1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-19 14:25:20 +03:00

Merge pull request #1625 from martinbudden/bf_gyro_filter_calls

Use function pointers to simplify gyro filter calls
This commit is contained in:
borisbstyle 2016-11-23 13:19:36 +01:00 committed by GitHub
commit 12e7d3ad8d
5 changed files with 64 additions and 32 deletions

View file

@ -22,6 +22,7 @@
#include "common/filter.h" #include "common/filter.h"
#include "common/maths.h" #include "common/maths.h"
#include "common/utils.h"
#define M_LN2_FLOAT 0.69314718055994530942f #define M_LN2_FLOAT 0.69314718055994530942f
#define M_PI_FLOAT 3.14159265358979323846f #define M_PI_FLOAT 3.14159265358979323846f
@ -29,6 +30,16 @@
#define BIQUAD_BANDWIDTH 1.9f /* bandwidth in octaves */ #define BIQUAD_BANDWIDTH 1.9f /* bandwidth in octaves */
#define BIQUAD_Q 1.0f / sqrtf(2.0f) /* quality factor - butterworth*/ #define BIQUAD_Q 1.0f / sqrtf(2.0f) /* quality factor - butterworth*/
// NULL filter
float nullFilterApply(void *filter, float input)
{
UNUSED(filter);
return input;
}
// PT1 Low Pass filter // PT1 Low Pass filter
void pt1FilterInit(pt1Filter_t *filter, uint8_t f_cut, float dT) void pt1FilterInit(pt1Filter_t *filter, uint8_t f_cut, float dT)
@ -178,6 +189,12 @@ float firFilterApply(const firFilter_t *filter)
return ret; return ret;
} }
float firFilterUpdateAndApply(firFilter_t *filter, float input)
{
firFilterUpdate(filter, input);
return firFilterApply(filter);
}
/* /*
* Returns average of the last <count> items. * Returns average of the last <count> items.
*/ */

View file

@ -62,6 +62,9 @@ typedef struct firFilter_s {
uint8_t coeffsLength; uint8_t coeffsLength;
} firFilter_t; } firFilter_t;
typedef float (*filterApplyFnPtr)(void *filter, float input);
float nullFilterApply(void *filter, float input);
void biquadFilterInitLPF(biquadFilter_t *filter, float filterFreq, uint32_t refreshRate); void biquadFilterInitLPF(biquadFilter_t *filter, float filterFreq, uint32_t refreshRate);
void biquadFilterInit(biquadFilter_t *filter, float filterFreq, uint32_t refreshRate, float Q, biquadFilterType_e filterType); void biquadFilterInit(biquadFilter_t *filter, float filterFreq, uint32_t refreshRate, float Q, biquadFilterType_e filterType);
@ -77,6 +80,7 @@ void firFilterInit2(firFilter_t *filter, float *buf, uint8_t bufLength, const fl
void firFilterUpdate(firFilter_t *filter, float input); void firFilterUpdate(firFilter_t *filter, float input);
void firFilterUpdateAverage(firFilter_t *filter, float input); void firFilterUpdateAverage(firFilter_t *filter, float input);
float firFilterApply(const firFilter_t *filter); float firFilterApply(const firFilter_t *filter);
float firFilterUpdateAndApply(firFilter_t *filter, float input);
float firFilterCalcPartialAverage(const firFilter_t *filter, uint8_t count); float firFilterCalcPartialAverage(const firFilter_t *filter, uint8_t count);
float firFilterCalcMovingAverage(const firFilter_t *filter); float firFilterCalcMovingAverage(const firFilter_t *filter);
float firFilterLastInput(const firFilter_t *filter); float firFilterLastInput(const firFilter_t *filter);

View file

@ -32,7 +32,7 @@
#define EXPAND_I(x) x #define EXPAND_I(x) x
#define EXPAND(x) EXPAND_I(x) #define EXPAND(x) EXPAND_I(x)
#if !defined(USE_HAL_DRIVER) #if !defined(UNUSED)
#define UNUSED(x) (void)(x) #define UNUSED(x) (void)(x)
#endif #endif
#define BUILD_BUG_ON(condition) ((void)sizeof(char[1 - 2*!!(condition)])) #define BUILD_BUG_ON(condition) ((void)sizeof(char[1 - 2*!!(condition)]))

View file

@ -15,12 +15,12 @@
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>. * along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/ */
#include "common/utils.h"
#include "io.h" #include "io.h"
#include "io_impl.h" #include "io_impl.h"
#include "rcc.h" #include "rcc.h"
#include "common/utils.h"
#include "target.h" #include "target.h"
// io ports defs are stored in array by index now // io ports defs are stored in array by index now

