mirror of
https://github.com/betaflight/betaflight.git
synced 2025-07-19 06:15:16 +03:00
Added #define for imu debug output (+16 squashed commit)
Squashed local commits: from : e4265d4a13f63f82d5cf55eea2c091622f96660b up to (inc): 72416dc74745fa8bae1aded79aa4b9ed0e389076
This commit is contained in:
parent
c6f5b98a79
commit
45a4f11f92
21 changed files with 823 additions and 188 deletions
|
@ -20,6 +20,7 @@
|
|||
#include <stdbool.h>
|
||||
#include <stdint.h>
|
||||
#include <math.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "common/maths.h"
|
||||
|
||||
|
@ -46,6 +47,8 @@
|
|||
|
||||
#include "config/runtime_config.h"
|
||||
|
||||
//#define DEBUG_IMU
|
||||
|
||||
int16_t accSmooth[XYZ_AXIS_COUNT];
|
||||
int32_t accSum[XYZ_AXIS_COUNT];
|
||||
|
||||
|
@ -63,11 +66,15 @@ float gyroScaleRad;
|
|||
|
||||
|
||||
rollAndPitchInclination_t inclination = { { 0, 0 } }; // absolute angle inclination in multiple of 0.1 degree 180 deg = 1800
|
||||
float anglerad[2] = { 0.0f, 0.0f }; // absolute angle inclination in radians
|
||||
static float anglerad[2] = { 0.0f, 0.0f }; // absolute angle inclination in radians
|
||||
|
||||
static imuRuntimeConfig_t *imuRuntimeConfig;
|
||||
static pidProfile_t *pidProfile;
|
||||
static accDeadband_t *accDeadband;
|
||||
static accProcessor_t accProc;
|
||||
|
||||
static void qAccProcessingStateMachine(rollAndPitchTrims_t *accelerometerTrims, uint8_t acc_for_fast_looptime);
|
||||
|
||||
|
||||
void imuConfigure(
|
||||
imuRuntimeConfig_t *initialImuRuntimeConfig,
|
||||
|
@ -84,13 +91,6 @@ void imuConfigure(
|
|||
throttleAngleScale = calculateThrottleAngleScale(throttle_correction_angle);
|
||||
}
|
||||
|
||||
void imuInit()
|
||||
{
|
||||
smallAngle = lrintf(acc_1G * cos_approx(degreesToRadians(imuRuntimeConfig->small_angle)));
|
||||
accVelScale = 9.80665f / acc_1G / 10000.0f;
|
||||
gyroScaleRad = gyro.scale * (M_PIf / 180.0f) * 0.000001f;
|
||||
}
|
||||
|
||||
float calculateThrottleAngleScale(uint16_t throttle_correction_angle)
|
||||
{
|
||||
return (1800.0f / M_PIf) * (900.0f / throttle_correction_angle);
|
||||
|
@ -130,50 +130,6 @@ void imuResetAccelerationSum(void)
|
|||
accTimeSum = 0;
|
||||
}
|
||||
|
||||
// rotate acc into Earth frame and calculate acceleration in it
|
||||
void imuCalculateAcceleration(uint32_t deltaT)
|
||||
{
|
||||
static int32_t accZoffset = 0;
|
||||
static float accz_smooth = 0;
|
||||
float dT;
|
||||
fp_angles_t rpy;
|
||||
t_fp_vector accel_ned;
|
||||
|
||||
// deltaT is measured in us ticks
|
||||
dT = (float)deltaT * 1e-6f;
|
||||
|
||||
// the accel values have to be rotated into the earth frame
|
||||
rpy.angles.roll = -(float)anglerad[AI_ROLL];
|
||||
rpy.angles.pitch = -(float)anglerad[AI_PITCH];
|
||||
rpy.angles.yaw = -(float)heading * RAD;
|
||||
|
||||
accel_ned.V.X = accSmooth[0];
|
||||
accel_ned.V.Y = accSmooth[1];
|
||||
accel_ned.V.Z = accSmooth[2];
|
||||
|
||||
rotateV(&accel_ned.V, &rpy);
|
||||
|
||||
if (imuRuntimeConfig->acc_unarmedcal == 1) {
|
||||
if (!ARMING_FLAG(ARMED)) {
|
||||
accZoffset -= accZoffset / 64;
|
||||
accZoffset += accel_ned.V.Z;
|
||||
}
|
||||
accel_ned.V.Z -= accZoffset / 64; // compensate for gravitation on z-axis
|
||||
} else
|
||||
accel_ned.V.Z -= acc_1G;
|
||||
|
||||
accz_smooth = accz_smooth + (dT / (fc_acc + dT)) * (accel_ned.V.Z - accz_smooth); // low pass filter
|
||||
|
||||
// apply Deadband to reduce integration drift and vibration influence
|
||||
accSum[X] += applyDeadband(lrintf(accel_ned.V.X), accDeadband->xy);
|
||||
accSum[Y] += applyDeadband(lrintf(accel_ned.V.Y), accDeadband->xy);
|
||||
accSum[Z] += applyDeadband(lrintf(accz_smooth), accDeadband->z);
|
||||
|
||||
// sum up Values for later integration to get velocity and distance
|
||||
accTimeSum += deltaT;
|
||||
accSumCount++;
|
||||
}
|
||||
|
||||
/*
|
||||
* Baseflight calculation by Luggi09 originates from arducopter
|
||||
* ============================================================
|
||||
|
@ -216,7 +172,7 @@ int16_t imuCalculateHeading(t_fp_vector *vec)
|
|||
float Yh = vec->A[Y] * cosineRoll - vec->A[Z] * sineRoll;
|
||||
//TODO: Replace this comment with an explanation of why Yh and Xh can never simultanoeusly be zero,
|
||||
// or handle the case in which they are and (atan2f(0, 0) is undefined.
|
||||
float hd = (atan2f(Yh, Xh) * 1800.0f / M_PIf + magneticDeclination) / 10.0f;
|
||||
float hd = (atan2_approx(Yh, Xh) * 1800.0f / M_PIf + magneticDeclination) / 10.0f;
|
||||
head = lrintf(hd);
|
||||
|
||||
// Arctan returns a value in the range -180 to 180 degrees. We 'normalize' negative angles to be positive.
|
||||
|
@ -226,84 +182,12 @@ int16_t imuCalculateHeading(t_fp_vector *vec)
|
|||
return head;
|
||||
}
|
||||
|
||||
static void imuCalculateEstimatedAttitude(void)
|
||||
{
|
||||
int32_t axis;
|
||||
int32_t accMag = 0;
|
||||
static t_fp_vector EstM;
|
||||
static t_fp_vector EstN = { .A = { 1.0f, 0.0f, 0.0f } };
|
||||
static float accLPF[3];
|
||||
static uint32_t previousT;
|
||||
uint32_t currentT = micros();
|
||||
uint32_t deltaT;
|
||||
float scale;
|
||||
fp_angles_t deltaGyroAngle;
|
||||
deltaT = currentT - previousT;
|
||||
scale = deltaT * gyroScaleRad;
|
||||
previousT = currentT;
|
||||
|
||||
// Initialization
|
||||
for (axis = 0; axis < 3; axis++) {
|
||||
deltaGyroAngle.raw[axis] = gyroADC[axis] * scale;
|
||||
if (imuRuntimeConfig->acc_lpf_factor > 0) {
|
||||
accLPF[axis] = accLPF[axis] * (1.0f - (1.0f / imuRuntimeConfig->acc_lpf_factor)) + accADC[axis] * (1.0f / imuRuntimeConfig->acc_lpf_factor);
|
||||
accSmooth[axis] = accLPF[axis];
|
||||
} else {
|
||||
accSmooth[axis] = accADC[axis];
|
||||
}
|
||||
accMag += (int32_t)accSmooth[axis] * accSmooth[axis];
|
||||
}
|
||||
accMag = accMag * 100 / ((int32_t)acc_1G * acc_1G);
|
||||
|
||||
rotateV(&EstG.V, &deltaGyroAngle);
|
||||
|
||||
// Apply complimentary filter (Gyro drift correction)
|
||||
// If accel magnitude >1.15G or <0.85G and ACC vector outside of the limit range => we neutralize the effect of accelerometers in the angle estimation.
|
||||
// To do that, we just skip filter, as EstV already rotated by Gyro
|
||||
|
||||
float invGyroComplimentaryFilterFactor = (1.0f / (imuRuntimeConfig->gyro_cmpf_factor + 1.0f));
|
||||
|
||||
if (72 < (uint16_t)accMag && (uint16_t)accMag < 133) {
|
||||
for (axis = 0; axis < 3; axis++)
|
||||
EstG.A[axis] = (EstG.A[axis] * imuRuntimeConfig->gyro_cmpf_factor + accSmooth[axis]) * invGyroComplimentaryFilterFactor;
|
||||
}
|
||||
|
||||
if (EstG.A[Z] > smallAngle) {
|
||||
ENABLE_STATE(SMALL_ANGLE);
|
||||
} else {
|
||||
DISABLE_STATE(SMALL_ANGLE);
|
||||
}
|
||||
|
||||
// Attitude of the estimated vector
|
||||
anglerad[AI_ROLL] = atan2f(EstG.V.Y, EstG.V.Z);
|
||||
anglerad[AI_PITCH] = atan2f(-EstG.V.X, sqrtf(EstG.V.Y * EstG.V.Y + EstG.V.Z * EstG.V.Z));
|
||||
inclination.values.rollDeciDegrees = lrintf(anglerad[AI_ROLL] * (1800.0f / M_PIf));
|
||||
inclination.values.pitchDeciDegrees = lrintf(anglerad[AI_PITCH] * (1800.0f / M_PIf));
|
||||
|
||||
if (sensors(SENSOR_MAG)) {
|
||||
rotateV(&EstM.V, &deltaGyroAngle);
|
||||
// FIXME what does the _M_ mean?
|
||||
float invGyroComplimentaryFilter_M_Factor = (1.0f / (imuRuntimeConfig->gyro_cmpfm_factor + 1.0f));
|
||||
for (axis = 0; axis < 3; axis++) {
|
||||
EstM.A[axis] = (EstM.A[axis] * imuRuntimeConfig->gyro_cmpfm_factor + magADC[axis]) * invGyroComplimentaryFilter_M_Factor;
|
||||
}
|
||||
heading = imuCalculateHeading(&EstM);
|
||||
} else {
|
||||
rotateV(&EstN.V, &deltaGyroAngle);
|
||||
normalizeV(&EstN.V, &EstN.V);
|
||||
heading = imuCalculateHeading(&EstN);
|
||||
}
|
||||
|
||||
imuCalculateAcceleration(deltaT); // rotate acc vector into earth frame
|
||||
}
|
||||
|
||||
void imuUpdate(rollAndPitchTrims_t *accelerometerTrims)
|
||||
void imuUpdate(rollAndPitchTrims_t *accelerometerTrims, uint8_t acc_for_fast_looptime)
|
||||
{
|
||||
gyroUpdate();
|
||||
|
||||
if (sensors(SENSOR_ACC)) {
|
||||
updateAccelerationReadings(accelerometerTrims); // TODO rename to accelerometerUpdate and rename many other 'Acceleration' references to be 'Accelerometer'
|
||||
imuCalculateEstimatedAttitude();
|
||||
qAccProcessingStateMachine(accelerometerTrims, acc_for_fast_looptime);
|
||||
} else {
|
||||
accADC[X] = 0;
|
||||
accADC[Y] = 0;
|
||||
|
@ -323,8 +207,554 @@ int16_t calculateThrottleAngleCorrection(uint8_t throttle_correction_value)
|
|||
if (cosZ <= 0.015f) {
|
||||
return 0;
|
||||
}
|
||||
int angle = lrintf(acosf(cosZ) * throttleAngleScale);
|
||||
int angle = lrintf(acos_approx(cosZ) * throttleAngleScale);
|
||||
if (angle > 900)
|
||||
angle = 900;
|
||||
return lrintf(throttle_correction_value * sin_approx(angle / (900.0f * M_PIf / 2.0f)));
|
||||
}
|
||||
|
||||
// WITHOUT
|
||||
//arm - none - eabi - size . / obj / main / cleanflight_CC3D.elf
|
||||
//text data bss dec hex filename
|
||||
//116324 376 12640 129340 1f93c . / obj / main / cleanflight_CC3D.elf
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// 4D Quaternion / 3D Vector Math
|
||||
//arm - none - eabi - size . / obj / main / cleanflight_CC3D.elf
|
||||
//text data bss dec hex filename
|
||||
//116284 364 12636 129284 1f904 . / obj / main / cleanflight_CC3D.elf
|
||||
|
||||
typedef struct v3_s
|
||||
{
|
||||
float x;
|
||||
float y;
|
||||
float z;
|
||||
} v3_t;
|
||||
|
||||
const v3_t V0 = { .x = 0.0f, .y = 0.0f, .z = 0.0f };
|
||||
const v3_t VX = { .x = 1.0f, .y = 0.0f, .z = 0.0f };
|
||||
const v3_t VY = { .x = 0.0f, .y = 1.0f, .z = 0.0f };
|
||||
const v3_t VZ = { .x = 0.0f, .y = 0.0f, .z = 1.0f };
|
||||
|
||||
typedef struct q4_s
|
||||
{
|
||||
float w;
|
||||
float x;
|
||||
float y;
|
||||
float z;
|
||||
} q4_t;
|
||||
|
||||
const q4_t Q0 = { .w = 1.0f, .x = 0.0f, .y = 0.0f, .z = 0.0f };
|
||||
|
||||
void MulQQ(const q4_t *a, const q4_t *b, q4_t *o)
|
||||
{
|
||||
q4_t r;
|
||||
r.w = a->w * b->w - a->x * b->x - a->y * b->y - a->z * b->z;
|
||||
r.x = a->w * b->x + a->z * b->y - a->y * b->z + a->x * b->w;
|
||||
r.y = a->w * b->y + a->x * b->z + a->y * b->w - a->z * b->x;
|
||||
r.z = a->y * b->x - a->x * b->y + a->w * b->z + a->z * b->w;
|
||||
*o = r;
|
||||
}
|
||||
|
||||
void MulQV(const q4_t *a, const v3_t *b, q4_t *o)
|
||||
{
|
||||
q4_t r;
|
||||
r.w = -a->x * b->x - a->y * b->y - a->z * b->z;
|
||||
r.x = a->w * b->x + a->z * b->y - a->y * b->z;
|
||||
r.y = a->w * b->y + a->x * b->z - a->z * b->x;
|
||||
r.z = a->y * b->x - a->x * b->y + a->w * b->z;
|
||||
*o = r;
|
||||
}
|
||||
|
||||
void MulQF(const q4_t *a, const float b, q4_t *o)
|
||||
{
|
||||
q4_t r;
|
||||
r.w = a->w * b;
|
||||
r.x = a->x * b;
|
||||
r.y = a->y * b;
|
||||
r.z = a->z * b;
|
||||
*o = r;
|
||||
}
|
||||
|
||||
void MulVF(const v3_t *a, const float b, v3_t *o)
|
||||
{
|
||||
v3_t r;
|
||||
r.x = a->x * b;
|
||||
r.y = a->y * b;
|
||||
r.z = a->z * b;
|
||||
*o = r;
|
||||
}
|
||||
|
||||
void SumQQ(const q4_t *a, const q4_t *b, q4_t *o)
|
||||
{
|
||||
q4_t r;
|
||||
r.w = a->w + b->w;
|
||||
r.x = a->x + b->x;
|
||||
r.y = a->y + b->y;
|
||||
r.z = a->z + b->z;
|
||||
*o = r;
|
||||
}
|
||||
|
||||
|
||||
void SumVV(const v3_t *a, const v3_t *b, v3_t *o)
|
||||
{
|
||||
v3_t r;
|
||||
r.x = a->x + b->x;
|
||||
r.y = a->y + b->y;
|
||||
r.z = a->z + b->z;
|
||||
*o = r;
|
||||
}
|
||||
|
||||
void SubQQ(const q4_t *a, const q4_t *b, q4_t *o)
|
||||
{
|
||||
q4_t r;
|
||||
r.w = a->w - b->w;
|
||||
r.x = a->x - b->x;
|
||||
r.y = a->y - b->y;
|
||||
r.z = a->z - b->z;
|
||||
*o = r;
|
||||
}
|
||||
|
||||
|
||||
void SubVV(const v3_t *a, const v3_t *b, v3_t *o)
|
||||
{
|
||||
v3_t r;
|
||||
r.x = a->x - b->x;
|
||||
r.y = a->y - b->y;
|
||||
r.z = a->z - b->z;
|
||||
*o = r;
|
||||
}
|
||||
|
||||
void CrossQQ(const q4_t *a, const q4_t *b, q4_t *o)
|
||||
{
|
||||
q4_t r;
|
||||
r.w = 0.0f;
|
||||
r.x = a->y * b->z - a->z * b->y;
|
||||
r.y = a->z * b->x - a->x * b->z;
|
||||
r.z = a->x * b->y - a->y * b->x;
|
||||
*o = r;
|
||||
}
|
||||
|
||||
void CrossVV(const v3_t *a, const v3_t *b, v3_t *o)
|
||||
{
|
||||
v3_t r;
|
||||
r.x = a->y * b->z - a->z * b->y;
|
||||
r.y = a->z * b->x - a->x * b->z;
|
||||
r.z = a->x * b->y - a->y * b->x;
|
||||
*o = r;
|
||||
}
|
||||
|
||||
float DotQQ(const q4_t *a, const q4_t *b)
|
||||
{
|
||||
return a->w * b->w + a->x * b->x + a->y * b->y + a->z * b->z;
|
||||
}
|
||||
|
||||
float DotVV(const v3_t *a, const v3_t *b)
|
||||
{
|
||||
return a->x * b->x + a->y * b->y + a->z * b->z;
|
||||
}
|
||||
|
||||
float Mag2Q(const q4_t *a) // magnitude squared
|
||||
{
|
||||
return a->w*a->w + a->x*a->x + a->y*a->y + a->z*a->z;
|
||||
}
|
||||
|
||||
#define MagQ(a) sqrtf(Mag2Q(a))
|
||||
|
||||
float Mag2V(const v3_t *a) // magnitude squared
|
||||
{
|
||||
return a->x*a->x + a->y*a->y + a->z*a->z; // TODO: optimize for unit vectors (m2 nearly 1.0)
|
||||
}
|
||||
|
||||
#define MagV(a) sqrtf(Mag2V(a))
|
||||
|
||||
void NormQ(const q4_t *a, q4_t *o)
|
||||
{
|
||||
q4_t r;
|
||||
MulQF(a, 1 / MagQ(a), &r);
|
||||
*o = r;
|
||||
}
|
||||
|
||||
void NormV(const v3_t *a, v3_t *o)
|
||||
{
|
||||
v3_t r;
|
||||
float m = MagV(a);
|
||||
MulVF(a, 1 / m, &r); // TODO: m nearly 0
|
||||
*o = r;
|
||||
}
|
||||
|
||||
void ConjQ(const q4_t *a, q4_t *o)
|
||||
{
|
||||
q4_t r;
|
||||
r.w = a->w;
|
||||
r.x = -a->x;
|
||||
r.y = -a->y;
|
||||
r.z = -a->z;
|
||||
*o = r;
|
||||
}
|
||||
|
||||
void RotateVQ(const v3_t *v, const q4_t *q, v3_t *o) //Vector rotated by a Quaternion(matches V^ = V * Matrix)
|
||||
{
|
||||
// v + 2 * r X(r X v + q.w*v) --https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation#Performance_comparisons
|
||||
// vector r is the three imaginary coefficients of quaternion q
|
||||
|
||||
v3_t r2_rv_vw;
|
||||
{
|
||||
// reverse signs to change direction of rotation
|
||||
v3_t r = { .x = -q->x, .y = -q->y, .z = -q->z };
|
||||
v3_t r2;
|
||||
SumVV(&r, &r, &r2);
|
||||
|
||||
v3_t rv_vw;
|
||||
{
|
||||
v3_t vw;
|
||||
MulVF(v, q->w, &vw);
|
||||
v3_t rv;
|
||||
CrossVV(&r, v, &rv);
|
||||
SumVV(&rv, &vw, &rv_vw);
|
||||
}
|
||||
CrossVV(&r2, &rv_vw, &r2_rv_vw);
|
||||
}
|
||||
SumVV(v, &r2_rv_vw, o);
|
||||
}
|
||||
|
||||
void quaternion_approx(const v3_t *w, q4_t *o) // (angle vector[rad]) --Small angle approximation
|
||||
{
|
||||
q4_t r;
|
||||
r.x = w->x / 2;
|
||||
r.y = w->y / 2;
|
||||
r.z = w->z / 2;
|
||||
r.w = 1.0f - (0.5f * ((r.x * r.x) + (r.y * r.y) + (r.z * r.z)));
|
||||
*o = r;
|
||||
}
|
||||
|
||||
#if 0
|
||||
void quaternion(const v3_t *w, q4_t *o) // (angle vector[rad]) --Large Rotation Quaternion
|
||||
{
|
||||
float m = MagV(w);
|
||||
if (m == 0.0f)
|
||||
{
|
||||
*o = Q0;
|
||||
}
|
||||
else
|
||||
{
|
||||
q4_t r;
|
||||
float t2 = m * 0.5f; // # rotation angle divided by 2
|
||||
float sm = sin(t2) / m; // # computation minimization
|
||||
r.x = w->x * sm;
|
||||
r.y = w->y * sm;
|
||||
r.z = w->z * sm;
|
||||
r.w = cos(t2);
|
||||
*o = r;
|
||||
}
|
||||
}
|
||||
#else
|
||||
# define quaternion(w,o) quaternion_approx(w,o) // I think we can get away with the approximation
|
||||
// TODO - try usining sin_approx, cos_approx
|
||||
#endif
|
||||
|
||||
typedef struct rpy_s
|
||||
{
|
||||
float r;
|
||||
float p;
|
||||
float y;
|
||||
} rpy_t;
|
||||
const rpy_t RPY0 = { .r = 0, .p = 0, .y = 0 };
|
||||
|
||||
void quaternion_from_rpy(const rpy_t *a, q4_t *o) // (degrees) yaw->pitch->roll order
|
||||
{
|
||||
float cr, sr, cp, sp, cy, sy;
|
||||
|
||||
{ float r2 = a->r * (RAD / 2); cr = cos_approx(r2); sr = sin_approx(r2); }
|
||||
{ float p2 = a->p * (RAD / 2); cp = cos_approx(p2); sp = sin_approx(p2); }
|
||||
{ float y2 = a->y * (RAD / 2); cy = cos_approx(y2); sy = sin_approx(y2); }
|
||||
|
||||
o->w = cr*cp*cy + sr*sp*sy;
|
||||
o->x = sr*cp*cy - cr*sp*sy;
|
||||
o->y = cr*sp*cy + sr*cp*sy;
|
||||
o->z = cr*cp*sy - sr*sp*cy;
|
||||
}
|
||||
|
||||
void quaternion_to_rpy(const q4_t *q, rpy_t *o) // (degrees) yaw->pitch->roll order
|
||||
{
|
||||
// https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles
|
||||
// Body Z - Y - X sequence
|
||||
|
||||
float q0 = q->w;
|
||||
float q1 = q->x;
|
||||
float q2 = q->y;
|
||||
float q3 = q->z;
|
||||
|
||||
float p0 = MAX(-1.0f, MIN(1.0f, 2 * (q0*q2 - q3*q1)));
|
||||
o->p = asin(p0);
|
||||
|
||||
if (ABS(ABS(o->p) - (90 * RAD)) < (0.5f*RAD)) // vertical
|
||||
{
|
||||
o->y = 2 * atan2_approx(q3, q0);
|
||||
o->r = 0.0f;
|
||||
}
|
||||
else
|
||||
{
|
||||
float r0 = 2 * (q0*q1 + q2*q3);
|
||||
float r1 = 1 - 2 * (q1*q1 + q2*q2);
|
||||
if ((r0 == 0) && (r1 == 0)) { o->r = 0.0f; } // atan(0,0)!
|
||||
else { o->r = atan2_approx(r0, r1); }
|
||||
|
||||
float y0 = 2 * (q0*q3 + q1*q2);
|
||||
float y1 = 1 - 2 * (q2*q2 + q3*q3);
|
||||
if ((y0 == 0) && (y1 == 0)) { o->y = 0.0f; } // atan(0,0)!
|
||||
else { o->y = atan2_approx(y0, y1); }
|
||||
}
|
||||
#ifdef NAZE
|
||||
o->y = -o->y; // yaw inversion hack for NAZE32
|
||||
#endif
|
||||
#ifdef SPARKY
|
||||
o->y = -o->y; // yaw inversion hack for SPARKY
|
||||
#endif
|
||||
}
|
||||
|
||||
void angle_vector(const q4_t *a, v3_t *o) // convert from quaternion to angle vector[rad]
|
||||
{
|
||||
q4_t a1;
|
||||
if (a->w < 0) { MulQF(a, -1, &a1); a = &a1; }
|
||||
|
||||
float t2 = acos_approx(MIN(1, a->w)); // TODO acos_approx??
|
||||
|
||||
if (ABS(t2) > (0.005f * RAD))
|
||||
{
|
||||
float s = sin_approx(t2) / (2 * t2);
|
||||
o->x = a->x / s;
|
||||
o->y = a->y / s;
|
||||
o->z = a->z / s;
|
||||
}
|
||||
else
|
||||
{
|
||||
*o = V0;
|
||||
}
|
||||
}
|
||||
|
||||
void nlerp_step(const q4_t *a, const q4_t *b, float max_th, q4_t *o) // max_th in radians (max_rate * update time)
|
||||
{
|
||||
float dot = MAX(-1, MIN(1, DotQQ(a, b)));
|
||||
float th = 2*acos_approx(ABS(dot)); // ABS -> change direction for shortest path
|
||||
|
||||
if (th <= (0.01f*RAD)) { *o = *b; } // tiny step
|
||||
else
|
||||
{
|
||||
float tb = MIN(1, ABS(max_th / th));
|
||||
float ta = 1-tb;
|
||||
if (dot < 0) { tb = -tb; } // change direction for shortest path
|
||||
|
||||
q4_t r, a1, b1;
|
||||
MulQF(a, ta, &a1);
|
||||
MulQF(b, tb, &b1);
|
||||
SumQQ(&a1, &b1, &r);
|
||||
NormQ(&r, o);
|
||||
}
|
||||
}
|
||||
|
||||
q4_t attitude_est_e_q;
|
||||
float acc_rad_scale; // adc -> G
|
||||
float gyro_rads_scale; // adc -> rad/s
|
||||
float cosSmallAngle;
|
||||
float acc_lpf_f0, acc_lpf_f1;
|
||||
v3_t gravity_lpf_b_v, acc_lpf_b_v;
|
||||
|
||||
void qimuInit()
|
||||
{
|
||||
cosSmallAngle = cos_approx(RAD*imuRuntimeConfig->small_angle);
|
||||
|
||||
acc_rad_scale = 1.0f / acc_1G;
|
||||
gyro_rads_scale = gyro.scale * RAD;
|
||||
|
||||
acc_lpf_f1 = (1.0f / imuRuntimeConfig->acc_lpf_factor);
|
||||
acc_lpf_f0 = 1.0f - acc_lpf_f1;
|
||||
gravity_lpf_b_v = VZ;
|
||||
acc_lpf_b_v = VZ;
|
||||
|
||||
quaternion_from_rpy(&RPY0, &attitude_est_e_q);
|
||||
accProc.state = ACCPROC_READ;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
|
||||
static void qAccProcessingStateMachine(rollAndPitchTrims_t *accelerometerTrims, uint8_t acc_for_fast_looptime)
|
||||
{
|
||||
int axis;
|
||||
const float gyro_drift_factor = 0.00f;
|
||||
static v3_t gyro_drift_correction_b_v = { .x = 0.0f, .y = 0.0f, .z = 0.0f }; // rad/s
|
||||
|
||||
const float attitude_correction_factor = 0.001f;
|
||||
static v3_t attitude_correction_b_v = { .x = 0.0f, .y = 0.0f, .z = 0.0f }; // rad/s
|
||||
static v3_t acc_b_v, gyro_rate_b_v;
|
||||
|
||||
static int16_t normalize_counter = 0;
|
||||
static uint32_t previousT = 0;
|
||||
static uint32_t currentT;
|
||||
|
||||
// get time step.. TODO: this should really be fixed to division of MPU sample rate
|
||||
static float dT;
|
||||
|
||||
bool keepProcessing = !acc_for_fast_looptime; // (keepProcessing == true): causes all states to execute (for slow cycle times)
|
||||
|
||||
do {
|
||||
switch (accProc.state) {
|
||||
|
||||
case ACCPROC_READ:
|
||||
currentT = micros();
|
||||
dT = (currentT - previousT)*0.000001f;
|
||||
previousT = currentT;
|
||||
updateAccelerationReadings(accelerometerTrims); // TODO rename to accelerometerUpdate and rename many other 'Acceleration' references to be 'Accelerometer'
|
||||
accProc.state++;
|
||||
break;
|
||||
|
||||
case ACCPROC_CHUNK_1:
|
||||
for (axis = 0; axis < 3; axis++) {
|
||||
accSmooth[axis] = accADC[axis]; // TODO acc_lpf - or would this work better without it?
|
||||
((float *)&acc_b_v)[axis] = accSmooth[axis] * acc_rad_scale;
|
||||
((float *)&gyro_rate_b_v)[axis] = gyroADC[axis] * gyro_rads_scale;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// add in drift compensation
|
||||
SumVV(&gyro_rate_b_v, &gyro_drift_correction_b_v, &gyro_rate_b_v);
|
||||
|
||||
#ifdef DEBUG_IMU
|
||||
debug[0] = gyro_drift_correction_b_v.x * 10000;
|
||||
debug[1] = gyro_drift_correction_b_v.y * 10000;
|
||||
debug[2] = gyro_drift_correction_b_v.z * 10000;
|
||||
#endif
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// add in attitude estimate correction, convert to degrees
|
||||
v3_t gyro_rotation_b_v;
|
||||
SumVV(&gyro_rate_b_v, &attitude_correction_b_v, &gyro_rotation_b_v);
|
||||
MulVF(&gyro_rotation_b_v, dT, &gyro_rotation_b_v);
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Update attitude estimate with gyro data
|
||||
// small angle approximation should be fine, but error does creep in at high rotational rates on multiple axes - Normalize periodically
|
||||
q4_t attitude_est_update_b_q;
|
||||
quaternion(&gyro_rotation_b_v, &attitude_est_update_b_q); // convert angle vector to quaternion
|
||||
MulQQ(&attitude_est_update_b_q, &attitude_est_e_q, &attitude_est_e_q); // and rotate estimate
|
||||
|
||||
v3_t gravity_b_v;
|
||||
// Calculate expected gravity(allows drift to be compensated on all 3 axis when possible)
|
||||
RotateVQ(&VZ, &attitude_est_e_q, &gravity_b_v);
|
||||
|
||||
// check small angle
|
||||
if (gravity_b_v.z > cosSmallAngle) {
|
||||
ENABLE_STATE(SMALL_ANGLE);
|
||||
} else {
|
||||
DISABLE_STATE(SMALL_ANGLE);
|
||||
}
|
||||
|
||||
// acc_lpf
|
||||
if (imuRuntimeConfig->acc_lpf_factor > 0) {
|
||||
v3_t a0, a1;
|
||||
MulVF(&acc_lpf_b_v, acc_lpf_f0, &a0);
|
||||
MulVF(&acc_b_v, acc_lpf_f1, &a1);
|
||||
SumVV(&a0, &a1, &acc_lpf_b_v);
|
||||
|
||||
MulVF(&gravity_lpf_b_v, acc_lpf_f0, &a0);
|
||||
MulVF(&gravity_b_v, acc_lpf_f1, &a1);
|
||||
SumVV(&a0, &a1, &gravity_lpf_b_v);
|
||||
} else {
|
||||
acc_lpf_b_v = acc_b_v;
|
||||
gravity_lpf_b_v = gravity_b_v;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Calculate Correction
|
||||
float acc_m2 = Mag2V(&acc_b_v);
|
||||
#ifdef DEBUG_IMU
|
||||
debug[3] = acc_m2*1000;
|
||||
#endif
|
||||
if ((acc_m2 > 1.1025f) || (acc_m2 < 0.9025f)) {
|
||||
attitude_correction_b_v = V0;
|
||||
} else { // we're not accelerating
|
||||
// Cross product to determine error
|
||||
CrossVV(&acc_lpf_b_v, &gravity_lpf_b_v, &attitude_correction_b_v);
|
||||
MulVF(&attitude_correction_b_v, attitude_correction_factor/dT, &attitude_correction_b_v); // convert to rate for drift correction
|
||||
|
||||
if (gyro_drift_factor != 0.0f) {
|
||||
// conditionally update drift for valid axes (4.5 degree check)
|
||||
if (ABS(gravity_b_v.x) < 0.997f) {
|
||||
gyro_drift_correction_b_v.x = gyro_drift_correction_b_v.x + (attitude_correction_b_v.x*gyro_drift_factor);
|
||||
}
|
||||
if (ABS(gravity_b_v.y) < 0.997f) {
|
||||
gyro_drift_correction_b_v.y = gyro_drift_correction_b_v.y + (attitude_correction_b_v.y*gyro_drift_factor);
|
||||
}
|
||||
if (ABS(gravity_b_v.z) < 0.997f) {
|
||||
gyro_drift_correction_b_v.z = gyro_drift_correction_b_v.z + (attitude_correction_b_v.z*gyro_drift_factor);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// renormalize every couple of seconds
|
||||
if (++normalize_counter == 1000) {
|
||||
NormQ(&attitude_est_e_q, &attitude_est_e_q);
|
||||
normalize_counter = 0;
|
||||
}
|
||||
|
||||
// convert to cleanflight values
|
||||
// update inclination
|
||||
rpy_t rpy;
|
||||
quaternion_to_rpy(&attitude_est_e_q, &rpy);
|
||||
inclination.values.rollDeciDegrees = lrintf(rpy.r * (10 / RAD));
|
||||
inclination.values.pitchDeciDegrees = lrintf(rpy.p * (10 / RAD));
|
||||
heading = rpy.y * (1 / RAD);
|
||||
if (heading < 0) heading += 360;
|
||||
#ifdef DEBUG_IMU
|
||||
//uint32_t endT = micros();
|
||||
//debug[3] = endT - currentT;
|
||||
#endif
|
||||
|
||||
#if 0
|
||||
accProc.state++;
|
||||
break;
|
||||
|
||||
case ACCPROC_CHUNK_2:
|
||||
accProc.state++;
|
||||
break;
|
||||
|
||||
case ACCPROC_CHUNK_3:
|
||||
accProc.state++;
|
||||
break;
|
||||
|
||||
case ACCPROC_CHUNK_4:
|
||||
accProc.state++;
|
||||
break;
|
||||
|
||||
case ACCPROC_CHUNK_5:
|
||||
accProc.state++;
|
||||
break;
|
||||
|
||||
case ACCPROC_CHUNK_6:
|
||||
accProc.state++;
|
||||
break;
|
||||
|
||||
case ACCPROC_CHUNK_7:
|
||||
accProc.state = ACCPROC_COPY;
|
||||
break;
|
||||
|
||||
case ACCPROC_COPY:
|
||||
// assign deliverables (copy local to global)
|
||||
/*
|
||||
memcpy(&EstG, &fsmEstG, sizeof(t_fp_vector));
|
||||
for (axis = 0; axis < 3; axis++) {
|
||||
accSmooth[axis] = fsmAccSmooth[axis];
|
||||
}
|
||||
memcpy(&inclination, &fsmInclination, sizeof(rollAndPitchInclination_t));
|
||||
heading = fsmHeading;
|
||||
*/
|
||||
#endif
|
||||
keepProcessing = false;
|
||||
/* no break */
|
||||
|
||||
default:
|
||||
accProc.state = ACCPROC_READ;
|
||||
break;
|
||||
}
|
||||
} while (keepProcessing);
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue