mirror of
https://github.com/betaflight/betaflight.git
synced 2025-07-16 21:05:35 +03:00
calculate heading using gyro-only on boards without mag - idea by Cesco
added constants for gyro/acc/baro cal and fixed calibration to add /2 warning cleanup in drv_serial.c git-svn-id: https://afrodevices.googlecode.com/svn/trunk/baseflight@426 7c89a4a9-59b9-e629-4cfe-3a2d53b20e61
This commit is contained in:
parent
5332b78200
commit
3744f36895
7 changed files with 49 additions and 32 deletions
|
@ -3,7 +3,7 @@
|
||||||
void serialPrint(serialPort_t *instance, const char *str)
|
void serialPrint(serialPort_t *instance, const char *str)
|
||||||
{
|
{
|
||||||
uint8_t ch;
|
uint8_t ch;
|
||||||
while ((ch = *(str++))) {
|
while ((ch = *(str++)) != 0) {
|
||||||
serialWrite(instance, ch);
|
serialWrite(instance, ch);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
42
src/imu.c
42
src/imu.c
|
@ -222,11 +222,31 @@ void accSum_reset(void)
|
||||||
accTimeSum = 0;
|
accTimeSum = 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// baseflight calculation by Luggi09 originates from arducopter
|
||||||
|
static int16_t calculateHeading(t_fp_vector *vec)
|
||||||
|
{
|
||||||
|
int16_t head;
|
||||||
|
|
||||||
|
float cosineRoll = cosf(anglerad[ROLL]);
|
||||||
|
float sineRoll = sinf(anglerad[ROLL]);
|
||||||
|
float cosinePitch = cosf(anglerad[PITCH]);
|
||||||
|
float sinePitch = sinf(anglerad[PITCH]);
|
||||||
|
float Xh = vec->A[X] * cosinePitch + vec->A[Y] * sineRoll * sinePitch + vec->A[Z] * sinePitch * cosineRoll;
|
||||||
|
float Yh = vec->A[Y] * cosineRoll - vec->A[Z] * sineRoll;
|
||||||
|
float hd = (atan2f(Yh, Xh) * 1800.0f / M_PI + magneticDeclination) / 10.0f;
|
||||||
|
head = lrintf(hd);
|
||||||
|
if (head < 0)
|
||||||
|
head += 360;
|
||||||
|
|
||||||
|
return head;
|
||||||
|
}
|
||||||
|
|
||||||
static void getEstimatedAttitude(void)
|
static void getEstimatedAttitude(void)
|
||||||
{
|
{
|
||||||
uint32_t axis;
|
uint32_t axis;
|
||||||
int32_t accMag = 0;
|
int32_t accMag = 0;
|
||||||
static t_fp_vector EstM;
|
static t_fp_vector EstM;
|
||||||
|
static t_fp_vector EstN = { .A = { 1000.0f, 0.0f, 0.0f } };
|
||||||
static float accLPF[3];
|
static float accLPF[3];
|
||||||
static uint32_t previousT;
|
static uint32_t previousT;
|
||||||
uint32_t currentT = micros();
|
uint32_t currentT = micros();
|
||||||
|
@ -252,6 +272,8 @@ static void getEstimatedAttitude(void)
|
||||||
rotateV(&EstG.V, deltaGyroAngle);
|
rotateV(&EstG.V, deltaGyroAngle);
|
||||||
if (sensors(SENSOR_MAG))
|
if (sensors(SENSOR_MAG))
|
||||||
rotateV(&EstM.V, deltaGyroAngle);
|
rotateV(&EstM.V, deltaGyroAngle);
|
||||||
|
else
|
||||||
|
rotateV(&EstN.V, deltaGyroAngle);
|
||||||
|
|
||||||
// Apply complimentary filter (Gyro drift correction)
|
// Apply complimentary filter (Gyro drift correction)
|
||||||
// If accel magnitude >1.15G or <0.85G and ACC vector outside of the limit range => we neutralize the effect of accelerometers in the angle estimation.
|
// If accel magnitude >1.15G or <0.85G and ACC vector outside of the limit range => we neutralize the effect of accelerometers in the angle estimation.
