1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-18 13:55:18 +03:00

format code properly

match the comment from pullrequest about spacing
remains : some hand alignment for comment and wrong /** */ usage.
This commit is contained in:
treymarc 2014-05-08 00:36:19 +00:00
parent ac4835ef67
commit 1f293795e7
26 changed files with 99 additions and 109 deletions

View file

@ -142,8 +142,7 @@ enum {
TEMP_UPDATED = 1 << 3
};
typedef struct sensor_data_t
{
typedef struct sensor_data_t {
int16_t gyro[3];
int16_t acc[3];
int16_t mag[3];
@ -151,24 +150,22 @@ typedef struct sensor_data_t
int updated;
} sensor_data_t;
typedef void (* sensorInitFuncPtr)(sensor_align_e align); // sensor init prototype
typedef void (* sensorReadFuncPtr)(int16_t *data); // sensor read and align prototype
typedef void (* baroOpFuncPtr)(void); // baro start operation
typedef void (* baroCalculateFuncPtr)(int32_t *pressure, int32_t *temperature); // baro calculation (filled params are pressure and temperature)
typedef void (* serialReceiveCallbackPtr)(uint16_t data); // used by serial drivers to return frames to app
typedef uint16_t (* rcReadRawDataPtr)(uint8_t chan); // used by receiver driver to return channel data
typedef void (* pidControllerFuncPtr)(void); // pid controller function prototype
typedef void (*sensorInitFuncPtr)(sensor_align_e align); // sensor init prototype
typedef void (*sensorReadFuncPtr)(int16_t *data); // sensor read and align prototype
typedef void (*baroOpFuncPtr)(void); // baro start operation
typedef void (*baroCalculateFuncPtr)(int32_t *pressure, int32_t *temperature); // baro calculation (filled params are pressure and temperature)
typedef void (*serialReceiveCallbackPtr)(uint16_t data); // used by serial drivers to return frames to app
typedef uint16_t (*rcReadRawDataPtr)(uint8_t chan); // used by receiver driver to return channel data
typedef void (*pidControllerFuncPtr)(void); // pid controller function prototype
typedef struct sensor_t
{
typedef struct sensor_t {
sensorInitFuncPtr init; // initialize function
sensorReadFuncPtr read; // read 3 axis data function
sensorReadFuncPtr temperature; // read temperature if available
float scale; // scalefactor (currently used for gyro only, todo for accel)
} sensor_t;
typedef struct baro_t
{
typedef struct baro_t {
uint16_t ut_delay;
uint16_t up_delay;
baroOpFuncPtr start_ut;

View file

@ -78,7 +78,7 @@ void beep_code(char first, char second, char third, char pause)
patternChar[1] = second;
patternChar[2] = third;
patternChar[3] = pause;
switch(patternChar[icnt]) {
switch (patternChar[icnt]) {
case 'M':
Duration = 100;
break;
@ -121,7 +121,7 @@ static void beep(uint16_t pulse)
buzzerIsOn = 0;
BEEP_OFF;
buzzerLastToggleTime = millis();
if (toggleBeep >0)
if (toggleBeep > 0)
toggleBeep--;
beepDone = 1;
}

View file

@ -297,7 +297,7 @@ static float _atof(const char *p)
float sign, value, scale;
// Skip leading white space, if any.
while (white_space(*p) ) {
while (white_space(*p)) {
p += 1;
}
@ -381,7 +381,7 @@ static char *ftoa(float x, char *floatString)
else
x -= 0.0005f;
value = (int32_t) (x * 1000.0f); // Convert float * 1000 to an integer
value = (int32_t)(x * 1000.0f); // Convert float * 1000 to an integer
itoa(abs(value), intString1, 10); // Create string from abs of integer value