View file

@ -53,7 +53,10 @@ static uint16_t gyroSoftNotchHz1, gyroSoftNotchHz2;
static float gyroSoftNotchQ1, gyroSoftNotchQ2; static float gyroSoftNotchQ1, gyroSoftNotchQ2;
static uint8_t gyroSoftLpfHz; static uint8_t gyroSoftLpfHz;
static uint16_t calibratingG = 0; static uint16_t calibratingG = 0;
static float gyroDt;
static filterApplyFnPtr softLpfFilterApplyFn;
static filterApplyFnPtr notchFilter1ApplyFn;
static filterApplyFnPtr notchFilter2ApplyFn;
void gyroUseConfig(const gyroConfig_t *gyroConfigToUse, void gyroUseConfig(const gyroConfig_t *gyroConfigToUse,
uint8_t gyro_soft_lpf_hz, uint8_t gyro_soft_lpf_hz,
@ -74,20 +77,40 @@ void gyroUseConfig(const gyroConfig_t *gyroConfigToUse,
void gyroInit(void) void gyroInit(void)
{ {
if (gyroSoftLpfHz && gyro.targetLooptime) { // Initialisation needs to happen once samplingrate is known
for (int axis = 0; axis < 3; axis++) { softLpfFilterApplyFn = nullFilterApply;
if (gyroSoftLpfType == FILTER_BIQUAD) notchFilter1ApplyFn = nullFilterApply;
notchFilter2ApplyFn = nullFilterApply;
if (gyroSoftLpfHz) { // Initialisation needs to happen once samplingrate is known
if (gyroSoftLpfType == FILTER_BIQUAD) {
softLpfFilterApplyFn = (filterApplyFnPtr)biquadFilterApply;
for (int axis = 0; axis < 3; axis++) {
biquadFilterInitLPF(&gyroFilterLPF[axis], gyroSoftLpfHz, gyro.targetLooptime); biquadFilterInitLPF(&gyroFilterLPF[axis], gyroSoftLpfHz, gyro.targetLooptime);
else if (gyroSoftLpfType == FILTER_PT1) }
gyroDt = (float) gyro.targetLooptime * 0.000001f; } else if (gyroSoftLpfType == FILTER_PT1) {
else softLpfFilterApplyFn = (filterApplyFnPtr)pt1FilterApply;
const float gyroDt = (float) gyro.targetLooptime * 0.000001f;
for (int axis = 0; axis < 3; axis++) {
pt1FilterInit(&gyroFilterPt1[axis], gyroSoftLpfHz, gyroDt);
}
} else {
softLpfFilterApplyFn = (filterApplyFnPtr)firFilterDenoiseUpdate;
for (int axis = 0; axis < 3; axis++) {
firFilterDenoiseInit(&gyroDenoiseState[axis], gyroSoftLpfHz, gyro.targetLooptime); firFilterDenoiseInit(&gyroDenoiseState[axis], gyroSoftLpfHz, gyro.targetLooptime);
}
} }
} }
if ((gyroSoftNotchHz1 || gyroSoftNotchHz2) && gyro.targetLooptime) { if (gyroSoftNotchHz1) {
notchFilter1ApplyFn = (filterApplyFnPtr)biquadFilterApply;
for (int axis = 0; axis < 3; axis++) { for (int axis = 0; axis < 3; axis++) {
biquadFilterInit(&gyroFilterNotch_1[axis], gyroSoftNotchHz1, gyro.targetLooptime, gyroSoftNotchQ1, FILTER_NOTCH); biquadFilterInit(&gyroFilterNotch_1[axis], gyroSoftNotchHz1, gyro.targetLooptime, gyroSoftNotchQ1, FILTER_NOTCH);
}
}
if (gyroSoftNotchHz1) {
notchFilter2ApplyFn = (filterApplyFnPtr)biquadFilterApply;
for (int axis = 0; axis < 3; axis++) {
biquadFilterInit(&gyroFilterNotch_2[axis], gyroSoftNotchHz2, gyro.targetLooptime, gyroSoftNotchQ2, FILTER_NOTCH); biquadFilterInit(&gyroFilterNotch_2[axis], gyroSoftNotchHz2, gyro.targetLooptime, gyroSoftNotchQ2, FILTER_NOTCH);
} }
} }
@ -180,32 +203,20 @@ void gyroUpdate(void)
gyroADC[Y] -= gyroZero[Y]; gyroADC[Y] -= gyroZero[Y];
gyroADC[Z] -= gyroZero[Z]; gyroADC[Z] -= gyroZero[Z];
if (gyroSoftLpfHz) { for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
if (debugMode == DEBUG_GYRO) if (debugMode == DEBUG_GYRO)
debug[axis] = gyroADC[axis]; debug[axis] = gyroADC[axis];
if (gyroSoftLpfType == FILTER_BIQUAD) gyroADCf[axis] = softLpfFilterApplyFn(&gyroDenoiseState[axis], (float) gyroADC[axis]);
gyroADCf[axis] = biquadFilterApply(&gyroFilterLPF[axis], (float) gyroADC[axis]);
else if (gyroSoftLpfType == FILTER_PT1)
gyroADCf[axis] = pt1FilterApply4(&gyroFilterPt1[axis], (float) gyroADC[axis], gyroSoftLpfHz, gyroDt);
else
gyroADCf[axis] = firFilterDenoiseUpdate(&gyroDenoiseState[axis], (float) gyroADC[axis]);
if (debugMode == DEBUG_NOTCH) if (debugMode == DEBUG_NOTCH)
debug[axis] = lrintf(gyroADCf[axis]); debug[axis] = lrintf(gyroADCf[axis]);
if (gyroSoftNotchHz1) gyroADCf[axis] = notchFilter1ApplyFn(&gyroFilterNotch_1[axis], gyroADCf[axis]);
gyroADCf[axis] = biquadFilterApply(&gyroFilterNotch_1[axis], gyroADCf[axis]);
if (gyroSoftNotchHz2) gyroADCf[axis] = notchFilter2ApplyFn(&gyroFilterNotch_2[axis], gyroADCf[axis]);
gyroADCf[axis] = biquadFilterApply(&gyroFilterNotch_2[axis], gyroADCf[axis]);
gyroADC[axis] = lrintf(gyroADCf[axis]); gyroADC[axis] = lrintf(gyroADCf[axis]);
}
} else {
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++)
gyroADCf[axis] = gyroADC[axis];
} }
} }