mirror of
https://github.com/betaflight/betaflight.git
synced 2025-07-23 16:25:31 +03:00
Add more configurable Dterm approaches (for testing purposes)
This commit is contained in:
parent
91de6fd4c2
commit
42dfba8218
5 changed files with 46 additions and 34 deletions
|
@ -84,24 +84,29 @@ void pidResetErrorGyro(void)
|
|||
errorGyroIf[YAW] = 0.0f;
|
||||
}
|
||||
|
||||
void setPidDeltaSamples(void) {
|
||||
if (targetLooptime < 1000) {
|
||||
deltaTotalSamples = 8;
|
||||
void setPidDeltaSamples(uint8_t filter) {
|
||||
if (!filter) {
|
||||
if (targetLooptime < 1000) {
|
||||
deltaTotalSamples = 8;
|
||||
} else {
|
||||
deltaTotalSamples = 4;
|
||||
}
|
||||
} else {
|
||||
deltaTotalSamples = 4;
|
||||
deltaTotalSamples = 1;
|
||||
}
|
||||
}
|
||||
|
||||
const angle_index_t rcAliasToAngleIndexMap[] = { AI_ROLL, AI_PITCH };
|
||||
|
||||
static filterStatePt1_t DTermState[3];
|
||||
static filterStatePt1_t yawPTermState;
|
||||
//static filterStatePt1_t yawPTermState;
|
||||
|
||||
static void pidLuxFloat(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig,
|
||||
uint16_t max_angle_inclination, rollAndPitchTrims_t *angleTrim, rxConfig_t *rxConfig)
|
||||
{
|
||||
float RateError, AngleRate, gyroRate;
|
||||
float ITerm,PTerm,DTerm;
|
||||
static float lastGyroRate[3];
|
||||
static float lastError[3];
|
||||
static float previousDelta[3][8];
|
||||
float delta, deltaSum;
|
||||
|
@ -109,7 +114,7 @@ static void pidLuxFloat(pidProfile_t *pidProfile, controlRateConfig_t *controlRa
|
|||
float horizonLevelStrength = 1;
|
||||
static float previousErrorGyroIf[3] = { 0.0f, 0.0f, 0.0f };
|
||||
|
||||
if (!deltaTotalSamples) setPidDeltaSamples();
|
||||
if (!deltaTotalSamples) setPidDeltaSamples(pidProfile->dterm_cut_hz);
|
||||
|
||||
if (FLIGHT_MODE(HORIZON_MODE)) {
|
||||
// Figure out the raw stick positions
|
||||
|
@ -167,10 +172,6 @@ static void pidLuxFloat(pidProfile_t *pidProfile, controlRateConfig_t *controlRa
|
|||
// -----calculate P component
|
||||
PTerm = RateError * pidProfile->P_f[axis] * PIDweight[axis] / 100;
|
||||
|
||||
if (axis == YAW && pidProfile->yaw_pterm_cut_hz) {
|
||||
PTerm = filterApplyPt1(PTerm, &yawPTermState, pidProfile->yaw_pterm_cut_hz, dT);
|
||||
}
|
||||
|
||||
// -----calculate I component.
|
||||
errorGyroIf[axis] = constrainf(errorGyroIf[axis] + 0.5f * (lastError[axis] + RateError) * dT * pidProfile->I_f[axis] * 10, -250.0f, 250.0f);
|
||||
|
||||
|
@ -189,19 +190,26 @@ static void pidLuxFloat(pidProfile_t *pidProfile, controlRateConfig_t *controlRa
|
|||
ITerm = errorGyroIf[axis];
|
||||
|
||||
//-----calculate D-term
|
||||
delta = RateError - lastError[axis];
|
||||
lastError[axis] = RateError;
|
||||
if (!pidProfile->delta_from_gyro_error) {
|
||||
delta = RateError - lastError[axis];
|
||||
lastError[axis] = RateError;
|
||||
} else {
|
||||
delta = -(gyroRate - lastGyroRate[axis]); // 16 bits is ok here, the dif between 2 consecutive gyro reads is limited to 800
|
||||
lastGyroRate[axis] = gyroRate;
|
||||
}
|
||||
|
||||
// Correct difference by cycle time. Cycle time is jittery (can be different 2 times), so calculated difference
|
||||
// would be scaled by different dt each time. Division by dT fixes that.
|
||||
delta *= (1.0f / dT);
|
||||
|
||||
deltaSum = 0;
|
||||
if (pidProfile->dterm_cut_hz) {
|
||||
// Dterm low pass
|
||||
deltaSum = filterApplyPt1(delta, &DTermState[axis], pidProfile->dterm_cut_hz, dT);
|
||||
} else {
|
||||
// Apply moving average
|
||||
deltaSum = 0;
|
||||
}
|
||||
|
||||
// Apply moving average
|
||||
if (deltaTotalSamples > 1) {
|
||||
for (deltaCount = deltaTotalSamples-1; deltaCount > 0; deltaCount--) previousDelta[axis][deltaCount] = previousDelta[axis][deltaCount-1];
|
||||
previousDelta[axis][0] = delta;
|
||||
for (deltaCount = 0; deltaCount < deltaTotalSamples; deltaCount++) deltaSum += previousDelta[axis][deltaCount];
|
||||
|
@ -237,12 +245,13 @@ static void pidRewrite(pidProfile_t *pidProfile, controlRateConfig_t *controlRat
|
|||
static int32_t previousDelta[3][8];
|
||||
int32_t PTerm, ITerm, DTerm;
|
||||
static int32_t lastError[3] = { 0, 0, 0 };
|
||||
static int32_t lastGyroRate[3] = { 0, 0, 0 };
|
||||
static int32_t previousErrorGyroI[3] = { 0, 0, 0 };
|
||||
int32_t AngleRateTmp, RateError;
|
||||
int32_t AngleRateTmp, RateError, gyroRate;
|
||||
|
||||
int8_t horizonLevelStrength = 100;
|
||||
|
||||
if (!deltaTotalSamples) setPidDeltaSamples();
|
||||
if (!deltaTotalSamples) setPidDeltaSamples(pidProfile->dterm_cut_hz);
|
||||
|
||||
if (FLIGHT_MODE(HORIZON_MODE)) {
|
||||
// Figure out the raw stick positions
|
||||
|
@ -290,15 +299,12 @@ static void pidRewrite(pidProfile_t *pidProfile, controlRateConfig_t *controlRat
|
|||
// Used in stand-alone mode for ACRO, controlled by higher level regulators in other modes
|
||||
// -----calculate scaled error.AngleRates
|
||||
// multiplication of rcCommand corresponds to changing the sticks scaling here
|
||||
RateError = AngleRateTmp - (gyroADC[axis] / 4);
|
||||
gyroRate = gyroADC[axis] / 4;
|
||||
RateError = AngleRateTmp - gyroRate;
|
||||
|
||||
// -----calculate P component
|
||||
PTerm = (RateError * pidProfile->P8[axis] * PIDweight[axis] / 100) >> 7;
|
||||
|
||||
if (axis == YAW && pidProfile->yaw_pterm_cut_hz) {
|
||||
PTerm = filterApplyPt1(PTerm, &yawPTermState, pidProfile->yaw_pterm_cut_hz, dT);
|
||||
}
|
||||
|
||||
// -----calculate I component
|
||||
// there should be no division before accumulating the error to integrator, because the precision would be reduced.
|
||||
// Precision is critical, as I prevents from long-time drift. Thus, 32 bits integrator is used.
|
||||
|
@ -323,24 +329,30 @@ static void pidRewrite(pidProfile_t *pidProfile, controlRateConfig_t *controlRat
|
|||
}
|
||||
|
||||
//-----calculate D-term
|
||||
delta = RateError - lastError[axis]; // 16 bits is ok here, the dif between 2 consecutive gyro reads is limited to 800
|
||||
lastError[axis] = RateError;
|
||||
if (!pidProfile->delta_from_gyro_error) { // quick and dirty solution for testing
|
||||
delta = RateError - lastError[axis]; // 16 bits is ok here, the dif between 2 consecutive gyro reads is limited to 800
|
||||
lastError[axis] = RateError;
|
||||
} else {
|
||||
delta = -(gyroRate - lastGyroRate[axis]); // 16 bits is ok here, the dif between 2 consecutive gyro reads is limited to 800
|
||||
lastGyroRate[axis] = gyroRate;
|
||||
}
|
||||
|
||||
// Correct difference by cycle time. Cycle time is jittery (can be different 2 times), so calculated difference
|
||||
// would be scaled by different dt each time. Division by dT fixes that.
|
||||
delta = (delta * ((uint16_t) 0xFFFF / ((uint16_t)targetLooptime >> 4))) >> 6;
|
||||
|
||||
// Apply moving average
|
||||
deltaSum = 0;
|
||||
if (pidProfile->dterm_cut_hz) {
|
||||
// Dterm delta low pass
|
||||
// Dterm low pass
|
||||
deltaSum = filterApplyPt1(delta, &DTermState[axis], pidProfile->dterm_cut_hz, dT);
|
||||
} else {
|
||||
// Apply moving average
|
||||
deltaSum = 0;
|
||||
}
|
||||
if (deltaTotalSamples > 1) {
|
||||
for (deltaCount = deltaTotalSamples-1; deltaCount > 0; deltaCount--) previousDelta[axis][deltaCount] = previousDelta[axis][deltaCount-1];
|
||||
previousDelta[axis][0] = delta;
|
||||
for (deltaCount = 0; deltaCount < deltaTotalSamples; deltaCount++) deltaSum += previousDelta[axis][deltaCount];
|
||||
deltaSum = (deltaSum / deltaTotalSamples) * 3; // get old scaling by multiplying with 3
|
||||
}
|
||||
deltaSum = (deltaSum / deltaTotalSamples) * 3; // get old scaling by multiplying with 3
|
||||
|
||||
DTerm = (deltaSum * pidProfile->D8[axis] * PIDweight[axis] / 100) >> 8;
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue