUG 254 //out message debug1,debug2,debug3,debug4
static uint8_t checksum, stateMSP, indRX, inBuf[64];
void serialize32(uint32_t a)
{
static uint8_t t;
t = a;
uartWrite(t);
checksum ^= t;
t = a >> 8;
uartWrite(t);
checksum ^= t;
t = a >> 16;
uartWrite(t);
checksum ^= t;
t = a >> 24;
uartWrite(t);
checksum ^= t;
}
void serialize16(int16_t a)
{
uartWrite(a);
uartWrite(a >> 8 & 0xff);
static uint8_t t;
t = a;
uartWrite(t);
checksum ^= t;
t = a >> 8 & 0xff;
uartWrite(t);
checksum ^= t;
}
void serialize8(uint8_t a)
{
uartWrite(a);
checksum ^= a;
}
uint32_t read32(void)
{
uint32_t t = inBuf[indRX++];
t+= inBuf[indRX++] << 8;
t+= (uint32_t)inBuf[indRX++] << 16;
t+= (uint32_t)inBuf[indRX++] << 24;
return t;
}
uint16_t read16(void)
{
uint16_t t = inBuf[indRX++];
t+= inBuf[indRX++] << 8;
return t;
}
uint8_t read8(void)
{
return inBuf[indRX++] & 0xff;
}
void headSerialReply(uint8_t c, uint8_t s)
{
serialize8('$');
serialize8('M');
serialize8('>');
serialize8(s);
serialize8(c);
checksum = 0;
}
void tailSerialReply(void)
{
serialize8(checksum);
// no need to send
// UartSendData();
}
// signal that we're in cli mode
uint8_t cliMode = 0;
void serialInit(uint32_t baudrate)
{
uartInit(baudrate);
}
void serialCom(void)
{
uint8_t i, c;
static uint8_t offset, dataSize;
// in cli mode, all uart stuff goes to here. enter cli mode by sending #
if (cliMode) {
cliProcess();
return;
}
while (uartAvailable()) {
c = uartRead();
if (stateMSP > 99) { // a message with a length indication, indicating a non null payload
if (offset <= dataSize) { // there are still some octets to read (including checksum) to complete a full message
if (offset < dataSize)
checksum ^= c; // the checksum is computed, except for the last octet
inBuf[offset++] = c;
} else { // we have read all the payload
if (checksum == inBuf[dataSize]) { // we check is the computed checksum is ok
switch (stateMSP) { // if yes, then we execute different code depending on the message code. read8/16/32 will look into the inBuf buffer
case MSP_SET_RAW_RC:
for (i = 0; i < 8; i++) {
rcData[i] = read16();
}
break;
case MSP_SET_RAW_GPS:
GPS_fix = read8();
GPS_numSat = read8();
GPS_latitude = read32();
GPS_longitude = read32();
GPS_altitude = read16();
GPS_speed = read16();
GPS_update = 1;
break;
case MSP_SET_PID:
for (i = 0; i < PIDITEMS; i++) {
cfg.P8[i] = read8();
cfg.I8[i] = read8();
cfg.D8[i] = read8();
}
break;
case MSP_SET_BOX:
for (i = 0; i < CHECKBOXITEMS; i++) {
cfg.activate[i] = read16();
}
break;
case MSP_SET_RC_TUNING:
cfg.rcRate8 = read8();
cfg.rcExpo8 = read8();
cfg.rollPitchRate = read8();
cfg.yawRate = read8();
cfg.dynThrPID = read8();
cfg.thrMid8 = read8();
cfg.thrExpo8 = read8();
break;
case MSP_SET_MISC:
break;
}
}
stateMSP = 0; // in any case we reset the MSP state
}
}
if (stateMSP < 5) {
if (stateMSP == 4) { // this protocol state indicates we have a message with a lenght indication, and we read here the message code (fifth octet)
if (c > 99) { // we check if it's a valid code (should be >99)
stateMSP = c; // the message code is then reuse to feed the protocol state
offset = 0;
checksum = 0;
indRX = 0; // and we init some values which will be used in the next loops to grasp the payload
} else {
stateMSP = 0; // the message code seems to be invalid. this should not happen => we reset the protocol state
}
}
if (stateMSP == 3) { // here, we need to check if the fourth octet indicates a code indication (>99) or a payload lenght indication (<100)
if (c < 100) { // a message with a length indication, indicating a non null payload
stateMSP++; // we update the protocol state to read the next octet
dataSize = c; // we store the payload lenght
if (dataSize > 63)
dataSize = 63; // in order to avoid overflow, we limit the size. this should not happen
} else {
switch (c) { // if we are here, the fourth octet indicates a code message
case MSP_IDENT: // and we check message code to execute the relative code
headSerialReply(c, 2); // we reply with an header indicating a payload lenght of 2 octets
serialize8(VERSION); // the first octet. serialize8/16/32 is used also to compute a checksum
serialize8(cfg.mixerConfiguration); // the second one
tailSerialReply();
break; // mainly to send the last octet which is the checksum
case MSP_STATUS:
headSerialReply(c, 8);
serialize16(cycleTime);
serialize16(i2cGetErrorCounter());
serialize16(sensors(SENSOR_ACC) | sensors(SENSOR_BARO) << 1 | sensors(SENSOR_MAG) << 2 | sensors(SENSOR_GPS) << 3 | sensors(SENSOR_SONAR) << 4);
serialize16(accMode << BOXACC | baroMode << BOXBARO | magMode << BOXMAG | armed << BOXARM | GPSModeHome << BOXGPSHOME | GPSModeHold << BOXGPSHOLD | headFreeMode << BOXHEADFREE);
tailSerialReply();
break;
case MSP_RAW_IMU:
headSerialReply(c, 18);
for (i = 0; i < 3; i++)
serialize16(accSmooth[i]);
for (i = 0; i < 3; i++)
serialize16(gyroData[i]);
for (i = 0; i < 3; i++)
serialize16(magADC[i]);
tailSerialReply();
break;
case MSP_SERVO:
headSerialReply(c, 16);
for (i = 0; i < 8; i++)
serialize16(servo[i]);
tailSerialReply();
break;
case MSP_MOTOR:
headSerialReply(c, 16);
for (i = 0; i < 8; i++)
serialize16(motor[i]);
tailSerialReply();
break;
case MSP_RC:
headSerialReply(c, 16);
for (i = 0; i < 8; i++)
serialize16(rcData[i]);
tailSerialReply();
break;
case MSP_RAW_GPS:
headSerialReply(c, 14);
serialize8(GPS_fix);
serialize8(GPS_numSat);
serialize32(GPS_latitude);
serialize32(GPS_longitude);
serialize16(GPS_altitude);
serialize16(GPS_speed);
tailSerialReply();
break;
case MSP_COMP_GPS:
headSerialReply(c, 5);
serialize16(GPS_distanceToHome);
serialize16(GPS_directionToHome + 180);
serialize8(GPS_update);
tailSerialReply();
break;
case MSP_ATTITUDE:
headSerialReply(c, 6);
for (i = 0; i < 2; i++)
serialize16(angle[i]);
serialize16(heading);
tailSerialReply();
break;
case MSP_ALTITUDE:
headSerialReply(c, 4);
serialize32(EstAlt);
tailSerialReply();
break;
case MSP_BAT:
headSerialReply(c, 3);
serialize8(vbat);
serialize16(0);
tailSerialReply();
break;
case MSP_RC_TUNING:
headSerialReply(c, 7);
serialize8(cfg.rcRate8);
serialize8(cfg.rcExpo8);
serialize8(cfg.rollPitchRate);
serialize8(cfg.yawRate);
serialize8(cfg.dynThrPID);
serialize8(cfg.thrMid8);
serialize8(cfg.thrExpo8);
tailSerialReply();
break;
case MSP_PID:
headSerialReply(c, 3 * PIDITEMS);
for (i = 0; i < PIDITEMS; i++) {
serialize8(cfg.P8[i]);
serialize8(cfg.I8[i]);
serialize8(cfg.D8[i]);
}
tailSerialReply();
break;
case MSP_BOX:
headSerialReply(c, 2 * CHECKBOXITEMS);
for (i = 0; i < CHECKBOXITEMS; i++) {
serialize16(cfg.activate[i]);
}
tailSerialReply();
break;
case MSP_MISC:
headSerialReply(c, 2);
serialize16(0);
tailSerialReply();
break;
case MSP_RESET_CONF:
checkFirstTime(true);
break;
case MSP_ACC_CALIBRATION:
calibratingA = 400;
break;
case MSP_MAG_CALIBRATION:
calibratingM = 1;
break;
case MSP_EEPROM_WRITE:
writeParams(0);
break;
case MSP_DEBUG:
headSerialReply(c, 8);
serialize16(debug1); // 4 variables are here for general monitoring purpose
serialize16(debug2);
serialize16(debug3);
serialize16(debug4);
tailSerialReply();
break;
}
stateMSP = 0; // we reset the protocol state for the next loop
}
} else {
switch (c) { // header detection $MW<
case '$':
if (stateMSP == 0)
stateMSP++;
break; // first octet ok, no need to go further
case 'M':
if (stateMSP == 1)
stateMSP++;
break; // second octet ok, no need to go further
case '<':
if (stateMSP == 2)
stateMSP++;
break; // third octet ok, no need to go further
}
}
}
if (stateMSP == 0) { // still compliant with older single octet command
// enable CLI
if (c == '#')
cliProcess();
}
}
}
#if 0
void oldSserialCom(void)
{
uint8_t i;
@ -83,10 +418,8 @@ void serialCom(void)
serialize8(cfg.rollPitchRate);
serialize8(cfg.yawRate);
serialize8(cfg.dynThrPID);
for (i = 0; i < CHECKBOXITEMS; i++) {
serialize8(cfg.activate1[i]);
serialize8(cfg.activate2[i] | (rcOptions[i] << 7)); // use highest bit to transport state in mwc
}
for (i = 0; i < CHECKBOXITEMS; i++)
serialize16(cfg.activate[i]);
serialize16(GPS_distanceToHome);
serialize16(GPS_directionToHome + 180);
serialize8(GPS_numSat);
@ -145,13 +478,11 @@ void serialCom(void)
cfg.rollPitchRate = uartReadPoll();
cfg.yawRate = uartReadPoll(); //4
cfg.dynThrPID = uartReadPoll(); //5
for (i = 0; i < CHECKBOXITEMS; i++) {
cfg.activate1[i] = uartReadPoll();
cfg.activate2[i] = uartReadPoll();
}
for (i = 0; i < CHECKBOXITEMS; i++)
cfg.activate[i] = uartReadPoll();
uartReadPoll(); // power meter crap, removed
uartReadPoll(); // power meter crap, removed
writeParams();
writeParams(0);
break;
case 'S': // GUI to arduino ACC calibration request
calibratingA = 400;
@ -162,3 +493,4 @@ void serialCom(void)
}
}
}
#endif