View file

@ -72,7 +72,7 @@ void activateConfig(void)
{
uint8_t i;
for (i = 0; i < PITCH_LOOKUP_LENGTH; i++)
lookupPitchRollRC[i] = (2500 + cfg.rcExpo8 * (i * i - 25)) * i * (int32_t) cfg.rcRate8 / 2500;
lookupPitchRollRC[i] = (2500 + cfg.rcExpo8 * (i * i - 25)) * i * (int32_t)cfg.rcRate8 / 2500;
for (i = 0; i < THROTTLE_LOOKUP_LENGTH; i++) {
int16_t tmp = 10 * i - cfg.thrMid8;
@ -81,8 +81,8 @@ void activateConfig(void)
y = 100 - cfg.thrMid8;
if (tmp < 0)
y = cfg.thrMid8;
lookupThrottleRC[i] = 10 * cfg.thrMid8 + tmp * (100 - cfg.thrExpo8 + (int32_t) cfg.thrExpo8 * (tmp * tmp) / (y * y)) / 10;
lookupThrottleRC[i] = mcfg.minthrottle + (int32_t) (mcfg.maxthrottle - mcfg.minthrottle) * lookupThrottleRC[i] / 1000; // [MINTHROTTLE;MAXTHROTTLE]
lookupThrottleRC[i] = 10 * cfg.thrMid8 + tmp * (100 - cfg.thrExpo8 + (int32_t)cfg.thrExpo8 * (tmp * tmp) / (y * y)) / 10;
lookupThrottleRC[i] = mcfg.minthrottle + (int32_t)(mcfg.maxthrottle - mcfg.minthrottle) * lookupThrottleRC[i] / 1000; // [MINTHROTTLE;MAXTHROTTLE]
}
setPIDController(cfg.pidController);
@ -128,7 +128,7 @@ retry:
if (FLASH_ErasePage(FLASH_WRITE_ADDR) == FLASH_COMPLETE) {
for (i = 0; i < sizeof(master_t); i += 4) {
status = FLASH_ProgramWord(FLASH_WRITE_ADDR + i, *(uint32_t *) ((char *)&mcfg + i));
status = FLASH_ProgramWord(FLASH_WRITE_ADDR + i, *(uint32_t *)((char *)&mcfg + i));
if (status != FLASH_COMPLETE) {
FLASH_Lock();
tries++;

View file

@ -60,7 +60,7 @@ bool adxl345Detect(drv_adxl345_config_t *init, sensor_t *acc)
static void adxl345Init(sensor_align_e align)
{
if (useFifo) {
if (useFifo) {
uint8_t fifoDepth = 16;
i2cWrite(ADXL345_ADDRESS, ADXL345_POWER_CTL, ADXL345_POWER_MEAS);
i2cWrite(ADXL345_ADDRESS, ADXL345_DATA_FORMAT, ADXL345_FULL_RANGE | ADXL345_RANGE_8G);

View file

@ -30,7 +30,7 @@ typedef struct {
int16_t md;
} bmp085_smd500_calibration_param_t;
typedef struct {
typedef struct {
bmp085_smd500_calibration_param_t cal_param;
uint8_t mode;
uint8_t chip_id, ml_version, al_version;
@ -189,9 +189,9 @@ static int32_t bmp085_get_pressure(uint32_t up)
// *****calculate B4************
x1 = (bmp085.cal_param.ac3 * b6) >> 13;
x2 = (bmp085.cal_param.b1 * ((b6 * b6) >> 12) ) >> 16;
x2 = (bmp085.cal_param.b1 * ((b6 * b6) >> 12)) >> 16;
x3 = ((x1 + x2) + 2) >> 2;
b4 = (bmp085.cal_param.ac4 * (uint32_t) (x3 + 32768)) >> 15;
b4 = (bmp085.cal_param.ac4 * (uint32_t)(x3 + 32768)) >> 15;
b7 = ((uint32_t)(up - b3) * (50000 >> bmp085.oversampling_setting));
if (b7 < 0x80000000) {
@ -249,7 +249,7 @@ static void bmp085_get_up(void)
convOverrun++;
i2cRead(BMP085_I2C_ADDR, BMP085_ADC_OUT_MSB_REG, 3, data);
bmp085_up = (((uint32_t) data[0] << 16) | ((uint32_t) data[1] << 8) | (uint32_t) data[2]) >> (8 - bmp085.oversampling_setting);
bmp085_up = (((uint32_t)data[0] << 16) | ((uint32_t)data[1] << 8) | (uint32_t)data[2]) >> (8 - bmp085.oversampling_setting);
}
static void bmp085_calculate(int32_t *pressure, int32_t *temperature)