|
||||||
|
@ -277,28 +299,16 @@ static void getEstimatedAttitude(void)
|
||||||
angle[ROLL] = lrintf(anglerad[ROLL] * (1800.0f / M_PI));
|
angle[ROLL] = lrintf(anglerad[ROLL] * (1800.0f / M_PI));
|
||||||
angle[PITCH] = lrintf(anglerad[PITCH] * (1800.0f / M_PI));
|
angle[PITCH] = lrintf(anglerad[PITCH] * (1800.0f / M_PI));
|
||||||
|
|
||||||
#ifdef MAG
|
if (sensors(SENSOR_MAG))
|
||||||
if (sensors(SENSOR_MAG)) {
|
heading = calculateHeading(&EstM);
|
||||||
// baseflight calculation by Luggi09 originates from arducopter
|
else
|
||||||
float cosineRoll = cosf(anglerad[ROLL]);
|
heading = calculateHeading(&EstN);
|
||||||
float sineRoll = sinf(anglerad[ROLL]);
|
|
||||||
float cosinePitch = cosf(anglerad[PITCH]);
|
|
||||||
float sinePitch = sinf(anglerad[PITCH]);
|
|
||||||
float Xh = EstM.A[X] * cosinePitch + EstM.A[Y] * sineRoll * sinePitch + EstM.A[Z] * sinePitch * cosineRoll;
|
|
||||||
float Yh = EstM.A[Y] * cosineRoll - EstM.A[Z] * sineRoll;
|
|
||||||
float hd = (atan2f(Yh, Xh) * 1800.0f / M_PI + magneticDeclination) / 10.0f;
|
|
||||||
heading = lrintf(hd);
|
|
||||||
if (heading < 0)
|
|
||||||
heading += 360;
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
acc_calc(deltaT); // rotate acc vector into earth frame
|
acc_calc(deltaT); // rotate acc vector into earth frame
|
||||||
|
|
||||||
if (cfg.throttle_angle_correction) {
|
if (cfg.throttle_angle_correction) {
|
||||||
int cosZ = EstG.V.Z / acc_1G * 100.0f;
|
int cosZ = EstG.V.Z / acc_1G * 100.0f;
|
||||||
throttleAngleCorrection = cfg.throttle_angle_correction * constrain(100 - cosZ, 0, 100) / 8;
|
throttleAngleCorrection = cfg.throttle_angle_correction * constrain(100 - cosZ, 0, 100) / 8;
|
||||||
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -138,9 +138,9 @@ int main(void)
|
||||||
|
|
||||||
previousTime = micros();
|
previousTime = micros();
|
||||||
if (mcfg.mixerConfiguration == MULTITYPE_GIMBAL)
|
if (mcfg.mixerConfiguration == MULTITYPE_GIMBAL)
|
||||||
calibratingA = 400;
|
calibratingA = CALIBRATING_ACC_CYCLES;
|
||||||
calibratingG = 1000;
|
calibratingG = CALIBRATING_GYRO_CYCLES;
|
||||||
calibratingB = 200; // 10 seconds init_delay + 200 * 25 ms = 15 seconds before ground pressure settles
|
calibratingB = CALIBRATING_BARO_CYCLES; // 10 seconds init_delay + 200 * 25 ms = 15 seconds before ground pressure settles
|
||||||
f.SMALL_ANGLES_25 = 1;
|
f.SMALL_ANGLES_25 = 1;
|
||||||
|
|
||||||
// loopy
|
// loopy
|
||||||
|
|
4
src/mw.c
4
src/mw.c
|
@ -536,7 +536,7 @@ void loop(void)
|
||||||
i = 0;
|
i = 0;
|
||||||
// GYRO calibration
|
// GYRO calibration
|
||||||
if (rcSticks == THR_LO + YAW_LO + PIT_LO + ROL_CE) {
|
if (rcSticks == THR_LO + YAW_LO + PIT_LO + ROL_CE) {
|
||||||
calibratingG = 1000;
|
calibratingG = CALIBRATING_GYRO_CYCLES;
|
||||||
if (feature(FEATURE_GPS))
|
if (feature(FEATURE_GPS))
|
||||||
GPS_reset_home_position();
|
GPS_reset_home_position();
|
||||||
if (sensors(SENSOR_BARO))
|
if (sensors(SENSOR_BARO))
|
||||||
|
@ -578,7 +578,7 @@ void loop(void)
|
||||||
mwArm();
|
mwArm();
|
||||||
// Calibrating Acc
|
// Calibrating Acc
|
||||||
else if (rcSticks == THR_HI + YAW_LO + PIT_LO + ROL_CE)
|
else if (rcSticks == THR_HI + YAW_LO + PIT_LO + ROL_CE)
|
||||||
calibratingA = 400;
|
calibratingA = CALIBRATING_ACC_CYCLES;
|
||||||
// Calibrating Mag
|
// Calibrating Mag
|
||||||
else if (rcSticks == THR_HI + YAW_HI + PIT_LO + ROL_CE)
|
else if (rcSticks == THR_HI + YAW_HI + PIT_LO + ROL_CE)
|
||||||
f.CALIBRATE_MAG = 1;
|
f.CALIBRATE_MAG = 1;
|
||||||
|
|
4
src/mw.h
4
src/mw.h
|
@ -141,6 +141,10 @@ enum {
|
||||||
ALIGN_MAG = 2
|
ALIGN_MAG = 2
|
||||||
};
|
};
|
||||||
|
|
||||||
|
#define CALIBRATING_GYRO_CYCLES 1000
|
||||||
|
#define CALIBRATING_ACC_CYCLES 400
|
||||||
|
#define CALIBRATING_BARO_CYCLES 200
|
||||||
|
|
||||||
typedef struct config_t {
|
typedef struct config_t {
|
||||||
uint8_t pidController; // 0 = multiwii original, 1 = rewrite from http://www.multiwii.com/forum/viewtopic.php?f=8&t=3671
|
uint8_t pidController; // 0 = multiwii original, 1 = rewrite from http://www.multiwii.com/forum/viewtopic.php?f=8&t=3671
|
||||||
uint8_t P8[PIDITEMS];
|
uint8_t P8[PIDITEMS];
|
||||||
|
|
|
@ -124,7 +124,10 @@ retry:
|
||||||
// calculate magnetic declination
|
// calculate magnetic declination
|
||||||
deg = cfg.mag_declination / 100;
|
deg = cfg.mag_declination / 100;
|
||||||
min = cfg.mag_declination % 100;
|
min = cfg.mag_declination % 100;
|
||||||
|
if (sensors(SENSOR_MAG))
|
||||||
magneticDeclination = (deg + ((float)min * (1.0f / 60.0f))) * 10; // heading is in 0.1deg units
|
magneticDeclination = (deg + ((float)min * (1.0f / 60.0f))) * 10; // heading is in 0.1deg units
|
||||||
|
else
|
||||||
|
magneticDeclination = 0.0f;
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
@ -165,9 +168,9 @@ static void ACC_Common(void)
|
||||||
if (calibratingA > 0) {
|
if (calibratingA > 0) {
|
||||||
for (axis = 0; axis < 3; axis++) {
|
for (axis = 0; axis < 3; axis++) {
|
||||||
// Reset a[axis] at start of calibration
|
// Reset a[axis] at start of calibration
|
||||||
if (calibratingA == 400)
|
if (calibratingA == CALIBRATING_ACC_CYCLES)
|
||||||
a[axis] = 0;
|
a[axis] = 0;
|
||||||
// Sum up 400 readings
|
// Sum up CALIBRATING_ACC_CYCLES readings
|
||||||
a[axis] += accADC[axis];
|
a[axis] += accADC[axis];
|
||||||
// Clear global variables for next reading
|
// Clear global variables for next reading
|
||||||
accADC[axis] = 0;
|
accADC[axis] = 0;
|
||||||
|
@ -175,9 +178,9 @@ static void ACC_Common(void)
|
||||||
}
|
}
|
||||||
// Calculate average, shift Z down by acc_1G and store values in EEPROM at end of calibration
|
// Calculate average, shift Z down by acc_1G and store values in EEPROM at end of calibration
|
||||||
if (calibratingA == 1) {
|
if (calibratingA == 1) {
|
||||||
mcfg.accZero[ROLL] = a[ROLL] / 400;
|
mcfg.accZero[ROLL] = (a[ROLL] + (CALIBRATING_ACC_CYCLES / 2)) / CALIBRATING_ACC_CYCLES;
|
||||||
mcfg.accZero[PITCH] = a[PITCH] / 400;
|
mcfg.accZero[PITCH] = (a[PITCH] + (CALIBRATING_ACC_CYCLES / 2)) / CALIBRATING_ACC_CYCLES;
|
||||||
mcfg.accZero[YAW] = a[YAW] / 400 - acc_1G; // for nunchuk 200=1G
|
mcfg.accZero[YAW] = (a[YAW] + (CALIBRATING_ACC_CYCLES / 2)) / CALIBRATING_ACC_CYCLES - acc_1G;
|
||||||
cfg.angleTrim[ROLL] = 0;
|
cfg.angleTrim[ROLL] = 0;
|
||||||
cfg.angleTrim[PITCH] = 0;
|
cfg.angleTrim[PITCH] = 0;
|
||||||
writeEEPROM(1, true); // write accZero in EEPROM
|
writeEEPROM(1, true); // write accZero in EEPROM
|
||||||
|
@ -334,7 +337,7 @@ static void GYRO_Common(void)
|
||||||
if (calibratingG > 0) {
|
if (calibratingG > 0) {
|
||||||
for (axis = 0; axis < 3; axis++) {
|
for (axis = 0; axis < 3; axis++) {
|
||||||
// Reset g[axis] at start of calibration
|
// Reset g[axis] at start of calibration
|
||||||
if (calibratingG == 1000) {
|
if (calibratingG == CALIBRATING_GYRO_CYCLES) {
|
||||||
g[axis] = 0;
|
g[axis] = 0;
|
||||||
devClear(&var[axis]);
|
devClear(&var[axis]);
|
||||||
}
|
}
|
||||||
|
@ -348,14 +351,14 @@ static void GYRO_Common(void)
|
||||||
float dev = devStandardDeviation(&var[axis]);
|
float dev = devStandardDeviation(&var[axis]);
|
||||||
// check deviation and startover if idiot was moving the model
|
// check deviation and startover if idiot was moving the model
|
||||||
if (mcfg.moron_threshold && dev > mcfg.moron_threshold) {
|
if (mcfg.moron_threshold && dev > mcfg.moron_threshold) {
|
||||||
calibratingG = 1000;
|
calibratingG = CALIBRATING_GYRO_CYCLES;
|
||||||
devClear(&var[0]);
|
devClear(&var[0]);
|
||||||
devClear(&var[1]);
|
devClear(&var[1]);
|
||||||
devClear(&var[2]);
|
devClear(&var[2]);
|
||||||
g[0] = g[1] = g[2] = 0;
|
g[0] = g[1] = g[2] = 0;
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
gyroZero[axis] = g[axis] / 1000;
|
gyroZero[axis] = (g[axis] + (CALIBRATING_GYRO_CYCLES / 2)) / CALIBRATING_GYRO_CYCLES;
|
||||||
blinkLED(10, 15, 1);
|
blinkLED(10, 15, 1);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -606,7 +606,7 @@ static void evaluateCommand(void)
|
||||||
break;
|
break;
|
||||||
case MSP_ACC_CALIBRATION:
|
case MSP_ACC_CALIBRATION:
|
||||||
if (!f.ARMED)
|
if (!f.ARMED)
|
||||||
calibratingA = 400;
|
calibratingA = CALIBRATING_ACC_CYCLES;
|
||||||
headSerialReply(0);
|
headSerialReply(0);
|
||||||
break;
|
break;
|
||||||
case MSP_MAG_CALIBRATION:
|
case MSP_MAG_CALIBRATION:
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue