mirror of
https://github.com/betaflight/betaflight.git
synced 2025-07-24 00:35:39 +03:00
Basic read/write/erase flash functionality works from the CLI
Very little code coverage tested yet, only writes of small sizes
This commit is contained in:
parent
ec3d85ae92
commit
3eb28f16ea
12 changed files with 839 additions and 4 deletions
339
src/main/io/flashfs.c
Normal file
339
src/main/io/flashfs.c
Normal file
|
@ -0,0 +1,339 @@
|
|||
/*
|
||||
* This file is part of Cleanflight.
|
||||
*
|
||||
* Cleanflight is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* Cleanflight is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/**
|
||||
* This provides a stream interface to a flash chip if one is present.
|
||||
*
|
||||
* Note that bits can only be set to 0 when writing, not back to 1 from 0. You must erase sectors in order
|
||||
* to bring bits back to 1 again.
|
||||
*/
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
#include "drivers/flash_m25p16.h"
|
||||
#include "flashfs.h"
|
||||
|
||||
static uint8_t flashWriteBuffer[FLASHFS_WRITE_BUFFER_SIZE];
|
||||
|
||||
/* The position of our head and tail in the circular flash write buffer.
|
||||
*
|
||||
* The head is the index that a byte would be inserted into on writing, while the tail is the index of the
|
||||
* oldest byte that has yet to be written to flash.
|
||||
*
|
||||
* When the circular buffer is empty, head == tail
|
||||
*/
|
||||
static uint8_t bufferHead = 0, bufferTail = 0;
|
||||
|
||||
// The position of our tail in the overall flash address space:
|
||||
static uint32_t tailAddress = 0;
|
||||
// The index of the tail within the flash page it is inside
|
||||
static uint16_t tailIndexInPage = 0;
|
||||
|
||||
static bool shouldFlush = false;
|
||||
|
||||
static void flashfsClearBuffer()
|
||||
{
|
||||
bufferTail = bufferHead = 0;
|
||||
shouldFlush = false;
|
||||
}
|
||||
|
||||
static void flashfsSetTailAddress(uint32_t address)
|
||||
{
|
||||
tailAddress = address;
|
||||
tailIndexInPage = tailAddress % m25p16_getGeometry()->pageSize;
|
||||
}
|
||||
|
||||
void flashfsEraseCompletely()
|
||||
{
|
||||
m25p16_eraseCompletely();
|
||||
|
||||
flashfsClearBuffer();
|
||||
|
||||
flashfsSetTailAddress(0);
|
||||
}
|
||||
|
||||
/**
|
||||
* Start and end must lie on sector boundaries, or they will be rounded out to sector boundaries such that
|
||||
* all the bytes in the range [start...end) are erased.
|
||||
*/
|
||||
void flashfsEraseRange(uint32_t start, uint32_t end)
|
||||
{
|
||||
const flashGeometry_t *geometry = m25p16_getGeometry();
|
||||
|
||||
if (geometry->sectorSize <= 0)
|
||||
return;
|
||||
|
||||
// Round the start down to a sector boundary
|
||||
int startSector = start / geometry->sectorSize;
|
||||
|
||||
// And the end upward
|
||||
int endSector = end / geometry->sectorSize;
|
||||
int endRemainder = end % geometry->sectorSize;
|
||||
|
||||
if (endRemainder > 0) {
|
||||
endSector++;
|
||||
}
|
||||
|
||||
for (int i = startSector; i < endSector; i++) {
|
||||
m25p16_eraseSector(i * geometry->sectorSize);
|
||||
}
|
||||
}
|
||||
|
||||
uint32_t flashfsGetSize()
|
||||
{
|
||||
return m25p16_getGeometry()->totalSize;
|
||||
}
|
||||
|
||||
const flashGeometry_t* flashfsGetGeometry()
|
||||
{
|
||||
return m25p16_getGeometry();
|
||||
}
|
||||
|
||||
static uint32_t flashfsTransmitBufferUsed()
|
||||
{
|
||||
if (bufferHead >= bufferTail)
|
||||
return bufferHead - bufferTail;
|
||||
|
||||
return FLASHFS_WRITE_BUFFER_SIZE - bufferTail + bufferHead;
|
||||
}
|
||||
|
||||
static uint32_t flashfsTransmitBufferRemaining()
|
||||
{
|
||||
/*
|
||||
* We subtract one from the actual transmit buffer remaining space to allow us to distinguish
|
||||
* between completely full and completely empty states, that would otherwise both have head = tail
|
||||
*/
|
||||
return FLASHFS_WRITE_BUFFER_USABLE - flashfsTransmitBufferUsed();
|
||||
}
|
||||
|
||||
/**
|
||||
* Waits for the flash device to be ready to accept writes, then write the given buffers to flash.
|
||||
*
|
||||
* Advances the address of the beginning of the supplied buffers and reduces the size of the buffers according to how
|
||||
* many bytes get written.
|
||||
*
|
||||
* bufferCount: the number of buffers provided
|
||||
* buffers: an array of pointers to the beginning of buffers
|
||||
* bufferSizes: an array of the sizes of those buffers
|
||||
*/
|
||||
static void flashfsWriteBuffers(uint8_t const **buffers, uint32_t *bufferSizes, int bufferCount)
|
||||
{
|
||||
const flashGeometry_t *geometry = m25p16_getGeometry();
|
||||
|
||||
uint32_t bytesTotalToWrite = 0;
|
||||
uint32_t bytesTotalRemaining;
|
||||
|
||||
int i;
|
||||
|
||||
for (i = 0; i < bufferCount; i++) {
|
||||
bytesTotalToWrite += bufferSizes[i];
|
||||
}
|
||||
|
||||
bytesTotalRemaining = bytesTotalToWrite;
|
||||
|
||||
while (bytesTotalRemaining > 0) {
|
||||
uint32_t bytesTotalThisIteration;
|
||||
uint32_t bytesRemainThisIteration;
|
||||
|
||||
// If we would cross a page boundary, only write up to the boundary in this iteration:
|
||||
if (tailIndexInPage + bytesTotalRemaining > geometry->pageSize) {
|
||||
bytesTotalThisIteration = geometry->pageSize - tailIndexInPage;
|
||||
} else {
|
||||
bytesTotalThisIteration = bytesTotalRemaining;
|
||||
}
|
||||
|
||||
m25p16_pageProgramBegin(tailAddress);
|
||||
|
||||
bytesRemainThisIteration = bytesTotalThisIteration;
|
||||
|
||||
for (i = 0; i < bufferCount; i++) {
|
||||
if (bufferSizes[i] > 0) {
|
||||
// Is buffer larger than our write limit? Write our limit out of it
|
||||
if (bufferSizes[i] >= bytesRemainThisIteration) {
|
||||
m25p16_pageProgramContinue(buffers[i], bytesRemainThisIteration);
|
||||
|
||||
buffers[i] += bytesRemainThisIteration;
|
||||
bufferSizes[i] -= bytesRemainThisIteration;
|
||||
|
||||
bytesRemainThisIteration = 0;
|
||||
break;
|
||||
} else {
|
||||
// We'll still have more to write after finishing this buffer off
|
||||
m25p16_pageProgramContinue(buffers[i], bufferSizes[i]);
|
||||
|
||||
bytesRemainThisIteration -= bufferSizes[i];
|
||||
|
||||
buffers[i] += bufferSizes[i];
|
||||
bufferSizes[i] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
m25p16_pageProgramFinish();
|
||||
|
||||
bytesTotalRemaining -= bytesTotalThisIteration;
|
||||
|
||||
// Advance the cursor in the file system to match the bytes we wrote
|
||||
flashfsSetTailAddress(tailAddress + bytesTotalToWrite);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Since the buffered data might wrap around the end of the circular buffer, we can have two segments of data to write,
|
||||
* an initial portion and a possible wrapped portion.
|
||||
*
|
||||
* This routine will fill the details of those buffers into the provided arrays, which must be at least 2 elements long.
|
||||
*/
|
||||
static void flashfsGetDirtyDataBuffers(uint8_t const *buffers[], uint32_t bufferSizes[])
|
||||
{
|
||||
buffers[0] = flashWriteBuffer + bufferTail;
|
||||
buffers[1] = flashWriteBuffer + 0;
|
||||
|
||||
if (bufferHead >= bufferTail) {
|
||||
bufferSizes[0] = bufferHead - bufferTail;
|
||||
bufferSizes[1] = 0;
|
||||
} else {
|
||||
bufferSizes[0] = FLASHFS_WRITE_BUFFER_SIZE - bufferTail;
|
||||
bufferSizes[1] = bufferHead;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* If the flash is ready to accept writes, flush the buffer to it, otherwise schedule
|
||||
* a flush for later and return immediately.
|
||||
*/
|
||||
void flashfsFlushAsync()
|
||||
{
|
||||
if (bufferHead == bufferTail) {
|
||||
return; // Nothing to flush
|
||||
}
|
||||
|
||||
if (m25p16_isReady()) {
|
||||
uint8_t const * buffers[2];
|
||||
uint32_t bufferSizes[2];
|
||||
|
||||
flashfsGetDirtyDataBuffers(buffers, bufferSizes);
|
||||
flashfsWriteBuffers(buffers, bufferSizes, 2);
|
||||
|
||||
flashfsClearBuffer();
|
||||
} else {
|
||||
shouldFlush = true;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Wait for the flash to become ready and begin flushing any buffered data to flash.
|
||||
*
|
||||
* The flash will still be busy some time after this sync completes, but space will
|
||||
* be freed up to accept more writes in the write buffer.
|
||||
*/
|
||||
void flashfsFlushSync()
|
||||
{
|
||||
if (bufferHead == bufferTail)
|
||||
return; // Nothing to write
|
||||
|
||||
m25p16_waitForReady(10); //TODO caller should customize timeout
|
||||
|
||||
flashfsFlushAsync();
|
||||
}
|
||||
|
||||
void flashfsSeekAbs(uint32_t offset)
|
||||
{
|
||||
flashfsFlushSync();
|
||||
|
||||
flashfsSetTailAddress(offset);
|
||||
}
|
||||
|
||||
void flashfsSeekRel(int32_t offset)
|
||||
{
|
||||
flashfsFlushSync();
|
||||
|
||||
flashfsSetTailAddress(tailAddress + offset);
|
||||
}
|
||||
|
||||
void flashfsWriteByte(uint8_t byte)
|
||||
{
|
||||
flashWriteBuffer[bufferHead++] = byte;
|
||||
|
||||
if (bufferHead >= FLASHFS_WRITE_BUFFER_SIZE) {
|
||||
bufferHead = 0;
|
||||
}
|
||||
|
||||
if (flashfsTransmitBufferUsed() >= FLASHFS_WRITE_BUFFER_AUTO_FLUSH_LEN) {
|
||||
flashfsFlushAsync();
|
||||
}
|
||||
}
|
||||
|
||||
void flashfsWrite(const uint8_t *data, unsigned int len)
|
||||
{
|
||||
// Would writing this cause our buffer to reach the flush threshold? If so just write it now
|
||||
if (len + flashfsTransmitBufferUsed() >= FLASHFS_WRITE_BUFFER_AUTO_FLUSH_LEN || shouldFlush) {
|
||||
uint8_t const * buffers[3];
|
||||
uint32_t bufferSizes[3];
|
||||
|
||||
// There could be two dirty buffers to write out already:
|
||||
flashfsGetDirtyDataBuffers(buffers, bufferSizes);
|
||||
|
||||
// Plus the buffer the user supplied:
|
||||
buffers[2] = data;
|
||||
bufferSizes[2] = len;
|
||||
|
||||
// Write all three buffers through to the flash
|
||||
flashfsWriteBuffers(buffers, bufferSizes, 3);
|
||||
|
||||
// And now our buffer is empty
|
||||
flashfsClearBuffer();
|
||||
}
|
||||
|
||||
// Buffer up the data the user supplied instead of writing it right away
|
||||
|
||||
// First write the portion before we wrap around the end of the circular buffer
|
||||
unsigned int bufferBytesBeforeLoop = FLASHFS_WRITE_BUFFER_SIZE - bufferHead;
|
||||
|
||||
unsigned int firstPortion = len < bufferBytesBeforeLoop ? len : bufferBytesBeforeLoop;
|
||||
unsigned int remainder = firstPortion < len ? len - firstPortion : 0;
|
||||
|
||||
for (unsigned int i = 0; i < firstPortion; i++) {
|
||||
flashWriteBuffer[bufferHead++] = *data;
|
||||
data++;
|
||||
}
|
||||
|
||||
if (bufferHead == FLASHFS_WRITE_BUFFER_SIZE) {
|
||||
bufferHead = 0;
|
||||
}
|
||||
|
||||
// Then the remainder (if any)
|
||||
for (unsigned int i = 0; i < remainder; i++) {
|
||||
flashWriteBuffer[bufferHead++] = *data;
|
||||
data++;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Read `len` bytes from the current cursor location into the supplied buffer.
|
||||
*
|
||||
* Returns the number of bytes actually read which may be less than that requested.
|
||||
*/
|
||||
int flashfsRead(uint8_t *data, unsigned int len)
|
||||
{
|
||||
int result = m25p16_readBytes(tailAddress, data, len);
|
||||
|
||||
flashfsSetTailAddress(tailAddress + result);
|
||||
|
||||
return result;
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue