1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-15 20:35:33 +03:00

Rebased again ...

This commit is contained in:
jflyper 2016-10-26 03:22:12 +09:00
commit 482dbe316b
74 changed files with 2063 additions and 889 deletions

6
.gitignore vendored
View file

@ -24,6 +24,6 @@ README.pdf
/build
# local changes only
make/local.mk
mcu.mak
mcu.mak.old
mcu.mak
mcu.mak.old

View file

@ -21,7 +21,6 @@ env:
# - TARGET=COLIBRI_OPBL
# - TARGET=COLIBRI_RACE
# - TARGET=DOGE
# - TARGET=EUSTM32F103RC
# - TARGET=F4BY
# - TARGET=FURYF3
- TARGET=FURYF4
@ -32,11 +31,9 @@ env:
# - TARGET=MICROSCISKY
# - TARGET=MOTOLAB
- TARGET=NAZE
# - TARGET=OLIMEXINO
# - TARGET=OMNIBUS
# - TARGET=OMNIBUSF4
# - TARGET=PIKOBLX
# - TARGET=PORT103R
# - TARGET=RACEBASE
- TARGET=REVO
# - TARGET=REVONANO

View file

@ -508,6 +508,7 @@ COMMON_SRC = \
flight/imu.c \
flight/mixer.c \
flight/pid.c \
flight/servos.c \
io/beeper.c \
io/serial.c \
io/serial_4way.c \
@ -548,6 +549,7 @@ HIGHEND_SRC = \
common/colorconversion.c \
drivers/display_ug2864hsweg01.c \
drivers/light_ws2811strip.c \
drivers/serial_escserial.c \
drivers/serial_softserial.c \
drivers/sonar_hcsr04.c \
flight/gtune.c \

View file

@ -140,7 +140,7 @@ void firFilterInit(firFilter_t *filter, float *buf, uint8_t bufLength, const flo
firFilterInit2(filter, buf, bufLength, coeffs, bufLength);
}
void filterFirUpdate(firFilter_t *filter, float input)
void firFilterUpdate(firFilter_t *filter, float input)
{
filter->buf[filter->index++] = input; // index is at the first empty buffer positon
if (filter->index >= filter->bufLength) {
@ -207,74 +207,14 @@ float firFilterLastInput(const firFilter_t *filter)
return filter->buf[index];
}
/*
* int16_t based FIR filter
* Can be directly updated from devices that produce 16-bit data, eg gyros and accelerometers
*/
void firFilterInt16Init2(firFilterInt16_t *filter, int16_t *buf, uint8_t bufLength, const float *coeffs, uint8_t coeffsLength)
void firFilterDenoiseInit(firFilterDenoise_t *filter, uint8_t gyroSoftLpfHz, uint16_t targetLooptime)
{
filter->buf = buf;
filter->bufLength = bufLength;
filter->coeffs = coeffs;
filter->coeffsLength = coeffsLength;
memset(filter->buf, 0, sizeof(int16_t) * filter->bufLength);
filter->targetCount = constrain(lrintf((1.0f / (0.000001f * (float)targetLooptime)) / gyroSoftLpfHz), 1, MAX_FIR_DENOISE_WINDOW_SIZE);
}
/*
* FIR filter initialisation
* If FIR filter is just used for averaging, coeffs can be set to NULL
*/
void firFilterInt16Init(firFilterInt16_t *filter, int16_t *buf, uint8_t bufLength, const float *coeffs)
// prototype function for denoising of signal by dynamic moving average. Mainly for test purposes
float firFilterDenoiseUpdate(firFilterDenoise_t *filter, float input)
{
firFilterInt16Init2(filter, buf, bufLength, coeffs, bufLength);
}
void firFilterInt16Update(firFilterInt16_t *filter, int16_t input)
{
memmove(&filter->buf[1], &filter->buf[0], (filter->bufLength-1) * sizeof(input));
filter->buf[0] = input;
}
float firFilterInt16Apply(const firFilterInt16_t *filter)
{
float ret = 0.0f;
for (int ii = 0; ii < filter->coeffsLength; ++ii) {
ret += filter->coeffs[ii] * filter->buf[ii];
}
return ret;
}
float firFilterInt16CalcPartialAverage(const firFilterInt16_t *filter, uint8_t count)
{
float ret = 0;
for (int ii = 0; ii < count; ++ii) {
ret += filter->buf[ii];
}
return ret / count;
}
float firFilterInt16CalcAverage(const firFilterInt16_t *filter)
{
return firFilterInt16CalcPartialAverage(filter, filter->coeffsLength);
}
int16_t firFilterInt16LastInput(const firFilterInt16_t *filter)
{
return filter->buf[0];
}
int16_t firFilterInt16Get(const firFilter_t *filter, int index)
{
return filter->buf[index];
}
void initFirFilter(firFilterState_t *filter, uint8_t gyroSoftLpfHz, uint16_t targetLooptime) {
filter->targetCount = constrain(lrintf((1.0f / (0.000001f * (float)targetLooptime)) / gyroSoftLpfHz), 1, MAX_FIR_WINDOW_SIZE);
}
/* prototype function for denoising of signal by dynamic moving average. Mainly for test purposes */
float firFilterUpdate(firFilterState_t *filter, float input) {
filter->state[filter->index] = input;
filter->movingSum += filter->state[filter->index++];
if (filter->index == filter->targetCount)
@ -287,4 +227,3 @@ float firFilterUpdate(firFilterState_t *filter, float input) {
return filter->movingSum / ++filter->filledCount + 1;
}

View file

@ -16,9 +16,9 @@
*/
#ifdef STM32F10X
#define MAX_FIR_WINDOW_SIZE 60
#define MAX_FIR_DENOISE_WINDOW_SIZE 60
#else
#define MAX_FIR_WINDOW_SIZE 120
#define MAX_FIR_DENOISE_WINDOW_SIZE 120
#endif
typedef struct pt1Filter_s {
@ -33,13 +33,13 @@ typedef struct biquadFilter_s {
float d1, d2;
} biquadFilter_t;
typedef struct firFilterState_s {
typedef struct firFilterDenoise_s{
int filledCount;
int targetCount;
int index;
float movingSum;
float state[MAX_FIR_WINDOW_SIZE];
} firFilterState_t;
float state[MAX_FIR_DENOISE_WINDOW_SIZE];
} firFilterDenoise_t;
typedef enum {
FILTER_PT1 = 0,
@ -62,13 +62,6 @@ typedef struct firFilter_s {
uint8_t coeffsLength;
} firFilter_t;
typedef struct firFilterInt16_s {
int16_t *buf;
const float *coeffs;
uint8_t bufLength;
uint8_t coeffsLength;
} firFilterInt16_t;
void biquadFilterInitLPF(biquadFilter_t *filter, float filterFreq, uint32_t refreshRate);
void biquadFilterInit(biquadFilter_t *filter, float filterFreq, uint32_t refreshRate, float Q, biquadFilterType_e filterType);
@ -81,21 +74,13 @@ float pt1FilterApply4(pt1Filter_t *filter, float input, uint8_t f_cut, float dT)
void firFilterInit(firFilter_t *filter, float *buf, uint8_t bufLength, const float *coeffs);
void firFilterInit2(firFilter_t *filter, float *buf, uint8_t bufLength, const float *coeffs, uint8_t coeffsLength);
void filterFirUpdate(firFilter_t *filter, float input);
void firFilterUpdate(firFilter_t *filter, float input);
void firFilterUpdateAverage(firFilter_t *filter, float input);
float firFilterApply(const firFilter_t *filter);
float firFilterCalcPartialAverage(const firFilter_t *filter, uint8_t count);
float firFilterCalcMovingAverage(const firFilter_t *filter);
float firFilterLastInput(const firFilter_t *filter);
void firFilterInt16Init(firFilterInt16_t *filter, int16_t *buf, uint8_t bufLength, const float *coeffs);
void firFilterInt16Init2(firFilterInt16_t *filter, int16_t *buf, uint8_t bufLength, const float *coeffs, uint8_t coeffsLength);
void firFilterInt16Update(firFilterInt16_t *filter, int16_t input);
float firFilterInt16Apply(const firFilterInt16_t *filter);
float firFilterInt16CalcPartialAverage(const firFilterInt16_t *filter, uint8_t count);
float firFilterInt16CalcAverage(const firFilterInt16_t *filter);
int16_t firFilterInt16LastInput(const firFilterInt16_t *filter);
int16_t firFilterInt16Get(const firFilter_t *filter, int index);
void initFirFilter(firFilterState_t *filter, uint8_t gyroSoftLpfHz, uint16_t targetLooptime);
float firFilterUpdate(firFilterState_t *filter, float input);
void firFilterDenoiseInit(firFilterDenoise_t *filter, uint8_t gyroSoftLpfHz, uint16_t targetLooptime);
float firFilterDenoiseUpdate(firFilterDenoise_t *filter, float input);

View file

@ -17,7 +17,7 @@
#pragma once
#define EEPROM_CONF_VERSION 143
#define EEPROM_CONF_VERSION 144
void initEEPROM(void);
void writeEEPROM();

View file

@ -29,6 +29,7 @@
#include "flight/failsafe.h"
#include "flight/mixer.h"
#include "flight/servos.h"
#include "flight/imu.h"
#include "flight/navigation.h"
@ -66,10 +67,11 @@ typedef struct master_s {
// motor/esc/servo related stuff
motorMixer_t customMotorMixer[MAX_SUPPORTED_MOTORS];
motorConfig_t motorConfig;
servoConfig_t servoConfig;
flight3DConfig_t flight3DConfig;
#ifdef USE_SERVOS
servoConfig_t servoConfig;
servoMixerConfig_t servoMixerConfig;
servoMixer_t customServoMixer[MAX_SERVO_RULES];
// Servo-related stuff
servoParam_t servoConf[MAX_SUPPORTED_SERVOS]; // servo configuration

View file

@ -99,4 +99,5 @@ uint32_t dmaFlag_IT_TCIF(const DMA_Stream_TypeDef *stream)
RETURN_TCIF_FLAG(stream, 5);
RETURN_TCIF_FLAG(stream, 6);
RETURN_TCIF_FLAG(stream, 7);
return 0;
}

View file

@ -189,6 +189,7 @@ void motorInit(const motorConfig_t *motorConfig, uint16_t idlePulse, uint8_t mot
break;
#ifdef USE_DSHOT
case PWM_TYPE_DSHOT600:
case PWM_TYPE_DSHOT300:
case PWM_TYPE_DSHOT150:
pwmCompleteWritePtr = pwmCompleteDigitalMotorUpdate;
isDigital = true;
@ -230,7 +231,7 @@ void motorInit(const motorConfig_t *motorConfig, uint16_t idlePulse, uint8_t mot
motors[motorIndex].pwmWritePtr = pwmWritePtr;
if (useUnsyncedPwm) {
const uint32_t hz = timerMhzCounter * 1000000;
pwmOutConfig(&motors[motorIndex], timerHardware, timerMhzCounter, hz / motorConfig->motorPwmProtocol, idlePulse);
pwmOutConfig(&motors[motorIndex], timerHardware, timerMhzCounter, hz / motorConfig->motorPwmRate, idlePulse);
} else {
pwmOutConfig(&motors[motorIndex], timerHardware, timerMhzCounter, 0xFFFF, 0);
}

View file

@ -28,6 +28,7 @@ typedef enum {
PWM_TYPE_MULTISHOT,
PWM_TYPE_BRUSHED,
PWM_TYPE_DSHOT600,
PWM_TYPE_DSHOT300,
PWM_TYPE_DSHOT150,
PWM_TYPE_MAX
} motorPwmProtocolTypes_e;

View file

@ -33,6 +33,7 @@
#define MAX_DMA_TIMERS 8
#define MOTOR_DSHOT600_MHZ 24
#define MOTOR_DSHOT300_MHZ 12
#define MOTOR_DSHOT150_MHZ 6
#define MOTOR_BIT_0 14
@ -121,8 +122,20 @@ void pwmDigitalMotorHardwareConfig(const timerHardware_t *timerHardware, uint8_t
RCC_ClockCmd(timerRCC(timer), ENABLE);
TIM_Cmd(timer, DISABLE);
uint32_t hz = (pwmProtocolType == PWM_TYPE_DSHOT600 ? MOTOR_DSHOT600_MHZ : MOTOR_DSHOT150_MHZ) * 1000000;
uint32_t hz;
switch (pwmProtocolType) {
case(PWM_TYPE_DSHOT600):
hz = MOTOR_DSHOT600_MHZ * 1000000;
break;
case(PWM_TYPE_DSHOT300):
hz = MOTOR_DSHOT300_MHZ * 1000000;
break;
default:
case(PWM_TYPE_DSHOT150):
hz = MOTOR_DSHOT150_MHZ * 1000000;
}
TIM_TimeBaseStructure.TIM_Prescaler = (uint16_t)((SystemCoreClock / timerClockDivisor(timer) / hz) - 1);
TIM_TimeBaseStructure.TIM_Period = MOTOR_BITLENGTH;
TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;

View file

@ -34,6 +34,7 @@
#define MAX_DMA_TIMERS 8
#define MOTOR_DSHOT600_MHZ 12
#define MOTOR_DSHOT300_MHZ 6
#define MOTOR_DSHOT150_MHZ 3
#define MOTOR_BIT_0 7
@ -123,7 +124,19 @@ void pwmDigitalMotorHardwareConfig(const timerHardware_t *timerHardware, uint8_t
RCC_ClockCmd(timerRCC(timer), ENABLE);
TIM_Cmd(timer, DISABLE);
uint32_t hz = (pwmProtocolType == PWM_TYPE_DSHOT600 ? MOTOR_DSHOT600_MHZ : MOTOR_DSHOT150_MHZ) * 1000000;
uint32_t hz;
switch (pwmProtocolType) {
case(PWM_TYPE_DSHOT600):
hz = MOTOR_DSHOT600_MHZ * 1000000;
break;
case(PWM_TYPE_DSHOT300):
hz = MOTOR_DSHOT300_MHZ * 1000000;
break;
default:
case(PWM_TYPE_DSHOT150):
hz = MOTOR_DSHOT150_MHZ * 1000000;
}
TIM_TimeBaseStructure.TIM_Prescaler = (SystemCoreClock / timerClockDivisor(timer) / hz) - 1;
TIM_TimeBaseStructure.TIM_Period = MOTOR_BITLENGTH;
TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;

View file

@ -33,6 +33,7 @@
#define MAX_DMA_TIMERS 8
#define MOTOR_DSHOT600_MHZ 12
#define MOTOR_DSHOT300_MHZ 6
#define MOTOR_DSHOT150_MHZ 3
#define MOTOR_BIT_0 7
@ -128,7 +129,19 @@ void pwmDigitalMotorHardwareConfig(const timerHardware_t *timerHardware, uint8_t
if (configureTimer) {
RCC_ClockCmd(timerRCC(timer), ENABLE);
uint32_t hz = (pwmProtocolType == PWM_TYPE_DSHOT600 ? MOTOR_DSHOT600_MHZ : MOTOR_DSHOT150_MHZ) * 1000000;
uint32_t hz;
switch (pwmProtocolType) {
case(PWM_TYPE_DSHOT600):
hz = MOTOR_DSHOT600_MHZ * 1000000;
break;
case(PWM_TYPE_DSHOT300):
hz = MOTOR_DSHOT300_MHZ * 1000000;
break;
default:
case(PWM_TYPE_DSHOT150):
hz = MOTOR_DSHOT150_MHZ * 1000000;
}
motor->TimHandle.Instance = timerHardware->tim;
motor->TimHandle.Init.Prescaler = (SystemCoreClock / timerClockDivisor(timer) / hz) - 1;;
motor->TimHandle.Init.Period = MOTOR_BITLENGTH;

View file

@ -0,0 +1,913 @@
/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include "platform.h"
typedef enum {
BAUDRATE_NORMAL = 19200,
BAUDRATE_KISS = 38400
} escBaudRate_e;
#if defined(USE_ESCSERIAL)
#include "build/build_config.h"
#include "build/atomic.h"
#include "common/utils.h"
#include "nvic.h"
#include "system.h"
#include "io.h"
#include "timer.h"
#include "serial.h"
#include "serial_escserial.h"
#include "drivers/light_led.h"
#include "drivers/pwm_output.h"
#include "io/serial.h"
#include "flight/mixer.h"
#define RX_TOTAL_BITS 10
#define TX_TOTAL_BITS 10
#define MAX_ESCSERIAL_PORTS 1
static serialPort_t *escPort = NULL;
static serialPort_t *passPort = NULL;
typedef struct escSerial_s {
serialPort_t port;
IO_t rxIO;
IO_t txIO;
const timerHardware_t *rxTimerHardware;
volatile uint8_t rxBuffer[ESCSERIAL_BUFFER_SIZE];
const timerHardware_t *txTimerHardware;
volatile uint8_t txBuffer[ESCSERIAL_BUFFER_SIZE];
uint8_t isSearchingForStartBit;
uint8_t rxBitIndex;
uint8_t rxLastLeadingEdgeAtBitIndex;
uint8_t rxEdge;
uint8_t isTransmittingData;
uint8_t isReceivingData;
int8_t bitsLeftToTransmit;
uint16_t internalTxBuffer; // includes start and stop bits
uint16_t internalRxBuffer; // includes start and stop bits
uint16_t receiveTimeout;
uint16_t transmissionErrors;
uint16_t receiveErrors;
uint8_t escSerialPortIndex;
uint8_t mode;
timerCCHandlerRec_t timerCb;
timerCCHandlerRec_t edgeCb;
} escSerial_t;
extern timerHardware_t* serialTimerHardware;
extern escSerial_t escSerialPorts[];
extern const struct serialPortVTable escSerialVTable[];
escSerial_t escSerialPorts[MAX_ESCSERIAL_PORTS];
void onSerialTimerEsc(timerCCHandlerRec_t *cbRec, captureCompare_t capture);
void onSerialRxPinChangeEsc(timerCCHandlerRec_t *cbRec, captureCompare_t capture);
void onSerialTimerBL(timerCCHandlerRec_t *cbRec, captureCompare_t capture);
void onSerialRxPinChangeBL(timerCCHandlerRec_t *cbRec, captureCompare_t capture);
static void serialICConfig(TIM_TypeDef *tim, uint8_t channel, uint16_t polarity);
void setTxSignalEsc(escSerial_t *escSerial, uint8_t state)
{
if (state) {
IOHi(escSerial->txIO);
} else {
IOLo(escSerial->txIO);
}
}
static void escSerialGPIOConfig(ioTag_t tag, ioConfig_t cfg)
{
if (!tag) {
return;
}
IOInit(IOGetByTag(tag), OWNER_MOTOR, RESOURCE_OUTPUT, 0);
IOConfigGPIO(IOGetByTag(tag), cfg);
}
void serialInputPortConfigEsc(const timerHardware_t *timerHardwarePtr)
{
#ifdef STM32F10X
escSerialGPIOConfig(timerHardwarePtr->tag, IOCFG_IPU);
#else
escSerialGPIOConfig(timerHardwarePtr->tag, IOCFG_AF_PP_UP);
#endif
timerChClearCCFlag(timerHardwarePtr);
timerChITConfig(timerHardwarePtr,ENABLE);
}
static bool isTimerPeriodTooLarge(uint32_t timerPeriod)
{
return timerPeriod > 0xFFFF;
}
static void serialTimerTxConfigBL(const timerHardware_t *timerHardwarePtr, uint8_t reference, uint32_t baud)
{
uint32_t clock = SystemCoreClock/2;
uint32_t timerPeriod;
TIM_DeInit(timerHardwarePtr->tim);
do {
timerPeriod = clock / baud;
if (isTimerPeriodTooLarge(timerPeriod)) {
if (clock > 1) {
clock = clock / 2; // this is wrong - mhz stays the same ... This will double baudrate until ok (but minimum baudrate is < 1200)
} else {
// TODO unable to continue, unable to determine clock and timerPeriods for the given baud
}
}
} while (isTimerPeriodTooLarge(timerPeriod));
uint8_t mhz = clock / 1000000;
timerConfigure(timerHardwarePtr, timerPeriod, mhz);
timerChCCHandlerInit(&escSerialPorts[reference].timerCb, onSerialTimerBL);
timerChConfigCallbacks(timerHardwarePtr, &escSerialPorts[reference].timerCb, NULL);
}
static void serialTimerRxConfigBL(const timerHardware_t *timerHardwarePtr, uint8_t reference, portOptions_t options)
{
// start bit is usually a FALLING signal
uint8_t mhz = SystemCoreClock / 2000000;
TIM_DeInit(timerHardwarePtr->tim);
timerConfigure(timerHardwarePtr, 0xFFFF, mhz);
serialICConfig(timerHardwarePtr->tim, timerHardwarePtr->channel, (options & SERIAL_INVERTED) ? TIM_ICPolarity_Rising : TIM_ICPolarity_Falling);
timerChCCHandlerInit(&escSerialPorts[reference].edgeCb, onSerialRxPinChangeBL);
timerChConfigCallbacks(timerHardwarePtr, &escSerialPorts[reference].edgeCb, NULL);
}
