1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-13 11:29:58 +03:00

Implement DShot bit bang for AT32 (#12577)

* implement dshot bitbang for AT32

* fix dshot bitbang bidirectional for AT32

* AT32 target features

* implement latest improvements from steve to at32

* generalize AT32 target.h

* Tri-state USART TX output if load due to powered down peripheral is detected

* enable LED STRIP for AT32

* at bitbang timer adjustments

* revert makefile changes

* revert target generalization

* Update src/main/drivers/at32/platform_mcu.h

Co-authored-by: Mark Haslinghuis <mark@numloq.nl>

---------

Co-authored-by: Steve Evans <Steve@SCEvans.com>
Co-authored-by: J Blackman <blckmn@users.noreply.github.com>
Co-authored-by: Mark Haslinghuis <mark@numloq.nl>
This commit is contained in:
Eike Ahmels 2023-06-21 23:31:16 +02:00 committed by GitHub
parent c243e83de2
commit 3f80b0c8bf
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
15 changed files with 1148 additions and 25 deletions

View file

@ -0,0 +1,767 @@
/*
* This file is part of Cleanflight and Betaflight.
*
* Cleanflight and Betaflight are free software. You can redistribute
* this software and/or modify this software under the terms of the
* GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option)
* any later version.
*
* Cleanflight and Betaflight are distributed in the hope that they
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software.
*
* If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <math.h>
#include <string.h>
#include "platform.h"
#ifdef USE_DSHOT_BITBANG
#include "build/debug.h"
#include "build/debug_pin.h"
#include "drivers/io.h"
#include "drivers/io_impl.h"
#include "drivers/dma.h"
#include "drivers/dma_reqmap.h"
#include "drivers/dshot.h"
#include "drivers/dshot_bitbang.h"
#include "drivers/dshot_bitbang_impl.h"
#include "drivers/dshot_command.h"
#include "drivers/motor.h"
#include "drivers/nvic.h"
#include "drivers/pwm_output.h" // XXX for pwmOutputPort_t motors[]; should go away with refactoring
#include "drivers/dshot_dpwm.h" // XXX for motorDmaOutput_t *getMotorDmaOutput(uint8_t index); should go away with refactoring
#include "drivers/dshot_bitbang_decode.h"
#include "drivers/time.h"
#include "drivers/timer.h"
#include "pg/motor.h"
// Maximum time to wait for telemetry reception to complete
#define DSHOT_TELEMETRY_TIMEOUT 2000
FAST_DATA_ZERO_INIT bbPacer_t bbPacers[MAX_MOTOR_PACERS]; // TIM1 or TIM8
FAST_DATA_ZERO_INIT int usedMotorPacers = 0;
FAST_DATA_ZERO_INIT bbPort_t bbPorts[MAX_SUPPORTED_MOTOR_PORTS];
FAST_DATA_ZERO_INIT int usedMotorPorts;
FAST_DATA_ZERO_INIT bbMotor_t bbMotors[MAX_SUPPORTED_MOTORS];
static FAST_DATA_ZERO_INIT int motorCount;
dshotBitbangStatus_e bbStatus;
// For MCUs that use MPU to control DMA coherency, there might be a performance hit
// on manipulating input buffer content especially if it is read multiple times,
// as the buffer region is attributed as not cachable.
// If this is not desirable, we should use manual cache invalidation.
#ifdef USE_DSHOT_CACHE_MGMT
#define BB_OUTPUT_BUFFER_ATTRIBUTE DMA_RW_AXI __attribute__((aligned(32)))
#define BB_INPUT_BUFFER_ATTRIBUTE DMA_RW_AXI __attribute__((aligned(32)))
#else
#define BB_OUTPUT_BUFFER_ATTRIBUTE FAST_DATA_ZERO_INIT
#define BB_INPUT_BUFFER_ATTRIBUTE FAST_DATA_ZERO_INIT
#endif // USE_DSHOT_CACHE_MGMT
BB_OUTPUT_BUFFER_ATTRIBUTE uint32_t bbOutputBuffer[MOTOR_DSHOT_BUF_CACHE_ALIGN_LENGTH * MAX_SUPPORTED_MOTOR_PORTS];
BB_INPUT_BUFFER_ATTRIBUTE uint16_t bbInputBuffer[DSHOT_BB_PORT_IP_BUF_CACHE_ALIGN_LENGTH * MAX_SUPPORTED_MOTOR_PORTS];
uint8_t bbPuPdMode;
FAST_DATA_ZERO_INIT timeUs_t dshotFrameUs;
const timerHardware_t bbTimerHardware[] = {
DEF_TIM(TMR8, CH1, NONE, 0, 0, 0),
DEF_TIM(TMR8, CH2, NONE, 0, 1, 0),
DEF_TIM(TMR8, CH3, NONE, 0, 2, 0),
DEF_TIM(TMR8, CH4, NONE, 0, 3, 0),
DEF_TIM(TMR1, CH1, NONE, 0, 0, 0),
DEF_TIM(TMR1, CH2, NONE, 0, 1, 0),
DEF_TIM(TMR1, CH3, NONE, 0, 2, 0),
DEF_TIM(TMR1, CH4, NONE, 0, 3, 0),
};
static FAST_DATA_ZERO_INIT motorDevice_t bbDevice;
static FAST_DATA_ZERO_INIT timeUs_t lastSendUs;
static motorPwmProtocolTypes_e motorPwmProtocol;
// DMA GPIO output buffer formatting
static void bbOutputDataInit(uint32_t *buffer, uint16_t portMask, bool inverted)
{
uint32_t resetMask;
uint32_t setMask;
if (inverted) {
resetMask = portMask;
setMask = (portMask << 16);
} else {
resetMask = (portMask << 16);
setMask = portMask;
}
int symbol_index;
for (symbol_index = 0; symbol_index < MOTOR_DSHOT_FRAME_BITS; symbol_index++) {
buffer[symbol_index * MOTOR_DSHOT_STATE_PER_SYMBOL + 0] |= setMask ; // Always set all ports
buffer[symbol_index * MOTOR_DSHOT_STATE_PER_SYMBOL + 1] = 0; // Reset bits are port dependent
buffer[symbol_index * MOTOR_DSHOT_STATE_PER_SYMBOL + 2] |= resetMask; // Always reset all ports
}
//
// output one more 'bit' that keeps the line level at idle to allow the ESC to sample the last bit
//
// Avoid CRC errors in the case of bi-directional d-shot. CRC errors can occur if the output is
// transitioned to an input before the signal has been sampled by the ESC as the sampled voltage
// may be somewhere between logic-high and logic-low depending on how the motor output line is
// driven or floating. On some MCUs it's observed that the voltage momentarily drops low on transition
// to input.
int hold_bit_index = MOTOR_DSHOT_FRAME_BITS * MOTOR_DSHOT_STATE_PER_SYMBOL;
buffer[hold_bit_index + 0] |= resetMask; // Always reset all ports
buffer[hold_bit_index + 1] = 0; // Never any change
buffer[hold_bit_index + 2] = 0; // Never any change
}
static void bbOutputDataSet(uint32_t *buffer, int pinNumber, uint16_t value, bool inverted)
{
uint32_t middleBit;
if (inverted) {
middleBit = (1 << (pinNumber + 0));
} else {
middleBit = (1 << (pinNumber + 16));
}
for (int pos = 0; pos < 16; pos++) {
if (!(value & 0x8000)) {
buffer[pos * 3 + 1] |= middleBit;
}
value <<= 1;
}
}
static void bbOutputDataClear(uint32_t *buffer)
{
// Middle position to no change
for (int bitpos = 0; bitpos < 16; bitpos++) {
buffer[bitpos * 3 + 1] = 0;
}
}
// bbPacer management
static bbPacer_t *bbFindMotorPacer(TIM_TypeDef *tim)
{
for (int i = 0; i < MAX_MOTOR_PACERS; i++) {
bbPacer_t *bbPacer = &bbPacers[i];
if (bbPacer->tim == NULL) {
bbPacer->tim = tim;
++usedMotorPacers;
return bbPacer;
}
if (bbPacer->tim == tim) {
return bbPacer;
}
}
return NULL;
}
// bbPort management
static bbPort_t *bbFindMotorPort(int portIndex)
{
for (int i = 0; i < usedMotorPorts; i++) {
if (bbPorts[i].portIndex == portIndex) {
return &bbPorts[i];
}
}
return NULL;
}
static bbPort_t *bbAllocateMotorPort(int portIndex)
{
if (usedMotorPorts >= MAX_SUPPORTED_MOTOR_PORTS) {
bbStatus = DSHOT_BITBANG_STATUS_TOO_MANY_PORTS;
return NULL;
}
bbPort_t *bbPort = &bbPorts[usedMotorPorts];
if (!bbPort->timhw) {
// No more pacer channel available
bbStatus = DSHOT_BITBANG_STATUS_NO_PACER;
return NULL;
}
bbPort->portIndex = portIndex;
bbPort->owner.owner = OWNER_DSHOT_BITBANG;
bbPort->owner.resourceIndex = RESOURCE_INDEX(portIndex);
++usedMotorPorts;
return bbPort;
}
const timerHardware_t *dshotBitbangTimerGetAllocatedByNumberAndChannel(int8_t timerNumber, uint16_t timerChannel)
{
for (int index = 0; index < usedMotorPorts; index++) {
const timerHardware_t *bitbangTimer = bbPorts[index].timhw;
if (bitbangTimer && timerGetTIMNumber(bitbangTimer->tim) == timerNumber && bitbangTimer->channel == timerChannel && bbPorts[index].owner.owner) {
return bitbangTimer;
}
}
return NULL;
}
const resourceOwner_t *dshotBitbangTimerGetOwner(const timerHardware_t *timer)
{
for (int index = 0; index < usedMotorPorts; index++) {
const timerHardware_t *bitbangTimer = bbPorts[index].timhw;
if (bitbangTimer && bitbangTimer == timer) {
return &bbPorts[index].owner;
}
}
return &freeOwner;
}
// Return frequency of smallest change [state/sec]
static uint32_t getDshotBaseFrequency(motorPwmProtocolTypes_e pwmProtocolType)
{
switch (pwmProtocolType) {
case(PWM_TYPE_DSHOT600):
return MOTOR_DSHOT600_SYMBOL_RATE * MOTOR_DSHOT_STATE_PER_SYMBOL;
case(PWM_TYPE_DSHOT300):
return MOTOR_DSHOT300_SYMBOL_RATE * MOTOR_DSHOT_STATE_PER_SYMBOL;
default:
case(PWM_TYPE_DSHOT150):
return MOTOR_DSHOT150_SYMBOL_RATE * MOTOR_DSHOT_STATE_PER_SYMBOL;
}
}
static void bbSetupDma(bbPort_t *bbPort)
{
const dmaIdentifier_e dmaIdentifier = dmaGetIdentifier(bbPort->dmaResource);
dmaEnable(dmaIdentifier);
bbPort->dmaSource = timerDmaSource(bbPort->timhw->channel);
bbPacer_t *bbPacer = bbFindMotorPacer(bbPort->timhw->tim);
bbPacer->dmaSources |= bbPort->dmaSource;
dmaSetHandler(dmaIdentifier, bbDMAIrqHandler, NVIC_BUILD_PRIORITY(2, 1), (uint32_t)bbPort);
dmaMuxEnable(dmaIdentifier, bbPort->dmaChannel);
bbDMA_ITConfig(bbPort);
}
FAST_IRQ_HANDLER void bbDMAIrqHandler(dmaChannelDescriptor_t *descriptor)
{
dbgPinHi(0);
bbPort_t *bbPort = (bbPort_t *)descriptor->userParam;
bbDMA_Cmd(bbPort, FALSE);
bbTIM_DMACmd(bbPort->timhw->tim, bbPort->dmaSource, FALSE);
if (DMA_GET_FLAG_STATUS(descriptor, DMA_IT_TEIF)) {
while (1) {};
}
DMA_CLEAR_FLAG(descriptor, DMA_IT_TCIF);
#ifdef USE_DSHOT_TELEMETRY
if (useDshotTelemetry) {
if (bbPort->direction == DSHOT_BITBANG_DIRECTION_INPUT) {
#ifdef DEBUG_COUNT_INTERRUPT
bbPort->inputIrq++;
#endif
// Disable DMA as telemetry reception is complete
bbDMA_Cmd(bbPort, FALSE);
} else {
#ifdef DEBUG_COUNT_INTERRUPT
bbPort->outputIrq++;
#endif
// Switch to input
bbSwitchToInput(bbPort);
bbTIM_DMACmd(bbPort->timhw->tim, bbPort->dmaSource, TRUE);
}
}
#endif
dbgPinLo(0);
}
// Setup bbPorts array elements so that they each have a TIM1 or TIM8 channel
// in timerHardware array for BB-DShot.
static void bbFindPacerTimer(void)
{
for (int bbPortIndex = 0; bbPortIndex < MAX_SUPPORTED_MOTOR_PORTS; bbPortIndex++) {
for (unsigned timerIndex = 0; timerIndex < ARRAYLEN(bbTimerHardware); timerIndex++) {
const timerHardware_t *timer = &bbTimerHardware[timerIndex];
int timNumber = timerGetTIMNumber(timer->tim);
if ((motorConfig()->dev.useDshotBitbangedTimer == DSHOT_BITBANGED_TIMER_TIM1 && timNumber != 1)
|| (motorConfig()->dev.useDshotBitbangedTimer == DSHOT_BITBANGED_TIMER_TIM8 && timNumber != 8)) {
continue;
}
bool timerConflict = false;
for (int channel = 0; channel < CC_CHANNELS_PER_TIMER; channel++) {
const timerHardware_t *timer = timerGetAllocatedByNumberAndChannel(timNumber, CC_CHANNEL_FROM_INDEX(channel));
const resourceOwner_e timerOwner = timerGetOwner(timer)->owner;
if (timerOwner != OWNER_FREE && timerOwner != OWNER_DSHOT_BITBANG) {
timerConflict = true;
break;
}
}
for (int index = 0; index < bbPortIndex; index++) {
const timerHardware_t* t = bbPorts[index].timhw;
if (timerGetTIMNumber(t->tim) == timNumber && timer->channel == t->channel) {
timerConflict = true;
break;
}
}
if (timerConflict) {
continue;
}
#ifdef USE_DMA_SPEC
dmaoptValue_t dmaopt = dmaGetOptionByTimer(timer);
const dmaChannelSpec_t *dmaChannelSpec = dmaGetChannelSpecByTimerValue(timer->tim, timer->channel, dmaopt);
dmaResource_t *dma = dmaChannelSpec->ref;
#else
dmaResource_t *dma = timer->dmaRef;
#endif
dmaIdentifier_e dmaIdentifier = dmaGetIdentifier(dma);
if (dmaGetOwner(dmaIdentifier)->owner == OWNER_FREE) {
bbPorts[bbPortIndex].timhw = timer;
break;
}
}
}
}
static void bbTimebaseSetup(bbPort_t *bbPort, motorPwmProtocolTypes_e dshotProtocolType)
{
uint32_t timerclock = timerClock(bbPort->timhw->tim);
uint32_t outputFreq = getDshotBaseFrequency(dshotProtocolType);
dshotFrameUs = 1000000 * 17 * 3 / outputFreq;
bbPort->outputARR = timerclock / outputFreq - 1;
// XXX Explain this formula
uint32_t inputFreq = outputFreq * 5 * 2 * DSHOT_BITBANG_TELEMETRY_OVER_SAMPLE / 24;
bbPort->inputARR = timerclock / inputFreq - 1;
}
//
// bb only use pin info associated with timerHardware entry designated as TIM_USE_MOTOR;
// it does not use the timer channel associated with the pin.
//
static bool bbMotorConfig(IO_t io, uint8_t motorIndex, motorPwmProtocolTypes_e pwmProtocolType, uint8_t output)
{
int pinIndex = IO_GPIOPinIdx(io);
int portIndex = IO_GPIOPortIdx(io);
bbPort_t *bbPort = bbFindMotorPort(portIndex);
if (!bbPort) {
// New port group
bbPort = bbAllocateMotorPort(portIndex);
if (bbPort) {
const timerHardware_t *timhw = bbPort->timhw;
#ifdef USE_DMA_SPEC
const dmaChannelSpec_t *dmaChannelSpec = dmaGetChannelSpecByTimerValue(timhw->tim, timhw->channel, dmaGetOptionByTimer(timhw));
bbPort->dmaResource = dmaChannelSpec->ref;
bbPort->dmaChannel = dmaChannelSpec->dmaMuxId;
#else
bbPort->dmaResource = timhw->dmaRef;
bbPort->dmaChannel = timhw->dmaChannel;
#endif
}
if (!bbPort || !dmaAllocate(dmaGetIdentifier(bbPort->dmaResource), bbPort->owner.owner, bbPort->owner.resourceIndex)) {
bbDevice.vTable.write = motorWriteNull;
bbDevice.vTable.decodeTelemetry = motorDecodeTelemetryNull;
bbDevice.vTable.updateComplete = motorUpdateCompleteNull;
return false;
}
bbPort->gpio = IO_GPIO(io);
bbPort->portOutputCount = MOTOR_DSHOT_BUF_LENGTH;
bbPort->portOutputBuffer = &bbOutputBuffer[(bbPort - bbPorts) * MOTOR_DSHOT_BUF_CACHE_ALIGN_LENGTH];
bbPort->portInputCount = DSHOT_BB_PORT_IP_BUF_LENGTH;
bbPort->portInputBuffer = &bbInputBuffer[(bbPort - bbPorts) * DSHOT_BB_PORT_IP_BUF_CACHE_ALIGN_LENGTH];
bbTimebaseSetup(bbPort, pwmProtocolType);
bbTIM_TimeBaseInit(bbPort, bbPort->outputARR);
bbTimerChannelInit(bbPort);
bbSetupDma(bbPort);
bbDMAPreconfigure(bbPort, DSHOT_BITBANG_DIRECTION_OUTPUT);
bbDMAPreconfigure(bbPort, DSHOT_BITBANG_DIRECTION_INPUT);
bbDMA_ITConfig(bbPort);
}
bbMotors[motorIndex].pinIndex = pinIndex;
bbMotors[motorIndex].io = io;
bbMotors[motorIndex].output = output;
bbMotors[motorIndex].bbPort = bbPort;
IOInit(io, OWNER_MOTOR, RESOURCE_INDEX(motorIndex));
// Setup GPIO_MODER and GPIO_ODR register manipulation values
bbGpioSetup(&bbMotors[motorIndex]);
#ifdef USE_DSHOT_TELEMETRY
if (useDshotTelemetry) {
bbOutputDataInit(bbPort->portOutputBuffer, (1 << pinIndex), DSHOT_BITBANG_INVERTED);
} else
#endif
{
bbOutputDataInit(bbPort->portOutputBuffer, (1 << pinIndex), DSHOT_BITBANG_NONINVERTED);
}
bbSwitchToOutput(bbPort);
bbMotors[motorIndex].configured = true;
return true;
}
static bool bbTelemetryWait(void)
{
// Wait for telemetry reception to complete
bool telemetryPending;
bool telemetryWait = false;
const timeUs_t startTimeUs = micros();
do {
telemetryPending = false;
for (int i = 0; i < usedMotorPorts; i++) {
telemetryPending |= bbPorts[i].telemetryPending;
}
telemetryWait |= telemetryPending;
if (cmpTimeUs(micros(), startTimeUs) > DSHOT_TELEMETRY_TIMEOUT) {
break;
}
} while (telemetryPending);
if (telemetryWait) {
DEBUG_SET(DEBUG_DSHOT_TELEMETRY_COUNTS, 2, debug[2] + 1);
}
return telemetryWait;
}
static void bbUpdateInit(void)
{
for (int i = 0; i < usedMotorPorts; i++) {
bbOutputDataClear(bbPorts[i].portOutputBuffer);
}
}
static bool bbDecodeTelemetry(void)
{
#ifdef USE_DSHOT_TELEMETRY
if (useDshotTelemetry) {
#ifdef USE_DSHOT_TELEMETRY_STATS
const timeMs_t currentTimeMs = millis();
#endif
#ifdef USE_DSHOT_CACHE_MGMT
for (int i = 0; i < usedMotorPorts; i++) {
bbPort_t *bbPort = &bbPorts[i];
SCB_InvalidateDCache_by_Addr((uint32_t *)bbPort->portInputBuffer, DSHOT_BB_PORT_IP_BUF_CACHE_ALIGN_BYTES);
}
#endif
for (int motorIndex = 0; motorIndex < MAX_SUPPORTED_MOTORS && motorIndex < motorCount; motorIndex++) {
uint32_t rawValue = decode_bb_bitband(
bbMotors[motorIndex].bbPort->portInputBuffer,
bbMotors[motorIndex].bbPort->portInputCount,
bbMotors[motorIndex].pinIndex);
if (rawValue == DSHOT_TELEMETRY_NOEDGE) {
DEBUG_SET(DEBUG_DSHOT_TELEMETRY_COUNTS, 1, debug[1] + 1);
continue;
}
DEBUG_SET(DEBUG_DSHOT_TELEMETRY_COUNTS, 0, debug[0] + 1);
dshotTelemetryState.readCount++;
if (rawValue != DSHOT_TELEMETRY_INVALID) {
// Check EDT enable or store raw value
if ((rawValue == 0x0E00) && (dshotCommandGetCurrent(motorIndex) == DSHOT_CMD_EXTENDED_TELEMETRY_ENABLE)) {
dshotTelemetryState.motorState[motorIndex].telemetryTypes = 1 << DSHOT_TELEMETRY_TYPE_STATE_EVENTS;
} else {
dshotTelemetryState.motorState[motorIndex].rawValue = rawValue;
}
} else {
dshotTelemetryState.invalidPacketCount++;
}
#ifdef USE_DSHOT_TELEMETRY_STATS
updateDshotTelemetryQuality(&dshotTelemetryQuality[motorIndex], rawValue != DSHOT_TELEMETRY_INVALID, currentTimeMs);
#endif
}
dshotTelemetryState.rawValueState = DSHOT_RAW_VALUE_STATE_NOT_PROCESSED;
}
#endif
return true;
}
static void bbWriteInt(uint8_t motorIndex, uint16_t value)
{
bbMotor_t *const bbmotor = &bbMotors[motorIndex];
if (!bbmotor->configured) {
return;
}
// fetch requestTelemetry from motors. Needs to be refactored.
motorDmaOutput_t * const motor = getMotorDmaOutput(motorIndex);
bbmotor->protocolControl.requestTelemetry = motor->protocolControl.requestTelemetry;
motor->protocolControl.requestTelemetry = false;
// If there is a command ready to go overwrite the value and send that instead
if (dshotCommandIsProcessing()) {
value = dshotCommandGetCurrent(motorIndex);
if (value) {
bbmotor->protocolControl.requestTelemetry = true;
}
}
bbmotor->protocolControl.value = value;
uint16_t packet = prepareDshotPacket(&bbmotor->protocolControl);
bbPort_t *bbPort = bbmotor->bbPort;
#ifdef USE_DSHOT_TELEMETRY
if (useDshotTelemetry) {
bbOutputDataSet(bbPort->portOutputBuffer, bbmotor->pinIndex, packet, DSHOT_BITBANG_INVERTED);
} else
#endif
{
bbOutputDataSet(bbPort->portOutputBuffer, bbmotor->pinIndex, packet, DSHOT_BITBANG_NONINVERTED);
}
}
static void bbWrite(uint8_t motorIndex, float value)
{
bbWriteInt(motorIndex, lrintf(value));
}
static void bbUpdateComplete(void)
{
// If there is a dshot command loaded up, time it correctly with motor update
if (!dshotCommandQueueEmpty()) {
if (!dshotCommandOutputIsEnabled(bbDevice.count)) {
return;
}
}
#ifdef USE_DSHOT_CACHE_MGMT
for (int motorIndex = 0; motorIndex < MAX_SUPPORTED_MOTORS && motorIndex < motorCount; motorIndex++) {
// Only clean each buffer once. If all motors are on a common port they'll share a buffer.
bool clean = false;
for (int i = 0; i < motorIndex; i++) {
if (bbMotors[motorIndex].bbPort->portOutputBuffer == bbMotors[i].bbPort->portOutputBuffer) {
clean = true;
}
}
if (!clean) {
SCB_CleanDCache_by_Addr(bbMotors[motorIndex].bbPort->portOutputBuffer, MOTOR_DSHOT_BUF_CACHE_ALIGN_BYTES);
}
}
#endif
for (int i = 0; i < usedMotorPorts; i++) {
bbPort_t *bbPort = &bbPorts[i];
#ifdef USE_DSHOT_TELEMETRY
if (useDshotTelemetry) {
if (bbPort->direction == DSHOT_BITBANG_DIRECTION_INPUT) {
bbPort->inputActive = false;
bbSwitchToOutput(bbPort);
}
} else
#endif
{
bbSwitchToOutput(bbPort);
}
bbDMA_Cmd(bbPort, TRUE);
}
lastSendUs = micros();
for (int i = 0; i < usedMotorPacers; i++) {
bbPacer_t *bbPacer = &bbPacers[i];
bbTIM_DMACmd(bbPacer->tim, bbPacer->dmaSources, TRUE);
}
}
static bool bbEnableMotors(void)
{
for (int i = 0; i < motorCount; i++) {
if (bbMotors[i].configured) {
IOConfigGPIO(bbMotors[i].io, bbMotors[i].iocfg);
}
}
return true;
}
static void bbDisableMotors(void)
{
return;
}
static void bbShutdown(void)
{
return;
}
static bool bbIsMotorEnabled(uint8_t index)
{
return bbMotors[index].enabled;
}
static void bbPostInit(void)
{
bbFindPacerTimer();
for (int motorIndex = 0; motorIndex < MAX_SUPPORTED_MOTORS && motorIndex < motorCount; motorIndex++) {
if (!bbMotorConfig(bbMotors[motorIndex].io, motorIndex, motorPwmProtocol, bbMotors[motorIndex].output)) {
return;
}
bbMotors[motorIndex].enabled = true;
// Fill in motors structure for 4way access (XXX Should be refactored)
motors[motorIndex].enabled = true;
}
}
static motorVTable_t bbVTable = {
.postInit = bbPostInit,
.enable = bbEnableMotors,
.disable = bbDisableMotors,
.isMotorEnabled = bbIsMotorEnabled,
.telemetryWait = bbTelemetryWait,
.decodeTelemetry = bbDecodeTelemetry,
.updateInit = bbUpdateInit,
.write = bbWrite,
.writeInt = bbWriteInt,
.updateComplete = bbUpdateComplete,
.convertExternalToMotor = dshotConvertFromExternal,
.convertMotorToExternal = dshotConvertToExternal,
.shutdown = bbShutdown,
};
dshotBitbangStatus_e dshotBitbangGetStatus(void)
{
return bbStatus;
}
motorDevice_t *dshotBitbangDevInit(const motorDevConfig_t *motorConfig, uint8_t count)
{
dbgPinLo(0);
dbgPinLo(1);
motorPwmProtocol = motorConfig->motorPwmProtocol;
bbDevice.vTable = bbVTable;
motorCount = count;
bbStatus = DSHOT_BITBANG_STATUS_OK;
#ifdef USE_DSHOT_TELEMETRY
useDshotTelemetry = motorConfig->useDshotTelemetry;
#endif
memset(bbOutputBuffer, 0, sizeof(bbOutputBuffer));
for (int motorIndex = 0; motorIndex < MAX_SUPPORTED_MOTORS && motorIndex < motorCount; motorIndex++) {
const unsigned reorderedMotorIndex = motorConfig->motorOutputReordering[motorIndex];
const timerHardware_t *timerHardware = timerGetConfiguredByTag(motorConfig->ioTags[reorderedMotorIndex]);
const IO_t io = IOGetByTag(motorConfig->ioTags[reorderedMotorIndex]);
uint8_t output = motorConfig->motorPwmInversion ? timerHardware->output ^ TIMER_OUTPUT_INVERTED : timerHardware->output;
bbPuPdMode = (output & TIMER_OUTPUT_INVERTED) ? BB_GPIO_PULLDOWN : BB_GPIO_PULLUP;
#ifdef USE_DSHOT_TELEMETRY
if (useDshotTelemetry) {
output ^= TIMER_OUTPUT_INVERTED;
}
#endif
if (!IOIsFreeOrPreinit(io)) {
/* not enough motors initialised for the mixer or a break in the motors */
bbDevice.vTable.write = motorWriteNull;
bbDevice.vTable.decodeTelemetry = motorDecodeTelemetryNull;
bbDevice.vTable.updateComplete = motorUpdateCompleteNull;
bbStatus = DSHOT_BITBANG_STATUS_MOTOR_PIN_CONFLICT;
return NULL;
}
int pinIndex = IO_GPIOPinIdx(io);
bbMotors[motorIndex].pinIndex = pinIndex;
bbMotors[motorIndex].io = io;
bbMotors[motorIndex].output = output;
bbMotors[motorIndex].iocfg = IO_CONFIG(GPIO_MODE_OUTPUT, GPIO_DRIVE_STRENGTH_STRONGER, GPIO_OUTPUT_PUSH_PULL, bbPuPdMode);
IOInit(io, OWNER_MOTOR, RESOURCE_INDEX(motorIndex));
IOConfigGPIO(io, bbMotors[motorIndex].iocfg);
if (output & TIMER_OUTPUT_INVERTED) {
IOLo(io);
} else {
IOHi(io);
}
// Fill in motors structure for 4way access (XXX Should be refactored)
motors[motorIndex].io = bbMotors[motorIndex].io;
}
return &bbDevice;
}
#endif // USE_DSHOT_BB

View file

@ -0,0 +1,295 @@
/*
* This file is part of Betaflight.
*
* Betaflight is free software. You can redistribute this software
* and/or modify this software under the terms of the GNU General
* Public License as published by the Free Software Foundation,
* either version 3 of the License, or (at your option) any later
* version.
*
* Betaflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this software.
*
* If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <math.h>
#include <string.h>
#include "platform.h"
#ifdef USE_DSHOT_BITBANG
#include "build/atomic.h"
#include "build/debug.h"
#include "build/debug_pin.h"
#include "drivers/io.h"
#include "drivers/io_impl.h"
#include "drivers/dma.h"
#include "drivers/dma_reqmap.h"
#include "drivers/dshot.h"
#include "drivers/dshot_bitbang_impl.h"
#include "drivers/dshot_command.h"
#include "drivers/motor.h"
#include "drivers/nvic.h"
#include "drivers/pwm_output.h" // XXX for pwmOutputPort_t motors[]; should go away with refactoring
#include "drivers/time.h"
#include "drivers/timer.h"
#include "pg/motor.h"
void bbGpioSetup(bbMotor_t *bbMotor)
{
bbPort_t *bbPort = bbMotor->bbPort;
int pinIndex = bbMotor->pinIndex;
bbPort->gpioModeMask |= (0x03 << (pinIndex * 2));
bbPort->gpioModeInput |= (GPIO_MODE_INPUT << (pinIndex * 2));
bbPort->gpioModeOutput |= (GPIO_MODE_OUTPUT << (pinIndex * 2));
#ifdef USE_DSHOT_TELEMETRY
if (useDshotTelemetry) {
bbPort->gpioIdleBSRR |= (1 << pinIndex); // BS (lower half)
} else
#endif
{
bbPort->gpioIdleBSRR |= (1 << (pinIndex + 16)); // BR (higher half)
}
#ifdef USE_DSHOT_TELEMETRY
if (useDshotTelemetry) {
IOWrite(bbMotor->io, 1);
} else
#endif
{
IOWrite(bbMotor->io, 0);
}
// is this needed here?
IOConfigGPIO(bbMotor->io, IO_CONFIG(GPIO_MODE_OUTPUT, GPIO_DRIVE_STRENGTH_STRONGER, GPIO_OUTPUT_PUSH_PULL, bbPuPdMode));
}
void bbTimerChannelInit(bbPort_t *bbPort)
{
const timerHardware_t *timhw = bbPort->timhw;
TIM_OCInitTypeDef TIM_OCStruct;
TIM_OCStructInit(&TIM_OCStruct);
TIM_OCStruct.oc_mode = TMR_OUTPUT_CONTROL_PWM_MODE_A;
TIM_OCStruct.oc_idle_state = TRUE;
TIM_OCStruct.oc_output_state = TRUE;
TIM_OCStruct.oc_polarity = TMR_OUTPUT_ACTIVE_LOW;
// TIM_OCStruct.TIM_Pulse = 10; // Duty doesn't matter, but too value small would make monitor output invalid
tmr_channel_value_set(timhw->tim, TIM_CH_TO_SELCHANNEL(timhw->channel), 10);
TIM_Cmd(timhw->tim, FALSE);
timerOCInit(timhw->tim, timhw->channel, &TIM_OCStruct);
tmr_channel_enable(timhw->tim, TIM_CH_TO_SELCHANNEL(timhw->channel), TRUE);
timerOCPreloadConfig(timhw->tim, timhw->channel, TRUE);
#ifdef DEBUG_MONITOR_PACER
if (timhw->tag) {
IO_t io = IOGetByTag(timhw->tag);
IOConfigGPIOAF(io, IOCFG_AF_PP, timhw->alternateFunction);
IOInit(io, OWNER_DSHOT_BITBANG, 0);
TIM_CtrlPWMOutputs(timhw->tim, TRUE);
}
#endif
// Enable and keep it running
TIM_Cmd(timhw->tim, TRUE);
}
#ifdef USE_DMA_REGISTER_CACHE
void bbLoadDMARegs(dmaResource_t *dmaResource, dmaRegCache_t *dmaRegCache)
{
((DMA_ARCH_TYPE *)dmaResource)->ctrl = dmaRegCache->CCR;
((DMA_ARCH_TYPE *)dmaResource)->dtcnt = dmaRegCache->CNDTR;
((DMA_ARCH_TYPE *)dmaResource)->paddr = dmaRegCache->CPAR;
((DMA_ARCH_TYPE *)dmaResource)->maddr = dmaRegCache->CMAR;
}
static void bbSaveDMARegs(dmaResource_t *dmaResource, dmaRegCache_t *dmaRegCache)
{
dmaRegCache->CCR = ((DMA_ARCH_TYPE *)dmaResource)->ctrl;
dmaRegCache->CNDTR = ((DMA_ARCH_TYPE *)dmaResource)->dtcnt;
dmaRegCache->CPAR = ((DMA_ARCH_TYPE *)dmaResource)->paddr ;
dmaRegCache->CMAR = ((DMA_ARCH_TYPE *)dmaResource)->maddr ;
}
#endif
void bbSwitchToOutput(bbPort_t * bbPort)
{
dbgPinHi(1);
// Output idle level before switching to output
// Use BSRR register for this
// Normal: Use BR (higher half)
// Inverted: Use BS (lower half)
WRITE_REG(bbPort->gpio->scr, bbPort->gpioIdleBSRR);
// Set GPIO to output
ATOMIC_BLOCK(NVIC_PRIO_TIMER) {
MODIFY_REG(bbPort->gpio->cfgr, bbPort->gpioModeMask, bbPort->gpioModeOutput);
}
// Reinitialize port group DMA for output
dmaResource_t *dmaResource = bbPort->dmaResource;
#ifdef USE_DMA_REGISTER_CACHE
bbLoadDMARegs(dmaResource, &bbPort->dmaRegOutput);
#else
xDMA_DeInit(dmaResource);
xDMA_Init(dmaResource, &bbPort->outputDmaInit);
// Needs this, as it is DeInit'ed above...
xDMA_ITConfig(dmaResource, DMA_IT_TC, ENABLE);
#endif
// Reinitialize pacer timer for output
bbPort->timhw->tim->pr = bbPort->outputARR;
bbPort->direction = DSHOT_BITBANG_DIRECTION_OUTPUT;
dbgPinLo(1);
}
#ifdef USE_DSHOT_TELEMETRY
void bbSwitchToInput(bbPort_t *bbPort)
{
dbgPinHi(1);
// Set GPIO to input
ATOMIC_BLOCK(NVIC_PRIO_TIMER) {
MODIFY_REG(bbPort->gpio->cfgr, bbPort->gpioModeMask, bbPort->gpioModeInput);
}
// Reinitialize port group DMA for input
dmaResource_t *dmaResource = bbPort->dmaResource;
#ifdef USE_DMA_REGISTER_CACHE
bbLoadDMARegs(dmaResource, &bbPort->dmaRegInput);
#else
xDMA_DeInit(dmaResource);
xDMA_Init(dmaResource, &bbPort->inputDmaInit);
// Needs this, as it is DeInit'ed above...
xDMA_ITConfig(dmaResource, DMA_IT_TC, ENABLE);
#endif
// Reinitialize pacer timer for input
bbPort->timhw->tim->cval = 0;
bbPort->timhw->tim->pr = bbPort->inputARR;
bbDMA_Cmd(bbPort, TRUE);
bbPort->direction = DSHOT_BITBANG_DIRECTION_INPUT;
dbgPinLo(1);
}
#endif
void bbDMAPreconfigure(bbPort_t *bbPort, uint8_t direction)
{
DMA_InitTypeDef *dmainit = (direction == DSHOT_BITBANG_DIRECTION_OUTPUT) ? &bbPort->outputDmaInit : &bbPort->inputDmaInit;
dma_default_para_init(dmainit);
dmainit->loop_mode_enable = FALSE;
// dmainit->DMA_Channel = bbPort->dmaChannel;
dmainit->peripheral_inc_enable = FALSE;
dmainit->memory_inc_enable = TRUE;
/* dmainit->DMA_FIFOMode = DMA_FIFOMode_Enable ;
dmainit->DMA_FIFOThreshold = DMA_FIFOThreshold_1QuarterFull ;
dmainit->DMA_MemoryBurst = DMA_MemoryBurst_Single ;
dmainit->DMA_PeripheralBurst = DMA_PeripheralBurst_Single; */
if (direction == DSHOT_BITBANG_DIRECTION_OUTPUT) {
dmainit->priority = DMA_PRIORITY_VERY_HIGH;
dmainit->direction = DMA_DIR_MEMORY_TO_PERIPHERAL;
dmainit->buffer_size = bbPort->portOutputCount;
dmainit->peripheral_base_addr = (uint32_t)&bbPort->gpio->scr;
dmainit->peripheral_data_width = DMA_PERIPHERAL_DATA_WIDTH_WORD;
dmainit->memory_base_addr = (uint32_t)bbPort->portOutputBuffer;
dmainit->memory_data_width = DMA_MEMORY_DATA_WIDTH_WORD;
#ifdef USE_DMA_REGISTER_CACHE
xDMA_Init(bbPort->dmaResource, dmainit);
bbSaveDMARegs(bbPort->dmaResource, &bbPort->dmaRegOutput);
#endif
} else {
dmainit->priority = DMA_PRIORITY_VERY_HIGH;
dmainit->direction = DMA_DIR_PERIPHERAL_TO_MEMORY;
dmainit->buffer_size = bbPort->portInputCount;
dmainit->peripheral_base_addr = (uint32_t)&bbPort->gpio->idt;
dmainit->peripheral_data_width = DMA_PERIPHERAL_DATA_WIDTH_HALFWORD;
dmainit->memory_base_addr = (uint32_t)bbPort->portInputBuffer;
dmainit->memory_data_width = DMA_MEMORY_DATA_WIDTH_HALFWORD;
#ifdef USE_DMA_REGISTER_CACHE
xDMA_Init(bbPort->dmaResource, dmainit);
bbSaveDMARegs(bbPort->dmaResource, &bbPort->dmaRegInput);
#endif
}
}
void bbTIM_TimeBaseInit(bbPort_t *bbPort, uint16_t period)
{
/*TIM_TimeBaseInitTypeDef *init = &bbPort->timeBaseInit;
init->TIM_Prescaler = 0; // Feed raw timerClock
init->TIM_ClockDivision = TMR_CLOCK_DIV1;
init->TIM_CounterMode = TMR_COUNT_UP;
init->TIM_Period = period; */
tmr_base_init(bbPort->timhw->tim, period, 0);
tmr_clock_source_div_set(bbPort->timhw->tim, TMR_CLOCK_DIV1);
tmr_cnt_dir_set(bbPort->timhw->tim, TMR_COUNT_UP);
tmr_period_buffer_enable(bbPort->timhw->tim, TRUE);
//TIM_TimeBaseInit(bbPort->timhw->tim, init, DISABLE);
tmr_period_buffer_enable(bbPort->timhw->tim, TRUE);
}
void bbTIM_DMACmd(TIM_TypeDef* TIMx, uint16_t TIM_DMASource, confirm_state NewState)
{
// TIM_DMACmd(TIMx, TIM_DMASource, NewState);
tmr_dma_request_enable(TIMx, TIM_DMASource, NewState);
}
void bbDMA_ITConfig(bbPort_t *bbPort)
{
xDMA_ITConfig(bbPort->dmaResource, DMA_IT_TCIF, TRUE);
}
void bbDMA_Cmd(bbPort_t *bbPort, confirm_state NewState)
{
xDMA_Cmd(bbPort->dmaResource, NewState);
}
int bbDMA_Count(bbPort_t *bbPort)
{
return xDMA_GetCurrDataCounter(bbPort->dmaResource);
}
#endif // USE_DSHOT_BB

View file

@ -42,6 +42,11 @@ typedef enum {DISABLE = 0, ENABLE = !DISABLE} FunctionalState;
#define USART_TypeDef usart_type
#define TIM_OCInitTypeDef tmr_output_config_type
#define TIM_ICInitTypeDef tmr_input_config_type
#define TIM_OCStructInit tmr_output_default_para_init
#define TIM_Cmd tmr_counter_enable
#define TIM_CtrlPWMOutputs tmr_output_enable
#define TIM_TimeBaseInit tmr_base_init
#define TIM_ARRPreloadConfig tmr_period_buffer_enable
#define SystemCoreClock system_core_clock
#define EXTI_TypeDef exint_type
#define EXTI_InitTypeDef exint_init_type
@ -82,7 +87,7 @@ typedef enum {DISABLE = 0, ENABLE = !DISABLE} FunctionalState;
#define SCHEDULER_DELAY_LIMIT 100
#define DEFAULT_CPU_OVERCLOCK 0
#define FAST_IRQ_HANDLER
#define FAST_IRQ_HANDLER FAST_CODE
#define DMA_DATA_ZERO_INIT
#define DMA_DATA
@ -95,3 +100,7 @@ typedef enum {DISABLE = 0, ENABLE = !DISABLE} FunctionalState;
#define DMA_RAM_RW
#define USE_LATE_TASK_STATISTICS
#define USE_RPM_FILTER
#define USE_DYN_IDLE
#define USE_DYN_NOTCH_FILTER

View file

@ -30,6 +30,8 @@
#include "platform.h"
#include "build/debug.h"
#ifdef USE_UART
#include "build/build_config.h"
@ -312,6 +314,9 @@ void uartIrqHandler(uartPort_t *s)
s->port.txBufferTail = (s->port.txBufferTail + 1) % s->port.txBufferSize;
} else {
usart_interrupt_enable(s->USARTx, USART_TDBE_INT, FALSE);
// Switch TX to an input with pullup so it's state can be monitored
uartTxMonitor(s);
}
}

View file

@ -54,8 +54,6 @@
#define TIM_IT_CCx(ch) (TMR_C1_INT << ((ch)-1))
#define TIM_CH_TO_SELCHANNEL(ch) (( ch -1)*2)
typedef struct timerConfig_s {
timerOvrHandlerRec_t *updateCallback;
@ -144,6 +142,9 @@ static uint8_t lookupTimerIndex(const tmr_type *tim)
#endif
#if USED_TIMERS & TIM_N(17)
_CASE(17);
#endif
#if USED_TIMERS & TIM_N(20)
_CASE(20);
#endif
default: return ~1; // make sure final index is out of range
}
@ -508,13 +509,13 @@ void timerChConfigIC(const timerHardware_t *timHw, bool polarityRising, unsigned
volatile timCCR_t* timerChCCR(const timerHardware_t *timHw)
{
if(timHw->channel ==1)
if(timHw->channel == 1)
return (volatile timCCR_t*)(&timHw->tim->c1dt);
else if(timHw->channel ==2)
else if(timHw->channel == 2)
return (volatile timCCR_t*)(&timHw->tim->c2dt);
else if(timHw->channel ==3)
else if(timHw->channel == 3)
return (volatile timCCR_t*)(&timHw->tim->c3dt);
else if(timHw->channel ==4)
else if(timHw->channel == 4)
return (volatile timCCR_t*)(&timHw->tim->c4dt);
else
return (volatile timCCR_t*)((volatile char*)&timHw->tim->c1dt + (timHw->channel-1)*0x04); //for 32bit need to debug

View file

@ -58,7 +58,6 @@ typedef struct bitBandWord_s {
uint32_t junk[15];
} bitBandWord_t;
#ifdef DEBUG_BBDECODE
uint32_t sequence[MAX_GCR_EDGES];
int sequenceIndex = 0;

View file

@ -79,6 +79,9 @@
#ifdef USE_HAL_DRIVER
#define BB_GPIO_PULLDOWN GPIO_PULLDOWN
#define BB_GPIO_PULLUP GPIO_PULLUP
#elif defined(AT32F435)
#define BB_GPIO_PULLDOWN GPIO_PULL_DOWN
#define BB_GPIO_PULLUP GPIO_PULL_UP
#else
#define BB_GPIO_PULLDOWN GPIO_PuPd_DOWN
#define BB_GPIO_PULLUP GPIO_PuPd_UP
@ -92,7 +95,7 @@ typedef struct dmaRegCache_s {
uint32_t NDTR;
uint32_t PAR;
uint32_t M0AR;
#elif defined(STM32G4)
#elif defined(STM32G4) || defined(AT32F435)
uint32_t CCR;
uint32_t CNDTR;
uint32_t CPAR;
@ -110,6 +113,17 @@ typedef struct bbPacer_s {
uint16_t dmaSources;
} bbPacer_t;
#ifdef AT32F435
typedef struct tmr_base_init_s {
uint32_t TIM_Prescaler;
uint32_t TIM_ClockDivision;
uint32_t TIM_CounterMode;
uint32_t TIM_Period;
} tmr_base_init_type;
#endif
// Per GPIO port and timer channel
typedef struct bbPort_s {
@ -143,6 +157,8 @@ typedef struct bbPort_s {
#ifdef USE_HAL_DRIVER
LL_TIM_InitTypeDef timeBaseInit;
#elif defined(AT32F435)
tmr_base_init_type timeBaseInit;
#else
TIM_TimeBaseInitTypeDef timeBaseInit;
#endif
@ -241,7 +257,15 @@ void bbSwitchToOutput(bbPort_t * bbPort);
void bbSwitchToInput(bbPort_t * bbPort);
void bbTIM_TimeBaseInit(bbPort_t *bbPort, uint16_t period);
#ifdef AT32F435
void bbTIM_DMACmd(TIM_TypeDef* TIMx, uint16_t TIM_DMASource, confirm_state NewState);
#else
void bbTIM_DMACmd(TIM_TypeDef* TIMx, uint16_t TIM_DMASource, FunctionalState NewState);
#endif
void bbDMA_ITConfig(bbPort_t *bbPort);
#ifdef AT32F435
void bbDMA_Cmd(bbPort_t *bbPort, confirm_state NewState);
#else
void bbDMA_Cmd(bbPort_t *bbPort, FunctionalState NewState);
#endif
int bbDMA_Count(bbPort_t *bbPort);

View file

@ -30,6 +30,8 @@
#include "platform.h"
#include "build/debug.h"
#ifdef USE_UART
#include "build/build_config.h"

View file

@ -30,6 +30,8 @@
#ifdef USE_UART
#include "build/debug.h"
#include "drivers/system.h"
#include "drivers/io.h"
#include "drivers/dma.h"
@ -387,6 +389,9 @@ void uartIrqHandler(uartPort_t *s)
s->port.txBufferTail = (s->port.txBufferTail + 1) % s->port.txBufferSize;
} else {
USART_ITConfig(s->USARTx, USART_IT_TXE, DISABLE);
// Switch TX to an input with pullup so it's state can be monitored
uartTxMonitor(s);
}
}

View file

@ -33,8 +33,15 @@
#include "pg/timerio.h"
#define CC_CHANNELS_PER_TIMER 4 // TIM_Channel_1..4
#define CC_INDEX_FROM_CHANNEL(x) ((uint8_t)((x) >> 2))
#ifdef AT32F435
#define CC_INDEX_FROM_CHANNEL(x) ((uint8_t)(x) - 1)
#define CC_CHANNEL_FROM_INDEX(x) ((uint16_t)(x) + 1)
#else
#define CC_CHANNEL_FROM_INDEX(x) ((uint16_t)(x) << 2)
#define CC_INDEX_FROM_CHANNEL(x) ((uint8_t)((x) >> 2))
#endif
#define TIM_CH_TO_SELCHANNEL(ch) ((ch - 1) * 2)
typedef uint16_t captureCompare_t; // 16 bit on both 103 and 303, just register access must be 32bit sometimes (use timCCR_t)

View file

@ -37,12 +37,19 @@
#define USE_UART1
#define USE_UART2
#define USE_UART3
#define USE_UART4
#define USE_UART5
#define USE_UART6
#define USE_UART7
#define USE_UART8
#define SERIAL_PORT_COUNT (UNIFIED_SERIAL_PORT_COUNT + 3)
#define TARGET_IO_PORTA 0xffff
#define TARGET_IO_PORTB 0xffff
#define TARGET_IO_PORTC 0xffff
#define TARGET_IO_PORTD 0xffff
#define TARGET_IO_PORTH 0xffff
#define USE_SPI
#define USE_SPI_DEVICE_1
@ -63,7 +70,7 @@
#define USE_PERSISTENT_MSC_RTC
#define USE_VCP
#define UNIFIED_SERIAL_PORT_COUNT 1
#define UNIFIED_SERIAL_PORT_COUNT 6
#define USE_ADC
@ -71,17 +78,17 @@
// Remove these undefines as support is added
//#undef USE_BEEPER
#undef USE_LED_STRIP
//#undef USE_LED_STRIP
#undef USE_TRANSPONDER
// #undef USE_DSHOT
// #undef USE_DSHOT_TELEMETRY
// bitbang not implemented yet
#undef USE_DSHOT_BITBANG
// #undef USE_DSHOT_BITBANG
// burst mode not implemented yet
#undef USE_DSHOT_DMAR
#define USE_BEEPER
#undef USE_CAMERA_CONTROL
#undef USE_RX_PPM
#undef USE_RX_PWM

View file

@ -1,5 +1,5 @@
TARGET_MCU := AT32F435
MCU_FLASH_SIZE := 1024
DEVICE_FLAGS = -D$(TARGET_MCU) -DAT32F435RGT7
DEVICE_FLAGS = -D$(TARGET_MCU) -DAT32F435Rx -DAT32F435RGT7
TARGET_MCU_FAMILY := AT32F4
#error

View file

@ -37,18 +37,20 @@
#define USE_UART1
#define USE_UART2
#define USE_UART3
#define USE_UART4
#define USE_UART5
#define USE_UART6
#define USE_UART7
#define USE_UART8
#define SERIAL_PORT_COUNT (UNIFIED_SERIAL_PORT_COUNT + 3)
#define TARGET_IO_PORTA 0xffff
#define TARGET_IO_PORTB 0xffff
#define TARGET_IO_PORTC 0xffff
#define TARGET_IO_PORTD 0xffff
#define TARGET_IO_PORTE 0xffff
#define TARGET_IO_PORTF 0xffff
#define TARGET_IO_PORTG 0xffff
#define TARGET_IO_PORTH 0xffff
#define USE_SPI
#define USE_SPI_DEVICE_1
#define USE_SPI_DEVICE_2
@ -68,7 +70,7 @@
#define USE_PERSISTENT_MSC_RTC
#define USE_VCP
#define UNIFIED_SERIAL_PORT_COUNT 1
#define UNIFIED_SERIAL_PORT_COUNT 6
#define USE_ADC
@ -76,17 +78,17 @@
// Remove these undefines as support is added
//#undef USE_BEEPER
#undef USE_LED_STRIP
//#undef USE_LED_STRIP
#undef USE_TRANSPONDER
// #undef USE_DSHOT
// #undef USE_DSHOT_TELEMETRY
// bitbang not implemented yet
#undef USE_DSHOT_BITBANG
// #undef USE_DSHOT_BITBANG
// burst mode not implemented yet
#undef USE_DSHOT_DMAR
#define USE_BEEPER
#undef USE_CAMERA_CONTROL
#undef USE_RX_PPM
#undef USE_RX_PWM

View file

@ -1,4 +1,4 @@
TARGET_MCU := AT32F435
MCU_FLASH_SIZE := 4096
DEVICE_FLAGS = -D$(TARGET_MCU) -DAT32F435ZMT7
DEVICE_FLAGS = -D$(TARGET_MCU) -DAT32F435Zx -DAT32F435ZMT7
TARGET_MCU_FAMILY := AT32F4