1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-15 04:15:44 +03:00

Adding RP2350 SDK and target framework (#13988)

* Adding RP2350 SDK and target framework

* Spacing

* Removing board definitions
This commit is contained in:
J Blackman 2024-10-23 10:02:48 +11:00 committed by GitHub
parent 462cb05930
commit 2dd6f95aad
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
576 changed files with 435012 additions and 0 deletions

View file

@ -0,0 +1,355 @@
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "hardware/i2c.h"
#include "hardware/resets.h"
#include "hardware/clocks.h"
#include "pico/timeout_helper.h"
check_hw_layout(i2c_hw_t, enable, I2C_IC_ENABLE_OFFSET);
check_hw_layout(i2c_hw_t, clr_restart_det, I2C_IC_CLR_RESTART_DET_OFFSET);
i2c_inst_t i2c0_inst = {i2c0_hw, false};
i2c_inst_t i2c1_inst = {i2c1_hw, false};
static inline void i2c_reset(i2c_inst_t *i2c) {
invalid_params_if(HARDWARE_I2C, i2c != i2c0 && i2c != i2c1);
reset_block_num(i2c == i2c0 ? RESET_I2C0 : RESET_I2C1);
}
static inline void i2c_unreset(i2c_inst_t *i2c) {
invalid_params_if(HARDWARE_I2C, i2c != i2c0 && i2c != i2c1);
unreset_block_num_wait_blocking(i2c == i2c0 ? RESET_I2C0 : RESET_I2C1);
}
// Addresses of the form 000 0xxx or 111 1xxx are reserved. No slave should
// have these addresses.
#define i2c_reserved_addr(addr) (((addr) & 0x78) == 0 || ((addr) & 0x78) == 0x78)
uint i2c_init(i2c_inst_t *i2c, uint baudrate) {
i2c_reset(i2c);
i2c_unreset(i2c);
i2c->restart_on_next = false;
i2c->hw->enable = 0;
// Configure as a fast-mode master with RepStart support, 7-bit addresses
i2c->hw->con =
I2C_IC_CON_SPEED_VALUE_FAST << I2C_IC_CON_SPEED_LSB |
I2C_IC_CON_MASTER_MODE_BITS |
I2C_IC_CON_IC_SLAVE_DISABLE_BITS |
I2C_IC_CON_IC_RESTART_EN_BITS |
I2C_IC_CON_TX_EMPTY_CTRL_BITS;
// Set FIFO watermarks to 1 to make things simpler. This is encoded by a register value of 0.
i2c->hw->tx_tl = 0;
i2c->hw->rx_tl = 0;
// Always enable the DREQ signalling -- harmless if DMA isn't listening
i2c->hw->dma_cr = I2C_IC_DMA_CR_TDMAE_BITS | I2C_IC_DMA_CR_RDMAE_BITS;
// Re-sets i2c->hw->enable upon returning:
return i2c_set_baudrate(i2c, baudrate);
}
void i2c_deinit(i2c_inst_t *i2c) {
i2c_reset(i2c);
}
uint i2c_set_baudrate(i2c_inst_t *i2c, uint baudrate) {
invalid_params_if(HARDWARE_I2C, baudrate == 0);
// I2C is synchronous design that runs from clk_sys
uint freq_in = clock_get_hz(clk_sys);
// TODO there are some subtleties to I2C timing which we are completely ignoring here
uint period = (freq_in + baudrate / 2) / baudrate;
uint lcnt = period * 3 / 5; // oof this one hurts
uint hcnt = period - lcnt;
// Check for out-of-range divisors:
invalid_params_if(HARDWARE_I2C, hcnt > I2C_IC_FS_SCL_HCNT_IC_FS_SCL_HCNT_BITS);
invalid_params_if(HARDWARE_I2C, lcnt > I2C_IC_FS_SCL_LCNT_IC_FS_SCL_LCNT_BITS);
invalid_params_if(HARDWARE_I2C, hcnt < 8);
invalid_params_if(HARDWARE_I2C, lcnt < 8);
// Per I2C-bus specification a device in standard or fast mode must
// internally provide a hold time of at least 300ns for the SDA signal to
// bridge the undefined region of the falling edge of SCL. A smaller hold
// time of 120ns is used for fast mode plus.
uint sda_tx_hold_count;
if (baudrate < 1000000) {
// sda_tx_hold_count = freq_in [cycles/s] * 300ns * (1s / 1e9ns)
// Reduce 300/1e9 to 3/1e7 to avoid numbers that don't fit in uint.
// Add 1 to avoid division truncation.
sda_tx_hold_count = ((freq_in * 3) / 10000000) + 1;
} else {
// sda_tx_hold_count = freq_in [cycles/s] * 120ns * (1s / 1e9ns)
// Reduce 120/1e9 to 3/25e6 to avoid numbers that don't fit in uint.
// Add 1 to avoid division truncation.
sda_tx_hold_count = ((freq_in * 3) / 25000000) + 1;
}
assert(sda_tx_hold_count <= lcnt - 2);
i2c->hw->enable = 0;
// Always use "fast" mode (<= 400 kHz, works fine for standard mode too)
hw_write_masked(&i2c->hw->con,
I2C_IC_CON_SPEED_VALUE_FAST << I2C_IC_CON_SPEED_LSB,
I2C_IC_CON_SPEED_BITS
);
i2c->hw->fs_scl_hcnt = hcnt;
i2c->hw->fs_scl_lcnt = lcnt;
i2c->hw->fs_spklen = lcnt < 16 ? 1 : lcnt / 16;
hw_write_masked(&i2c->hw->sda_hold,
sda_tx_hold_count << I2C_IC_SDA_HOLD_IC_SDA_TX_HOLD_LSB,
I2C_IC_SDA_HOLD_IC_SDA_TX_HOLD_BITS);
i2c->hw->enable = 1;
return freq_in / period;
}
void i2c_set_slave_mode(i2c_inst_t *i2c, bool slave, uint8_t addr) {
invalid_params_if(HARDWARE_I2C, addr >= 0x80); // 7-bit addresses
invalid_params_if(HARDWARE_I2C, i2c_reserved_addr(addr));
i2c->hw->enable = 0;
uint32_t ctrl_set_if_master = I2C_IC_CON_MASTER_MODE_BITS | I2C_IC_CON_IC_SLAVE_DISABLE_BITS;
uint32_t ctrl_set_if_slave = I2C_IC_CON_RX_FIFO_FULL_HLD_CTRL_BITS;
if (slave) {
hw_write_masked(&i2c->hw->con,
ctrl_set_if_slave,
ctrl_set_if_master | ctrl_set_if_slave
);
i2c->hw->sar = addr;
} else {
hw_write_masked(&i2c->hw->con,
ctrl_set_if_master,
ctrl_set_if_master | ctrl_set_if_slave
);
}
i2c->hw->enable = 1;
}
static int i2c_write_blocking_internal(i2c_inst_t *i2c, uint8_t addr, const uint8_t *src, size_t len, bool nostop,
check_timeout_fn timeout_check, struct timeout_state *ts) {
invalid_params_if(HARDWARE_I2C, addr >= 0x80); // 7-bit addresses
invalid_params_if(HARDWARE_I2C, i2c_reserved_addr(addr));
// Synopsys hw accepts start/stop flags alongside data items in the same
// FIFO word, so no 0 byte transfers.
invalid_params_if(HARDWARE_I2C, len == 0);
invalid_params_if(HARDWARE_I2C, ((int)len) < 0);
i2c->hw->enable = 0;
i2c->hw->tar = addr;
i2c->hw->enable = 1;
bool abort = false;
bool timeout = false;
uint32_t abort_reason = 0;
int byte_ctr;
int ilen = (int)len;
for (byte_ctr = 0; byte_ctr < ilen; ++byte_ctr) {
bool first = byte_ctr == 0;
bool last = byte_ctr == ilen - 1;
if (timeout_check) {
timeout_check(ts, true); // for per iteration checks, this will reset the timeout
}
i2c->hw->data_cmd =
bool_to_bit(first && i2c->restart_on_next) << I2C_IC_DATA_CMD_RESTART_LSB |
bool_to_bit(last && !nostop) << I2C_IC_DATA_CMD_STOP_LSB |
*src++;
// Wait until the transmission of the address/data from the internal
// shift register has completed. For this to function correctly, the
// TX_EMPTY_CTRL flag in IC_CON must be set. The TX_EMPTY_CTRL flag
// was set in i2c_init.
do {
if (timeout_check) {
timeout = timeout_check(ts, false);
abort |= timeout;
}
tight_loop_contents();
} while (!timeout && !(i2c->hw->raw_intr_stat & I2C_IC_RAW_INTR_STAT_TX_EMPTY_BITS));
// If there was a timeout, don't attempt to do anything else.
if (!timeout) {
abort_reason = i2c->hw->tx_abrt_source;
if (abort_reason) {
// Note clearing the abort flag also clears the reason, and
// this instance of flag is clear-on-read! Note also the
// IC_CLR_TX_ABRT register always reads as 0.
i2c->hw->clr_tx_abrt;
abort = true;
}
if (abort || (last && !nostop)) {
// If the transaction was aborted or if it completed
// successfully wait until the STOP condition has occurred.
// TODO Could there be an abort while waiting for the STOP
// condition here? If so, additional code would be needed here
// to take care of the abort.
do {
if (timeout_check) {
timeout = timeout_check(ts, false);
abort |= timeout;
}
tight_loop_contents();
} while (!timeout && !(i2c->hw->raw_intr_stat & I2C_IC_RAW_INTR_STAT_STOP_DET_BITS));
// If there was a timeout, don't attempt to do anything else.
if (!timeout) {
i2c->hw->clr_stop_det;
}
}
}
// Note the hardware issues a STOP automatically on an abort condition.
// Note also the hardware clears RX FIFO as well as TX on abort,
// because we set hwparam IC_AVOID_RX_FIFO_FLUSH_ON_TX_ABRT to 0.
if (abort)
break;
}
int rval;
// A lot of things could have just happened due to the ingenious and
// creative design of I2C. Try to figure things out.
if (abort) {
if (timeout)
rval = PICO_ERROR_TIMEOUT;
else if (!abort_reason || abort_reason & I2C_IC_TX_ABRT_SOURCE_ABRT_7B_ADDR_NOACK_BITS) {
// No reported errors - seems to happen if there is nothing connected to the bus.
// Address byte not acknowledged
rval = PICO_ERROR_GENERIC;
} else if (abort_reason & I2C_IC_TX_ABRT_SOURCE_ABRT_TXDATA_NOACK_BITS) {
// Address acknowledged, some data not acknowledged
rval = byte_ctr;
} else {
//panic("Unknown abort from I2C instance @%08x: %08x\n", (uint32_t) i2c->hw, abort_reason);
rval = PICO_ERROR_GENERIC;
}
} else {
rval = byte_ctr;
}
// nostop means we are now at the end of a *message* but not the end of a *transfer*
i2c->restart_on_next = nostop;
return rval;
}
int i2c_write_blocking(i2c_inst_t *i2c, uint8_t addr, const uint8_t *src, size_t len, bool nostop) {
return i2c_write_blocking_internal(i2c, addr, src, len, nostop, NULL, NULL);
}
int i2c_write_blocking_until(i2c_inst_t *i2c, uint8_t addr, const uint8_t *src, size_t len, bool nostop,
absolute_time_t until) {
timeout_state_t ts;
return i2c_write_blocking_internal(i2c, addr, src, len, nostop, init_single_timeout_until(&ts, until), &ts);
}
int i2c_write_timeout_per_char_us(i2c_inst_t *i2c, uint8_t addr, const uint8_t *src, size_t len, bool nostop,
uint timeout_per_char_us) {
timeout_state_t ts;
return i2c_write_blocking_internal(i2c, addr, src, len, nostop,
init_per_iteration_timeout_us(&ts, timeout_per_char_us), &ts);
}
int i2c_write_burst_blocking(i2c_inst_t *i2c, uint8_t addr, const uint8_t *src, size_t len) {
int rc = i2c_write_blocking_internal(i2c, addr, src, len, true, NULL, NULL);
i2c->restart_on_next = false;
return rc;
}
static int i2c_read_blocking_internal(i2c_inst_t *i2c, uint8_t addr, uint8_t *dst, size_t len, bool nostop,
check_timeout_fn timeout_check, timeout_state_t *ts) {
invalid_params_if(HARDWARE_I2C, addr >= 0x80); // 7-bit addresses
invalid_params_if(HARDWARE_I2C, i2c_reserved_addr(addr));
invalid_params_if(HARDWARE_I2C, len == 0);
invalid_params_if(HARDWARE_I2C, ((int)len) < 0);
i2c->hw->enable = 0;
i2c->hw->tar = addr;
i2c->hw->enable = 1;
bool abort = false;
bool timeout = false;
uint32_t abort_reason;
int byte_ctr;
int ilen = (int)len;
for (byte_ctr = 0; byte_ctr < ilen; ++byte_ctr) {
bool first = byte_ctr == 0;
bool last = byte_ctr == ilen - 1;
if (timeout_check) {
timeout_check(ts, true); // for per iteration checks, this will reset the timeout
}
while (!i2c_get_write_available(i2c))
tight_loop_contents();
i2c->hw->data_cmd =
bool_to_bit(first && i2c->restart_on_next) << I2C_IC_DATA_CMD_RESTART_LSB |
bool_to_bit(last && !nostop) << I2C_IC_DATA_CMD_STOP_LSB |
I2C_IC_DATA_CMD_CMD_BITS; // -> 1 for read
do {
abort_reason = i2c->hw->tx_abrt_source;
abort = (bool) i2c->hw->clr_tx_abrt;
if (timeout_check) {
timeout = timeout_check(ts, false);
abort |= timeout;
}
} while (!abort && !i2c_get_read_available(i2c));
if (abort)
break;
*dst++ = (uint8_t) i2c->hw->data_cmd;
}
int rval;
if (abort) {
if (timeout)
rval = PICO_ERROR_TIMEOUT;
else if (!abort_reason || abort_reason & I2C_IC_TX_ABRT_SOURCE_ABRT_7B_ADDR_NOACK_BITS) {
// No reported errors - seems to happen if there is nothing connected to the bus.
// Address byte not acknowledged
rval = PICO_ERROR_GENERIC;
} else {
// panic("Unknown abort from I2C instance @%08x: %08x\n", (uint32_t) i2c->hw, abort_reason);
rval = PICO_ERROR_GENERIC;
}
} else {
rval = byte_ctr;
}
i2c->restart_on_next = nostop;
return rval;
}
int i2c_read_blocking(i2c_inst_t *i2c, uint8_t addr, uint8_t *dst, size_t len, bool nostop) {
return i2c_read_blocking_internal(i2c, addr, dst, len, nostop, NULL, NULL);
}
int i2c_read_blocking_until(i2c_inst_t *i2c, uint8_t addr, uint8_t *dst, size_t len, bool nostop, absolute_time_t until) {
timeout_state_t ts;
return i2c_read_blocking_internal(i2c, addr, dst, len, nostop, init_single_timeout_until(&ts, until), &ts);
}
int i2c_read_timeout_per_char_us(i2c_inst_t *i2c, uint8_t addr, uint8_t *dst, size_t len, bool nostop,
uint timeout_per_char_us) {
timeout_state_t ts;
return i2c_read_blocking_internal(i2c, addr, dst, len, nostop,
init_per_iteration_timeout_us(&ts, timeout_per_char_us), &ts);
}
int i2c_read_burst_blocking(i2c_inst_t *i2c, uint8_t addr, uint8_t *dst, size_t len) {
int rc = i2c_read_blocking_internal(i2c, addr, dst, len, true, NULL, NULL);
i2c->restart_on_next = false;
return rc;
}

View file

@ -0,0 +1,466 @@
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_I2C_H
#define _HARDWARE_I2C_H
#include "pico.h"
#include "pico/time.h"
#include "hardware/structs/i2c.h"
#include "hardware/regs/dreq.h"
// PICO_CONFIG: PARAM_ASSERTIONS_ENABLED_HARDWARE_I2C, Enable/disable assertions in the hardware_i2c module, type=bool, default=0, group=hardware_i2c
#ifndef PARAM_ASSERTIONS_ENABLED_HARDWARE_I2C
#ifdef PARAM_ASSERTIONS_ENABLED_I2C // backwards compatibility with SDK < 2.0.0
#define PARAM_ASSERTIONS_ENABLED_HARDWARE_I2C PARAM_ASSERTIONS_ENABLED_I2C
#else
#define PARAM_ASSERTIONS_ENABLED_HARDWARE_I2C 0
#endif
#endif
#ifdef __cplusplus
extern "C" {
#endif
/** \file hardware/i2c.h
* \defgroup hardware_i2c hardware_i2c
*
* \brief I2C Controller API
*
* The I2C bus is a two-wire serial interface, consisting of a serial data line SDA and a serial clock SCL. These wires carry
* information between the devices connected to the bus. Each device is recognized by a unique 7-bit address and can operate as
* either a transmitter or receiver, depending on the function of the device. Devices can also be considered as masters or
* slaves when performing data transfers. A master is a device that initiates a data transfer on the bus and generates the
* clock signals to permit that transfer. The first byte in the data transfer always contains the 7-bit address and
* a read/write bit in the LSB position. This API takes care of toggling the read/write bit. After this, any device addressed
* is considered a slave.
*
* This API allows the controller to be set up as a master or a slave using the \ref i2c_set_slave_mode function.
*
* The external pins of each controller are connected to GPIO pins as defined in the GPIO muxing table in the datasheet. The muxing options
* give some IO flexibility, but each controller external pin should be connected to only one GPIO.
*
* Note that the controller does NOT support High speed mode or Ultra-fast speed mode, the fastest operation being fast mode plus
* at up to 1000Kb/s.
*
* See the datasheet for more information on the I2C controller and its usage.
*
* \subsection i2c_example Example
* \addtogroup hardware_i2c
* \include bus_scan.c
*/
typedef struct i2c_inst i2c_inst_t;
// PICO_CONFIG: PICO_DEFAULT_I2C, Define the default I2C for a board, min=0, max=1, default=Usually provided via board header, group=hardware_i2c
// PICO_CONFIG: PICO_DEFAULT_I2C_SDA_PIN, Define the default I2C SDA pin, min=0, max=29, default=Usually provided via board header, group=hardware_i2c
// PICO_CONFIG: PICO_DEFAULT_I2C_SCL_PIN, Define the default I2C SCL pin, min=0, max=29, default=Usually provided via board header, group=hardware_i2c
/** The I2C identifiers for use in I2C functions.
*
* e.g. i2c_init(i2c0, 48000)
*
* \ingroup hardware_i2c
* @{
*/
extern i2c_inst_t i2c0_inst;
extern i2c_inst_t i2c1_inst;
#define i2c0 (&i2c0_inst) ///< Identifier for I2C HW Block 0
#define i2c1 (&i2c1_inst) ///< Identifier for I2C HW Block 1
#if !defined(PICO_DEFAULT_I2C_INSTANCE) && defined(PICO_DEFAULT_I2C)
#define PICO_DEFAULT_I2C_INSTANCE() (__CONCAT(i2c,PICO_DEFAULT_I2C))
#endif
/**
* \def PICO_DEFAULT_I2C
* \ingroup hardware_i2c
* \hideinitializer
* \brief The default I2C instance number
*/
/**
* \def PICO_DEFAULT_I2C_INSTANCE()
* \ingroup hardware_i2c
* \hideinitializer
* \brief Returns the default I2C instance based on the value of PICO_DEFAULT_I2C
*/
#ifdef PICO_DEFAULT_I2C_INSTANCE
#define i2c_default PICO_DEFAULT_I2C_INSTANCE()
#endif
/** @} */
// ----------------------------------------------------------------------------
// Setup
/*! \brief Initialise the I2C HW block
* \ingroup hardware_i2c
*
* Put the I2C hardware into a known state, and enable it. Must be called
* before other functions. By default, the I2C is configured to operate as a
* master.
*
* The I2C bus frequency is set as close as possible to requested, and
* the actual rate set is returned
*
* \param i2c Either \ref i2c0 or \ref i2c1
* \param baudrate Baudrate in Hz (e.g. 100kHz is 100000)
* \return Actual set baudrate
*/
uint i2c_init(i2c_inst_t *i2c, uint baudrate);
/*! \brief Disable the I2C HW block
* \ingroup hardware_i2c
*
* \param i2c Either \ref i2c0 or \ref i2c1
*
* Disable the I2C again if it is no longer used. Must be reinitialised before
* being used again.
*/
void i2c_deinit(i2c_inst_t *i2c);
/*! \brief Set I2C baudrate
* \ingroup hardware_i2c
*
* Set I2C bus frequency as close as possible to requested, and return actual
* rate set.
* Baudrate may not be as exactly requested due to clocking limitations.
*
* \param i2c Either \ref i2c0 or \ref i2c1
* \param baudrate Baudrate in Hz (e.g. 100kHz is 100000)
* \return Actual set baudrate
*/
uint i2c_set_baudrate(i2c_inst_t *i2c, uint baudrate);
/*! \brief Set I2C port to slave mode
* \ingroup hardware_i2c
*
* \param i2c Either \ref i2c0 or \ref i2c1
* \param slave true to use slave mode, false to use master mode
* \param addr If \p slave is true, set the slave address to this value
*/
void i2c_set_slave_mode(i2c_inst_t *i2c, bool slave, uint8_t addr);
// ----------------------------------------------------------------------------
// Generic input/output
struct i2c_inst {
i2c_hw_t *hw;
bool restart_on_next;
};
/**
* \def I2C_NUM(i2c)
* \ingroup hardware_i2c
* \hideinitializer
* \brief Returns the I2C number for a I2C instance
*
* Note this macro is intended to resolve at compile time, and does no parameter checking
*/
#ifndef I2C_NUM
static_assert(NUM_I2CS == 2, "");
#define I2C_NUM(i2c) ((i2c) == i2c1)
#endif
/**
* \def I2C_INSTANCE(i2c_num)
* \ingroup hardware_i2c
* \hideinitializer
* \brief Returns the I2C instance with the given I2C number
*
* Note this macro is intended to resolve at compile time, and does no parameter checking
*/
#ifndef I2C_INSTANCE
static_assert(NUM_I2CS == 2, "");
#define I2C_INSTANCE(num) ((num) ? i2c1 : i2c0)
#endif
/**
* \def I2C_DREQ_NUM(i2c, is_tx)
* \ingroup hardware_i2c
* \hideinitializer
* \brief Returns the \ref dreq_num_t used for pacing DMA transfers to or from this I2C instance.
* If is_tx is true, then it is for transfers to the I2C instance else for transfers from the I2C instance.
*
* Note this macro is intended to resolve at compile time, and does no parameter checking
*/
#ifndef I2C_DREQ_NUM
static_assert(DREQ_I2C0_RX == DREQ_I2C0_TX + 1, "");
static_assert(DREQ_I2C1_RX == DREQ_I2C1_TX + 1, "");
static_assert(DREQ_I2C1_TX == DREQ_I2C0_TX + 2, "");
#define I2C_DREQ_NUM(i2c,is_tx) (DREQ_I2C0_TX + I2C_NUM(i2c) * 2 + !(is_tx))
#endif
/*! \brief Convert I2C instance to hardware instance number
* \ingroup hardware_i2c
*
* \param i2c I2C instance
* \return Number of I2C, 0 or 1.
*/
static inline uint i2c_get_index(i2c_inst_t *i2c) {
invalid_params_if(HARDWARE_I2C, i2c != i2c0 && i2c != i2c1);
return I2C_NUM(i2c);
}
// backward compatibility
#define i2c_hw_index(i2c) i2c_get_index(i2c)
/*! \brief Return pointer to structure containing i2c hardware registers
* \ingroup hardware_i2c
*
* \param i2c I2C instance
* \return pointer to \ref i2c_hw_t
*/
static inline i2c_hw_t *i2c_get_hw(i2c_inst_t *i2c) {
i2c_hw_index(i2c); // check it is a hw i2c
return i2c->hw;
}
/*! \brief Convert I2C hardware instance number to I2C instance
* \ingroup hardware_i2c
*
* \param num Number of I2C, 0 or 1
* \return I2C hardware instance
*/
static inline i2c_inst_t *i2c_get_instance(uint num) {
invalid_params_if(HARDWARE_I2C, num >= NUM_I2CS);
return I2C_INSTANCE(num);
}
/*! \brief Attempt to write specified number of bytes to address, blocking until the specified absolute time is reached.
* \ingroup hardware_i2c
*
* \param i2c Either \ref i2c0 or \ref i2c1
* \param addr 7-bit address of device to write to
* \param src Pointer to data to send
* \param len Length of data in bytes to send
* \param nostop If true, master retains control of the bus at the end of the transfer (no Stop is issued),
* and the next transfer will begin with a Restart rather than a Start.
* \param until The absolute time that the block will wait until the entire transaction is complete. Note, an individual timeout of
* this value divided by the length of data is applied for each byte transfer, so if the first or subsequent
* bytes fails to transfer within that sub timeout, the function will return with an error.
*
* \return Number of bytes written, or PICO_ERROR_GENERIC if address not acknowledged, no device present, or PICO_ERROR_TIMEOUT if a timeout occurred.
*/
int i2c_write_blocking_until(i2c_inst_t *i2c, uint8_t addr, const uint8_t *src, size_t len, bool nostop, absolute_time_t until);
/*! \brief Attempt to read specified number of bytes from address, blocking until the specified absolute time is reached.
* \ingroup hardware_i2c
*
* \param i2c Either \ref i2c0 or \ref i2c1
* \param addr 7-bit address of device to read from
* \param dst Pointer to buffer to receive data
* \param len Length of data in bytes to receive
* \param nostop If true, master retains control of the bus at the end of the transfer (no Stop is issued),
* and the next transfer will begin with a Restart rather than a Start.
* \param until The absolute time that the block will wait until the entire transaction is complete.
* \return Number of bytes read, or PICO_ERROR_GENERIC if address not acknowledged, no device present, or PICO_ERROR_TIMEOUT if a timeout occurred.
*/
int i2c_read_blocking_until(i2c_inst_t *i2c, uint8_t addr, uint8_t *dst, size_t len, bool nostop, absolute_time_t until);
/*! \brief Attempt to write specified number of bytes to address, with timeout
* \ingroup hardware_i2c
*
* \param i2c Either \ref i2c0 or \ref i2c1
* \param addr 7-bit address of device to write to
* \param src Pointer to data to send
* \param len Length of data in bytes to send
* \param nostop If true, master retains control of the bus at the end of the transfer (no Stop is issued),
* and the next transfer will begin with a Restart rather than a Start.
* \param timeout_us The time that the function will wait for the entire transaction to complete. Note, an individual timeout of
* this value divided by the length of data is applied for each byte transfer, so if the first or subsequent
* bytes fails to transfer within that sub timeout, the function will return with an error.
*
* \return Number of bytes written, or PICO_ERROR_GENERIC if address not acknowledged, no device present, or PICO_ERROR_TIMEOUT if a timeout occurred.
*/
static inline int i2c_write_timeout_us(i2c_inst_t *i2c, uint8_t addr, const uint8_t *src, size_t len, bool nostop, uint timeout_us) {
absolute_time_t t = make_timeout_time_us(timeout_us);
return i2c_write_blocking_until(i2c, addr, src, len, nostop, t);
}
int i2c_write_timeout_per_char_us(i2c_inst_t *i2c, uint8_t addr, const uint8_t *src, size_t len, bool nostop, uint timeout_per_char_us);
/*! \brief Attempt to read specified number of bytes from address, with timeout
* \ingroup hardware_i2c
*
* \param i2c Either \ref i2c0 or \ref i2c1
* \param addr 7-bit address of device to read from
* \param dst Pointer to buffer to receive data
* \param len Length of data in bytes to receive
* \param nostop If true, master retains control of the bus at the end of the transfer (no Stop is issued),
* and the next transfer will begin with a Restart rather than a Start.
* \param timeout_us The time that the function will wait for the entire transaction to complete
* \return Number of bytes read, or PICO_ERROR_GENERIC if address not acknowledged, no device present, or PICO_ERROR_TIMEOUT if a timeout occurred.
*/
static inline int i2c_read_timeout_us(i2c_inst_t *i2c, uint8_t addr, uint8_t *dst, size_t len, bool nostop, uint timeout_us) {
absolute_time_t t = make_timeout_time_us(timeout_us);
return i2c_read_blocking_until(i2c, addr, dst, len, nostop, t);
}
int i2c_read_timeout_per_char_us(i2c_inst_t *i2c, uint8_t addr, uint8_t *dst, size_t len, bool nostop, uint timeout_per_char_us);
/*! \brief Attempt to write specified number of bytes to address, blocking
* \ingroup hardware_i2c
*
* \param i2c Either \ref i2c0 or \ref i2c1
* \param addr 7-bit address of device to write to
* \param src Pointer to data to send
* \param len Length of data in bytes to send
* \param nostop If true, master retains control of the bus at the end of the transfer (no Stop is issued),
* and the next transfer will begin with a Restart rather than a Start.
* \return Number of bytes written, or PICO_ERROR_GENERIC if address not acknowledged, no device present.
*/
int i2c_write_blocking(i2c_inst_t *i2c, uint8_t addr, const uint8_t *src, size_t len, bool nostop);
/*! \brief Attempt to write specified number of bytes to address, blocking in burst mode
* \ingroup hardware_i2c
*
* This version of the function will not issue a stop and will not restart on the next write.
* This allows you to write consecutive bytes of data without having to resend a stop bit and
* (for example) without having to send address byte(s) repeatedly
*
* \param i2c Either \ref i2c0 or \ref i2c1
* \param addr 7-bit address of device to read from
* \param dst Pointer to buffer to receive data
* \param len Length of data in bytes to receive
* \return Number of bytes read, or PICO_ERROR_GENERIC if address not acknowledged or no device present.
*/
int i2c_write_burst_blocking(i2c_inst_t *i2c, uint8_t addr, const uint8_t *src, size_t len);
/*! \brief Attempt to read specified number of bytes from address, blocking
* \ingroup hardware_i2c
*
* \param i2c Either \ref i2c0 or \ref i2c1
* \param addr 7-bit address of device to read from
* \param dst Pointer to buffer to receive data
* \param len Length of data in bytes to receive
* \param nostop If true, master retains control of the bus at the end of the transfer (no Stop is issued),
* and the next transfer will begin with a Restart rather than a Start.
* \return Number of bytes read, or PICO_ERROR_GENERIC if address not acknowledged or no device present.
*/
int i2c_read_blocking(i2c_inst_t *i2c, uint8_t addr, uint8_t *dst, size_t len, bool nostop);
/*! \brief Attempt to read specified number of bytes from address, blocking in burst mode
* \ingroup hardware_i2c
*
* This version of the function will not issue a stop and will not restart on the next read.
* This allows you to read consecutive bytes of data without having to resend a stop bit and
* (for example) without having to send address byte(s) repeatedly
*
* \param i2c Either \ref i2c0 or \ref i2c1
* \param addr 7-bit address of device to read from
* \param dst Pointer to buffer to receive data
* \param len Length of data in bytes to receive
* \return Number of bytes read, or PICO_ERROR_GENERIC if address not acknowledged or no device present.
*/
int i2c_read_burst_blocking(i2c_inst_t *i2c, uint8_t addr, uint8_t *dst, size_t len);
/*! \brief Determine non-blocking write space available
* \ingroup hardware_i2c
*
* \param i2c Either \ref i2c0 or \ref i2c1
* \return 0 if no space is available in the I2C to write more data. If return is nonzero, at
* least that many bytes can be written without blocking.
*/
static inline size_t i2c_get_write_available(i2c_inst_t *i2c) {
const size_t IC_TX_BUFFER_DEPTH = 16;
return IC_TX_BUFFER_DEPTH - i2c_get_hw(i2c)->txflr;
}
/*! \brief Determine number of bytes received
* \ingroup hardware_i2c
*
* \param i2c Either \ref i2c0 or \ref i2c1
* \return 0 if no data available, if return is nonzero at
* least that many bytes can be read without blocking.
*/
static inline size_t i2c_get_read_available(i2c_inst_t *i2c) {
return i2c_get_hw(i2c)->rxflr;
}
/*! \brief Write direct to TX FIFO
* \ingroup hardware_i2c
*
* \param i2c Either \ref i2c0 or \ref i2c1
* \param src Data to send
* \param len Number of bytes to send
*
* Writes directly to the I2C TX FIFO which is mainly useful for
* slave-mode operation.
*/
static inline void i2c_write_raw_blocking(i2c_inst_t *i2c, const uint8_t *src, size_t len) {
for (size_t i = 0; i < len; ++i) {
// TODO NACK or STOP on end?
while (!i2c_get_write_available(i2c))
tight_loop_contents();
i2c_get_hw(i2c)->data_cmd = *src++;
}
}
/*! \brief Read direct from RX FIFO
* \ingroup hardware_i2c
*
* \param i2c Either \ref i2c0 or \ref i2c1
* \param dst Buffer to accept data
* \param len Number of bytes to read
*
* Reads directly from the I2C RX FIFO which is mainly useful for
* slave-mode operation.
*/
static inline void i2c_read_raw_blocking(i2c_inst_t *i2c, uint8_t *dst, size_t len) {
for (size_t i = 0; i < len; ++i) {
while (!i2c_get_read_available(i2c))
tight_loop_contents();
*dst++ = (uint8_t)i2c_get_hw(i2c)->data_cmd;
}
}
/**
* \brief Pop a byte from I2C Rx FIFO.
* \ingroup hardware_i2c
*
* This function is non-blocking and assumes the Rx FIFO isn't empty.
*
* \param i2c I2C instance.
* \return uint8_t Byte value.
*/
static inline uint8_t i2c_read_byte_raw(i2c_inst_t *i2c) {
i2c_hw_t *hw = i2c_get_hw(i2c);
assert(hw->status & I2C_IC_STATUS_RFNE_BITS); // Rx FIFO must not be empty
return (uint8_t)hw->data_cmd;
}
/**
* \brief Push a byte into I2C Tx FIFO.
* \ingroup hardware_i2c
*
* This function is non-blocking and assumes the Tx FIFO isn't full.
*
* \param i2c I2C instance.
* \param value Byte value.
*/
static inline void i2c_write_byte_raw(i2c_inst_t *i2c, uint8_t value) {
i2c_hw_t *hw = i2c_get_hw(i2c);
assert(hw->status & I2C_IC_STATUS_TFNF_BITS); // Tx FIFO must not be full
hw->data_cmd = value;
}
/*! \brief Return the DREQ to use for pacing transfers to/from a particular I2C instance
* \ingroup hardware_i2c
*
* \param i2c Either \ref i2c0 or \ref i2c1
* \param is_tx true for sending data to the I2C instance, false for receiving data from the I2C instance
*/
static inline uint i2c_get_dreq(i2c_inst_t *i2c, bool is_tx) {
return I2C_DREQ_NUM(i2c, is_tx);
}
#ifdef __cplusplus
}
#endif
#endif