View file

@ -71,7 +71,7 @@ void gpioPinRemapConfig(uint32_t remap, bool enable)
}
if (enable)
tmpreg |= (tmp << ((remap >> 0x15)*0x10));
tmpreg |= (tmp << ((remap >> 0x15) * 0x10));
if ((remap & 0x80000000) == 0x80000000)
AFIO->MAPR2 = tmpreg;

View file

@ -1,7 +1,6 @@
#pragma once
typedef enum
{
typedef enum {
Mode_AIN = 0x0,
Mode_IN_FLOATING = 0x04,
Mode_IPD = 0x28,
@ -12,15 +11,13 @@ typedef enum
Mode_AF_PP = 0x18
} GPIO_Mode;
typedef enum
{
typedef enum {
Speed_10MHz = 1,
Speed_2MHz,
Speed_50MHz
} GPIO_Speed;
typedef enum
{
typedef enum {
Pin_0 = 0x0001,
Pin_1 = 0x0002,
Pin_2 = 0x0004,
@ -40,8 +37,7 @@ typedef enum
Pin_All = 0xFFFF
} GPIO_Pin;
typedef struct
{
typedef struct {
uint16_t pin;
GPIO_Mode mode;
GPIO_Speed speed;

View file

@ -61,7 +61,7 @@ void hcsr04_init(sonar_config_t config)
// enable AFIO for EXTI support - already done is drv_system.c
// RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO | RCC_APB2Periph, ENABLE);
switch(config) {
switch (config) {
case sonar_pwm56:
trigger_pin = Pin_8; // PWM5 (PB8) - 5v tolerant
echo_pin = Pin_9; // PWM6 (PB9) - 5v tolerant

View file

@ -170,11 +170,11 @@ static void ms5611_calculate(int32_t *pressure, int32_t *temperature)
if (temp < -1500) { // temperature lower than -15degC
delt = temp + 1500;
delt = delt * delt;
off -= 7 * delt;
off -= 7 * delt;
sens -= (11 * delt) >> 1;
}
}
press = ((((int64_t)ms5611_up * sens ) >> 21) - off) >> 15;
press = ((((int64_t)ms5611_up * sens) >> 21) - off) >> 15;
if (pressure)
*pressure = press;

View file

@ -51,7 +51,7 @@ enum {
TYPE_S = 0x80
};
typedef void (* pwmWriteFuncPtr)(uint8_t index, uint16_t value); // function pointer used to write motors
typedef void (*pwmWriteFuncPtr)(uint8_t index, uint16_t value); // function pointer used to write motors
static pwmPortData_t pwmPorts[MAX_PORTS];
static uint16_t captures[MAX_INPUTS];
@ -60,7 +60,7 @@ static pwmPortData_t *servos[MAX_SERVOS];
static pwmWriteFuncPtr pwmWritePtr = NULL;
static uint8_t numMotors = 0;
static uint8_t numServos = 0;
static uint8_t numInputs = 0;
static uint8_t numInputs = 0;
static uint16_t failsafeThreshold = 985;
// external vars (ugh)
extern int16_t failsafeCnt;
@ -143,7 +143,7 @@ static const uint8_t * const hardwareMaps[] = {
static void pwmOCConfig(TIM_TypeDef *tim, uint8_t channel, uint16_t value)
{
TIM_OCInitTypeDef TIM_OCInitStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
TIM_OCStructInit(&TIM_OCInitStructure);
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2;
@ -175,7 +175,7 @@ static void pwmOCConfig(TIM_TypeDef *tim, uint8_t channel, uint16_t value)
void pwmICConfig(TIM_TypeDef *tim, uint8_t channel, uint16_t polarity)
{
TIM_ICInitTypeDef TIM_ICInitStructure;
TIM_ICInitTypeDef TIM_ICInitStructure;
TIM_ICStructInit(&TIM_ICInitStructure);
TIM_ICInitStructure.TIM_Channel = channel;

View file

@ -48,7 +48,7 @@ static struct PWM_State {
uint16_t capture;
} Inputs[8] = { { 0, } };
static TIM_ICInitTypeDef TIM_ICInitStructure = { 0, };
static TIM_ICInitTypeDef TIM_ICInitStructure = { 0, };
static bool usePPMFlag = false;
static uint8_t numOutputChannels = 0;
@ -165,11 +165,11 @@ static void pwmIRQHandler(TIM_TypeDef *tim)
static void pwmInitializeInput(bool usePPM)
{
GPIO_InitTypeDef GPIO_InitStructure = { 0, };
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure = { 0, };
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure = { 0, };
NVIC_InitTypeDef NVIC_InitStructure = { 0, };
uint8_t i;
// Input pins
// Input pins
if (usePPM) {
// Configure TIM2_CH1 for PPM input
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
@ -253,7 +253,7 @@ static void pwmInitializeInput(bool usePPM)
bool pwmInit(drv_pwm_config_t *init)
{
GPIO_InitTypeDef GPIO_InitStructure = { 0, };
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure = { 0, };
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure = { 0, };
TIM_OCInitTypeDef TIM_OCInitStructure = { 0, };
uint8_t i;

View file

@ -1,7 +1,7 @@
#pragma once
typedef enum portMode_t {
MODE_RX = 1 << 0,
MODE_RX = 1 << 0,
MODE_TX = 1 << 1,
MODE_RXTX = MODE_RX | MODE_TX,
MODE_SBUS = 1 << 2,

View file

@ -96,7 +96,7 @@ void serialTimerTxConfig(const timerHardware_t *timerHardwarePtr, uint8_t refere
void serialICConfig(TIM_TypeDef *tim, uint8_t channel, uint16_t polarity)
{
TIM_ICInitTypeDef TIM_ICInitStructure;
TIM_ICInitTypeDef TIM_ICInitStructure;
TIM_ICStructInit(&TIM_ICInitStructure);
TIM_ICInitStructure.TIM_Channel = channel;
@ -253,7 +253,7 @@ void applyChangedBits(softSerial_t *softSerial)
{
if (softSerial->rxEdge == TRAILING) {
uint8_t bitToSet;
for (bitToSet = softSerial->rxLastLeadingEdgeAtBitIndex; bitToSet < softSerial->rxBitIndex ; bitToSet++) {
for (bitToSet = softSerial->rxLastLeadingEdgeAtBitIndex; bitToSet < softSerial->rxBitIndex; bitToSet++) {
softSerial->internalRxBuffer |= 1 << bitToSet;
}
}

View file

@ -10,7 +10,7 @@ void SetSysClock(bool overclock);
void systemBeep(bool onoff);
static void beepRev4(bool onoff);
static void beepRev5(bool onoff);
void (* systemBeepPtr)(bool onoff) = NULL;
void (*systemBeepPtr)(bool onoff) = NULL;
#endif
static void cycleCounterInit(void)

View file

@ -147,7 +147,7 @@ void timerNVICConfigure(uint8_t irq)
void configTimeBase(TIM_TypeDef *tim, uint16_t period, uint8_t mhz)
{
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);
TIM_TimeBaseStructure.TIM_Period = period - 1; // AKA TIMx_ARR

View file

@ -436,7 +436,7 @@ static void gpsNewData(uint16_t c)
#endif
// dTnav calculation
// Time for calculating x,y speed and navigation pids
dTnav = (float) (millis() - nav_loopTimer) / 1000.0f;
dTnav = (float)(millis() - nav_loopTimer) / 1000.0f;
nav_loopTimer = millis();
// prevent runup from bad GPS
dTnav = min(dTnav, 1.0f);
@ -612,7 +612,7 @@ static bool check_missed_wp(void)
static void GPS_distance_cm_bearing(int32_t * lat1, int32_t * lon1, int32_t * lat2, int32_t * lon2, uint32_t * dist, int32_t * bearing)
{
float dLat = *lat2 - *lat1; // difference of latitude in 1/10 000 000 degrees
float dLon = (float) (*lon2 - *lon1) * GPS_scaleLonDown;
float dLon = (float)(*lon2 - *lon1) * GPS_scaleLonDown;
*dist = sqrtf(sq(dLat) + sq(dLon)) * 1.113195f;
*bearing = 9000.0f + atan2f(-dLat, dLon) * 5729.57795f; // Convert the output radians to 100xdeg
@ -644,8 +644,8 @@ static void GPS_calc_velocity(void)
if (init) {
float tmp = 1.0f / dTnav;
actual_speed[GPS_X] = (float) (GPS_coord[LON] - last[LON]) * GPS_scaleLonDown * tmp;
actual_speed[GPS_Y] = (float) (GPS_coord[LAT] - last[LAT]) * tmp;
actual_speed[GPS_X] = (float)(GPS_coord[LON] - last[LON]) * GPS_scaleLonDown * tmp;
actual_speed[GPS_Y] = (float)(GPS_coord[LAT] - last[LAT]) * tmp;
actual_speed[GPS_X] = (actual_speed[GPS_X] + speed_old[GPS_X]) / 2;
actual_speed[GPS_Y] = (actual_speed[GPS_Y] + speed_old[GPS_Y]) / 2;
@ -670,7 +670,7 @@ static void GPS_calc_velocity(void)
//
static void GPS_calc_location_error(int32_t *target_lat, int32_t *target_lng, int32_t *gps_lat, int32_t *gps_lng)
{
error[LON] = (float) (*target_lng - *gps_lng) * GPS_scaleLonDown; // X Error
error[LON] = (float)(*target_lng - *gps_lng) * GPS_scaleLonDown; // X Error
error[LAT] = *target_lat - *gps_lat; // Y Error
}
@ -698,7 +698,7 @@ static void GPS_calc_poshold(void)
d = 0;
#endif
nav[axis] +=d;
nav[axis] += d;
nav[axis] = constrain(nav[axis], -NAV_BANK_MAX, NAV_BANK_MAX);
navPID[axis].integrator = poshold_ratePID[axis].integrator;
}
@ -774,7 +774,7 @@ static int16_t GPS_calc_desired_speed(int16_t max_speed, bool _slow)
// limit the ramp up of the speed
// waypoint_speed_gov is reset to 0 at each new WP command
if (max_speed > waypoint_speed_gov) {
waypoint_speed_gov += (int) (100.0f * dTnav); // increase at .5/ms
waypoint_speed_gov += (int)(100.0f * dTnav); // increase at .5/ms
max_speed = waypoint_speed_gov;
}
return max_speed;
@ -1056,8 +1056,7 @@ typedef struct {
uint32_t heading_accuracy;
} ubx_nav_velned;
typedef struct
{
typedef struct {
uint8_t chn; // Channel number, 255 for SVx not assigned to channel
uint8_t svid; // Satellite ID
uint8_t flags; // Bitmask
@ -1068,8 +1067,7 @@ typedef struct
int32_t prRes; // Pseudo range residual in centimetres
} ubx_nav_svinfo_channel;
typedef struct
{
typedef struct {
uint32_t time; // GPS Millisecond time of week
uint8_t numCh; // Number of channels
uint8_t globalFlags; // Bitmask, Chip hardware generation 0:Antaris, 1:u-blox 5, 2:u-blox 6
@ -1180,7 +1178,7 @@ static bool gpsNewFrameUBLOX(uint8_t data)
case 5:
_step++;
_ck_b += (_ck_a += data); // checksum byte
_payload_length += (uint16_t) (data << 8);
_payload_length += (uint16_t)(data << 8);
if (_payload_length > 512) {
_payload_length = 0;
_step = 0;

View file

@ -430,7 +430,7 @@ void mixTable(void)
break;
case MULTITYPE_DUALCOPTER:
for (i = 4; i < 6; i++ ) {
for (i = 4; i < 6; i++) {
servo[i] = axisPID[5 - i] * servoDirection(i, 1); // mix and setup direction
servo[i] += servoMiddle(i);
}

View file

@ -363,9 +363,9 @@ static void pidRewrite(void)
}
if (axis == 2) { // YAW is always gyro-controlled (MAG correction is applied to rcCommand)
AngleRateTmp = (((int32_t)(cfg.yawRate + 27) * rcCommand[2]) >> 5);
} else {
} else {
if (!f.ANGLE_MODE) { //control is GYRO based (ACRO and HORIZON - direct sticks control is applied to rate PID
AngleRateTmp = ((int32_t) (cfg.rollPitchRate + 27) * rcCommand[axis]) >> 4;
AngleRateTmp = ((int32_t)(cfg.rollPitchRate + 27) * rcCommand[axis]) >> 4;
if (f.HORIZON_MODE) {
// mix up angle error to desired AngleRateTmp to add a little auto-level feel
AngleRateTmp += (errorAngle * cfg.I8[PIDLEVEL]) >> 8;
@ -625,7 +625,7 @@ void loop(void)
if (rcOptions[BOXCALIB]) { // Use the Calib Option to activate : Calib = TRUE Meausrement started, Land and Calib = 0 measurement stored
if (!AccInflightCalibrationActive && !AccInflightCalibrationMeasurementDone)
InflightcalibratingA = 50;
AccInflightCalibrationActive = true;
AccInflightCalibrationActive = true;
} else if (AccInflightCalibrationMeasurementDone && !f.ARMED) {
AccInflightCalibrationMeasurementDone = false;
AccInflightCalibrationSavetoEEProm = true;

View file

@ -28,8 +28,7 @@ void sbusInit(rcReadRawDataPtr *callback)
core.numRCChannels = SBUS_MAX_CHANNEL;
}
struct sbus_dat
{
struct sbus_dat {
unsigned int chan0 : 11;
unsigned int chan1 : 11;
unsigned int chan2 : 11;
@ -44,8 +43,7 @@ struct sbus_dat
unsigned int chan11 : 11;
} __attribute__ ((__packed__));
typedef union
{
typedef union {
uint8_t in[SBUS_FRAME_SIZE];
struct sbus_dat msg;
} sbus_msg;
@ -57,7 +55,7 @@ static void sbusDataReceive(uint16_t c)
{
uint32_t sbusTime;
static uint32_t sbusTimeLast;
static uint8_t sbusFramePosition;
static uint8_t sbusFramePosition;
sbusTime = micros();
if ((sbusTime - sbusTimeLast) > 2500) // sbus2 fast timing

View file

@ -158,14 +158,14 @@ uint8_t read8(void)
uint16_t read16(void)
{
uint16_t t = read8();
t += (uint16_t) read8() << 8;
t += (uint16_t)read8() << 8;
return t;
}
uint32_t read32(void)
{
uint32_t t = read16();
t += (uint32_t) read16() << 16;
t += (uint32_t)read16() << 16;
return t;
}

View file

@ -88,13 +88,13 @@ void hottV4FormatAndSendGPSResponse(void)
void hottV4GPSUpdate(void)
{
// Number of Satelites
HoTTV4GPSModule.GPSNumSat=GPS_numSat;
HoTTV4GPSModule.GPSNumSat = GPS_numSat;
if (f.GPS_FIX > 0) {
// GPS fix
HoTTV4GPSModule.GPS_fix = 0x66; // Displays a 'f' for fix
// latitude
HoTTV4GPSModule.LatitudeNS=(GPS_coord[LAT]<0);
HoTTV4GPSModule.LatitudeNS = (GPS_coord[LAT] < 0);
uint8_t deg = GPS_coord[LAT] / 100000;
uint32_t sec = (GPS_coord[LAT] - (deg * 100000)) * 6;
uint8_t min = sec / 10000;
@ -106,7 +106,7 @@ void hottV4GPSUpdate(void)
HoTTV4GPSModule.LatitudeSecHigh = sec >> 8;
// longitude
HoTTV4GPSModule.longitudeEW=(GPS_coord[LON]<0);
HoTTV4GPSModule.longitudeEW = (GPS_coord[LON] < 0);
deg = GPS_coord[LON] / 100000;
sec = (GPS_coord[LON] - (deg * 100000)) * 6;
min = sec / 10000;
@ -265,7 +265,8 @@ void handleHoTTTelemetry(void)
switch (c) {
case 0x8A:
if (sensors(SENSOR_GPS)) hottV4FormatAndSendGPSResponse();
if (sensors(SENSOR_GPS))
hottV4FormatAndSendGPSResponse();
break;
case 0x8E:
hottV4FormatAndSendEAMResponse();