static void serialTimerTxConfig(const timerHardware_t *timerHardwarePtr, uint8_t reference)
{
uint32_t timerPeriod=34;
TIM_DeInit(timerHardwarePtr->tim);
timerConfigure(timerHardwarePtr, timerPeriod, 1);
timerChCCHandlerInit(&escSerialPorts[reference].timerCb, onSerialTimerEsc);
timerChConfigCallbacks(timerHardwarePtr, &escSerialPorts[reference].timerCb, NULL);
}
static void serialICConfig(TIM_TypeDef *tim, uint8_t channel, uint16_t polarity)
{
TIM_ICInitTypeDef TIM_ICInitStructure;
TIM_ICStructInit(&TIM_ICInitStructure);
TIM_ICInitStructure.TIM_Channel = channel;
TIM_ICInitStructure.TIM_ICPolarity = polarity;
TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI;
TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;
TIM_ICInitStructure.TIM_ICFilter = 0x0;
TIM_ICInit(tim, &TIM_ICInitStructure);
}
static void serialTimerRxConfig(const timerHardware_t *timerHardwarePtr, uint8_t reference)
{
// start bit is usually a FALLING signal
TIM_DeInit(timerHardwarePtr->tim);
timerConfigure(timerHardwarePtr, 0xFFFF, 1);
serialICConfig(timerHardwarePtr->tim, timerHardwarePtr->channel, TIM_ICPolarity_Falling);
timerChCCHandlerInit(&escSerialPorts[reference].edgeCb, onSerialRxPinChangeEsc);
timerChConfigCallbacks(timerHardwarePtr, &escSerialPorts[reference].edgeCb, NULL);
}
static void serialOutputPortConfig(const timerHardware_t *timerHardwarePtr)
{
escSerialGPIOConfig(timerHardwarePtr->tag, IOCFG_OUT_PP);
timerChITConfig(timerHardwarePtr,DISABLE);
}
static void resetBuffers(escSerial_t *escSerial)
{
escSerial->port.rxBufferSize = ESCSERIAL_BUFFER_SIZE;
escSerial->port.rxBuffer = escSerial->rxBuffer;
escSerial->port.rxBufferTail = 0;
escSerial->port.rxBufferHead = 0;
escSerial->port.txBuffer = escSerial->txBuffer;
escSerial->port.txBufferSize = ESCSERIAL_BUFFER_SIZE;
escSerial->port.txBufferTail = 0;
escSerial->port.txBufferHead = 0;
}
serialPort_t *openEscSerial(escSerialPortIndex_e portIndex, serialReceiveCallbackPtr callback, uint16_t output, uint32_t baud, portOptions_t options, uint8_t mode)
{
escSerial_t *escSerial = &(escSerialPorts[portIndex]);
escSerial->rxTimerHardware = &(timerHardware[output]);
escSerial->txTimerHardware = &(timerHardware[ESCSERIAL_TIMER_TX_HARDWARE]);
escSerial->port.vTable = escSerialVTable;
escSerial->port.baudRate = baud;
escSerial->port.mode = MODE_RXTX;
escSerial->port.options = options;
escSerial->port.rxCallback = callback;
resetBuffers(escSerial);
escSerial->isTransmittingData = false;
escSerial->isSearchingForStartBit = true;
escSerial->rxBitIndex = 0;
escSerial->transmissionErrors = 0;
escSerial->receiveErrors = 0;
escSerial->receiveTimeout = 0;
escSerial->escSerialPortIndex = portIndex;
escSerial->txIO = IOGetByTag(escSerial->rxTimerHardware->tag);
serialInputPortConfigEsc(escSerial->rxTimerHardware);
setTxSignalEsc(escSerial, ENABLE);
delay(50);
if(mode==0){
serialTimerTxConfig(escSerial->txTimerHardware, portIndex);
serialTimerRxConfig(escSerial->rxTimerHardware, portIndex);
}
else if(mode==1){
serialTimerTxConfigBL(escSerial->txTimerHardware, portIndex, baud);
serialTimerRxConfigBL(escSerial->rxTimerHardware, portIndex, options);
}
else if(mode==2) {
serialOutputPortConfig(escSerial->rxTimerHardware); // rx is the pin used
serialTimerTxConfigBL(escSerial->txTimerHardware, portIndex, baud);
}
escSerial->mode = mode;
return &escSerial->port;
}
void serialInputPortDeConfig(const timerHardware_t *timerHardwarePtr)
{
timerChClearCCFlag(timerHardwarePtr);
timerChITConfig(timerHardwarePtr,DISABLE);
escSerialGPIOConfig(timerHardwarePtr->tag, IOCFG_IPU);
}
void closeEscSerial(escSerialPortIndex_e portIndex, uint16_t output)
{
escSerial_t *escSerial = &(escSerialPorts[portIndex]);
escSerial->rxTimerHardware = &(timerHardware[output]);
escSerial->txTimerHardware = &(timerHardware[ESCSERIAL_TIMER_TX_HARDWARE]);
serialInputPortDeConfig(escSerial->rxTimerHardware);
timerChConfigCallbacks(escSerial->txTimerHardware,NULL,NULL);
timerChConfigCallbacks(escSerial->rxTimerHardware,NULL,NULL);
TIM_DeInit(escSerial->txTimerHardware->tim);
TIM_DeInit(escSerial->rxTimerHardware->tim);
}
/*********************************************/
void processTxStateEsc(escSerial_t *escSerial)
{
uint8_t mask;
static uint8_t bitq=0, transmitStart=0;
if (escSerial->isReceivingData) {
return;
}
if(transmitStart==0)
{
setTxSignalEsc(escSerial, 1);
}
if (!escSerial->isTransmittingData) {
char byteToSend;
reload:
if (isEscSerialTransmitBufferEmpty((serialPort_t *)escSerial)) {
// canreceive
transmitStart=0;
return;
}
if(transmitStart<3)
{
if(transmitStart==0)
byteToSend = 0xff;
if(transmitStart==1)
byteToSend = 0xff;
if(transmitStart==2)
byteToSend = 0x7f;
transmitStart++;
}
else{
// data to send
byteToSend = escSerial->port.txBuffer[escSerial->port.txBufferTail++];
if (escSerial->port.txBufferTail >= escSerial->port.txBufferSize) {
escSerial->port.txBufferTail = 0;
}
}
// build internal buffer, data bits (MSB to LSB)
escSerial->internalTxBuffer = byteToSend;
escSerial->bitsLeftToTransmit = 8;
escSerial->isTransmittingData = true;
//set output
serialOutputPortConfig(escSerial->rxTimerHardware);
return;
}
if (escSerial->bitsLeftToTransmit) {
mask = escSerial->internalTxBuffer & 1;
if(mask)
{
if(bitq==0 || bitq==1)
{
setTxSignalEsc(escSerial, 1);
}
if(bitq==2 || bitq==3)
{
setTxSignalEsc(escSerial, 0);
}
}
else
{
if(bitq==0 || bitq==2)
{
setTxSignalEsc(escSerial, 1);
}
if(bitq==1 ||bitq==3)
{
setTxSignalEsc(escSerial, 0);
}
}
bitq++;
if(bitq>3)
{
escSerial->internalTxBuffer >>= 1;
escSerial->bitsLeftToTransmit--;
bitq=0;
if(escSerial->bitsLeftToTransmit==0)
{
goto reload;
}
}
return;
}
if (isEscSerialTransmitBufferEmpty((serialPort_t *)escSerial)) {
escSerial->isTransmittingData = false;
serialInputPortConfigEsc(escSerial->rxTimerHardware);
}
}
/*-----------------------BL*/
/*********************************************/
void processTxStateBL(escSerial_t *escSerial)
{
uint8_t mask;
if (escSerial->isReceivingData) {
return;
}
if (!escSerial->isTransmittingData) {
char byteToSend;
if (isEscSerialTransmitBufferEmpty((serialPort_t *)escSerial)) {
// canreceive
return;
}
// data to send
byteToSend = escSerial->port.txBuffer[escSerial->port.txBufferTail++];
if (escSerial->port.txBufferTail >= escSerial->port.txBufferSize) {
escSerial->port.txBufferTail = 0;
}
// build internal buffer, MSB = Stop Bit (1) + data bits (MSB to LSB) + start bit(0) LSB
escSerial->internalTxBuffer = (1 << (TX_TOTAL_BITS - 1)) | (byteToSend << 1);
escSerial->bitsLeftToTransmit = TX_TOTAL_BITS;
escSerial->isTransmittingData = true;
//set output
serialOutputPortConfig(escSerial->rxTimerHardware);
return;
}
if (escSerial->bitsLeftToTransmit) {
mask = escSerial->internalTxBuffer & 1;
escSerial->internalTxBuffer >>= 1;
setTxSignalEsc(escSerial, mask);
escSerial->bitsLeftToTransmit--;
return;
}
escSerial->isTransmittingData = false;
if (isEscSerialTransmitBufferEmpty((serialPort_t *)escSerial)) {
if(escSerial->mode==1)
{
serialInputPortConfigEsc(escSerial->rxTimerHardware);
}
}
}
enum {
TRAILING,
LEADING
};
void applyChangedBitsBL(escSerial_t *escSerial)
{
if (escSerial->rxEdge == TRAILING) {
uint8_t bitToSet;
for (bitToSet = escSerial->rxLastLeadingEdgeAtBitIndex; bitToSet < escSerial->rxBitIndex; bitToSet++) {
escSerial->internalRxBuffer |= 1 << bitToSet;
}
}
}
void prepareForNextRxByteBL(escSerial_t *escSerial)
{
// prepare for next byte
escSerial->rxBitIndex = 0;
escSerial->isSearchingForStartBit = true;
if (escSerial->rxEdge == LEADING) {
escSerial->rxEdge = TRAILING;
serialICConfig(
escSerial->rxTimerHardware->tim,
escSerial->rxTimerHardware->channel,
(escSerial->port.options & SERIAL_INVERTED) ? TIM_ICPolarity_Rising : TIM_ICPolarity_Falling
);
}
}
#define STOP_BIT_MASK (1 << 0)
#define START_BIT_MASK (1 << (RX_TOTAL_BITS - 1))
void extractAndStoreRxByteBL(escSerial_t *escSerial)
{
if ((escSerial->port.mode & MODE_RX) == 0) {
return;
}
uint8_t haveStartBit = (escSerial->internalRxBuffer & START_BIT_MASK) == 0;
uint8_t haveStopBit = (escSerial->internalRxBuffer & STOP_BIT_MASK) == 1;
if (!haveStartBit || !haveStopBit) {
escSerial->receiveErrors++;
return;
}
uint8_t rxByte = (escSerial->internalRxBuffer >> 1) & 0xFF;
if (escSerial->port.rxCallback) {
escSerial->port.rxCallback(rxByte);
} else {
escSerial->port.rxBuffer[escSerial->port.rxBufferHead] = rxByte;
escSerial->port.rxBufferHead = (escSerial->port.rxBufferHead + 1) % escSerial->port.rxBufferSize;
}
}
void processRxStateBL(escSerial_t *escSerial)
{
if (escSerial->isSearchingForStartBit) {
return;
}
escSerial->rxBitIndex++;
if (escSerial->rxBitIndex == RX_TOTAL_BITS - 1) {
applyChangedBitsBL(escSerial);
return;
}
if (escSerial->rxBitIndex == RX_TOTAL_BITS) {
if (escSerial->rxEdge == TRAILING) {
escSerial->internalRxBuffer |= STOP_BIT_MASK;
}
extractAndStoreRxByteBL(escSerial);
prepareForNextRxByteBL(escSerial);
}
}
void onSerialTimerBL(timerCCHandlerRec_t *cbRec, captureCompare_t capture)
{
UNUSED(capture);
escSerial_t *escSerial = container_of(cbRec, escSerial_t, timerCb);
processTxStateBL(escSerial);
processRxStateBL(escSerial);
}
void onSerialRxPinChangeBL(timerCCHandlerRec_t *cbRec, captureCompare_t capture)
{
UNUSED(capture);
escSerial_t *escSerial = container_of(cbRec, escSerial_t, edgeCb);
bool inverted = escSerial->port.options & SERIAL_INVERTED;
if ((escSerial->port.mode & MODE_RX) == 0) {
return;
}
if (escSerial->isSearchingForStartBit) {
// synchronise bit counter
// FIXME this reduces functionality somewhat as receiving breaks concurrent transmission on all ports because
// the next callback to the onSerialTimer will happen too early causing transmission errors.
TIM_SetCounter(escSerial->txTimerHardware->tim, escSerial->txTimerHardware->tim->ARR / 2);
if (escSerial->isTransmittingData) {
escSerial->transmissionErrors++;
}
serialICConfig(escSerial->rxTimerHardware->tim, escSerial->rxTimerHardware->channel, inverted ? TIM_ICPolarity_Falling : TIM_ICPolarity_Rising);
escSerial->rxEdge = LEADING;
escSerial->rxBitIndex = 0;
escSerial->rxLastLeadingEdgeAtBitIndex = 0;
escSerial->internalRxBuffer = 0;
escSerial->isSearchingForStartBit = false;
return;
}
if (escSerial->rxEdge == LEADING) {
escSerial->rxLastLeadingEdgeAtBitIndex = escSerial->rxBitIndex;
}
applyChangedBitsBL(escSerial);
if (escSerial->rxEdge == TRAILING) {
escSerial->rxEdge = LEADING;
serialICConfig(escSerial->rxTimerHardware->tim, escSerial->rxTimerHardware->channel, inverted ? TIM_ICPolarity_Falling : TIM_ICPolarity_Rising);
} else {
escSerial->rxEdge = TRAILING;
serialICConfig(escSerial->rxTimerHardware->tim, escSerial->rxTimerHardware->channel, inverted ? TIM_ICPolarity_Rising : TIM_ICPolarity_Falling);
}
}
/*-------------------------BL*/
void extractAndStoreRxByteEsc(escSerial_t *escSerial)
{
if ((escSerial->port.mode & MODE_RX) == 0) {
return;
}
uint8_t rxByte = (escSerial->internalRxBuffer) & 0xFF;
if (escSerial->port.rxCallback) {
escSerial->port.rxCallback(rxByte);
} else {
escSerial->port.rxBuffer[escSerial->port.rxBufferHead] = rxByte;
escSerial->port.rxBufferHead = (escSerial->port.rxBufferHead + 1) % escSerial->port.rxBufferSize;
}
}
void onSerialTimerEsc(timerCCHandlerRec_t *cbRec, captureCompare_t capture)
{
UNUSED(capture);
escSerial_t *escSerial = container_of(cbRec, escSerial_t, timerCb);
if(escSerial->isReceivingData)
{
escSerial->receiveTimeout++;
if(escSerial->receiveTimeout>8)
{
escSerial->isReceivingData=0;
escSerial->receiveTimeout=0;
serialICConfig(escSerial->rxTimerHardware->tim, escSerial->rxTimerHardware->channel, TIM_ICPolarity_Falling);
}
}
processTxStateEsc(escSerial);
}
void onSerialRxPinChangeEsc(timerCCHandlerRec_t *cbRec, captureCompare_t capture)
{
UNUSED(capture);
static uint8_t zerofirst=0;
static uint8_t bits=0;
static uint16_t bytes=0;
escSerial_t *escSerial = container_of(cbRec, escSerial_t, edgeCb);
//clear timer
TIM_SetCounter(escSerial->rxTimerHardware->tim,0);
if(capture > 40 && capture < 90)
{
zerofirst++;
if(zerofirst>1)
{
zerofirst=0;
escSerial->internalRxBuffer = escSerial->internalRxBuffer>>1;
bits++;
}
}
else if(capture>90 && capture < 200)
{
zerofirst=0;
escSerial->internalRxBuffer = escSerial->internalRxBuffer>>1;
escSerial->internalRxBuffer |= 0x80;
bits++;
}
else
{
if(!escSerial->isReceivingData)
{
//start
//lets reset
escSerial->isReceivingData = 1;
zerofirst=0;
bytes=0;
bits=1;
escSerial->internalRxBuffer = 0x80;
serialICConfig(escSerial->rxTimerHardware->tim, escSerial->rxTimerHardware->channel, TIM_ICPolarity_Rising);
}
}
escSerial->receiveTimeout = 0;
if(bits==8)
{
bits=0;
bytes++;
if(bytes>3)
{
extractAndStoreRxByteEsc(escSerial);
}
escSerial->internalRxBuffer=0;
}
}
uint32_t escSerialTotalBytesWaiting(const serialPort_t *instance)
{
if ((instance->mode & MODE_RX) == 0) {
return 0;
}
escSerial_t *s = (escSerial_t *)instance;
return (s->port.rxBufferHead - s->port.rxBufferTail) & (s->port.rxBufferSize - 1);
}
uint8_t escSerialReadByte(serialPort_t *instance)
{
uint8_t ch;
if ((instance->mode & MODE_RX) == 0) {
return 0;
}
if (escSerialTotalBytesWaiting(instance) == 0) {
return 0;
}
ch = instance->rxBuffer[instance->rxBufferTail];
instance->rxBufferTail = (instance->rxBufferTail + 1) % instance->rxBufferSize;
return ch;
}
void escSerialWriteByte(serialPort_t *s, uint8_t ch)
{
if ((s->mode & MODE_TX) == 0) {
return;
}
s->txBuffer[s->txBufferHead] = ch;
s->txBufferHead = (s->txBufferHead + 1) % s->txBufferSize;
}
void escSerialSetBaudRate(serialPort_t *s, uint32_t baudRate)
{
UNUSED(s);
UNUSED(baudRate);
}
void escSerialSetMode(serialPort_t *instance, portMode_t mode)
{
instance->mode = mode;
}
bool isEscSerialTransmitBufferEmpty(const serialPort_t *instance)
{
// start listening
return instance->txBufferHead == instance->txBufferTail;
}
uint32_t escSerialTxBytesFree(const serialPort_t *instance)
{
if ((instance->mode & MODE_TX) == 0) {
return 0;
}
escSerial_t *s = (escSerial_t *)instance;
uint8_t bytesUsed = (s->port.txBufferHead - s->port.txBufferTail) & (s->port.txBufferSize - 1);
return (s->port.txBufferSize - 1) - bytesUsed;
}
const struct serialPortVTable escSerialVTable[] = {
{
.serialWrite = escSerialWriteByte,
.serialTotalRxWaiting = escSerialTotalBytesWaiting,
.serialTotalTxFree = escSerialTxBytesFree,
.serialRead = escSerialReadByte,
.serialSetBaudRate = escSerialSetBaudRate,
.isSerialTransmitBufferEmpty = isEscSerialTransmitBufferEmpty,
.setMode = escSerialSetMode,
.writeBuf = NULL,
.beginWrite = NULL,
.endWrite = NULL
}
};
void escSerialInitialize()
{
//StopPwmAllMotors();
pwmDisableMotors();
for (volatile uint8_t i = 0; i < USABLE_TIMER_CHANNEL_COUNT; i++) {
// set outputs to pullup
if(timerHardware[i].output==1)
{
escSerialGPIOConfig(timerHardware[i].tag, IOCFG_IPU); //GPIO_Mode_IPU
}
}
}
typedef enum {
IDLE,
HEADER_START,
HEADER_M,
HEADER_ARROW,
HEADER_SIZE,
HEADER_CMD,
COMMAND_RECEIVED
} mspState_e;
typedef struct mspPort_s {
uint8_t offset;
uint8_t dataSize;
uint8_t checksum;
uint8_t indRX;
uint8_t inBuf[10];
mspState_e c_state;
uint8_t cmdMSP;
} mspPort_t;
static mspPort_t currentPort;
static bool ProcessExitCommand(uint8_t c)
{
if (currentPort.c_state == IDLE) {
if (c == '$') {
currentPort.c_state = HEADER_START;
} else {
return false;
}
} else if (currentPort.c_state == HEADER_START) {
currentPort.c_state = (c == 'M') ? HEADER_M : IDLE;
} else if (currentPort.c_state == HEADER_M) {
currentPort.c_state = (c == '<') ? HEADER_ARROW : IDLE;
} else if (currentPort.c_state == HEADER_ARROW) {
if (c > 10) {
currentPort.c_state = IDLE;
} else {
currentPort.dataSize = c;
currentPort.offset = 0;
currentPort.checksum = 0;
currentPort.indRX = 0;
currentPort.checksum ^= c;
currentPort.c_state = HEADER_SIZE;
}
} else if (currentPort.c_state == HEADER_SIZE) {
currentPort.cmdMSP = c;
currentPort.checksum ^= c;
currentPort.c_state = HEADER_CMD;
} else if (currentPort.c_state == HEADER_CMD && currentPort.offset < currentPort.dataSize) {
currentPort.checksum ^= c;
currentPort.inBuf[currentPort.offset++] = c;
} else if (currentPort.c_state == HEADER_CMD && currentPort.offset >= currentPort.dataSize) {
if (currentPort.checksum == c) {
currentPort.c_state = COMMAND_RECEIVED;
if((currentPort.cmdMSP == 0xF4) && (currentPort.dataSize==0))
{
currentPort.c_state = IDLE;
return true;
}
} else {
currentPort.c_state = IDLE;
}
}
return false;
}
// mode 0=sk, 1=bl, 2=ki output=timerHardware PWM channel.
void escEnablePassthrough(serialPort_t *escPassthroughPort, uint16_t output, uint8_t mode)
{
bool exitEsc = false;
LED0_OFF;
LED1_OFF;
//StopPwmAllMotors();
pwmDisableMotors();
passPort = escPassthroughPort;
uint8_t first_output = 0;
for (volatile uint8_t i = 0; i < USABLE_TIMER_CHANNEL_COUNT; i++) {
if(timerHardware[i].output==1)
{
first_output=i;
break;
}
}
//doesn't work with messy timertable
uint8_t motor_output=first_output+output-1;
if(motor_output >=USABLE_TIMER_CHANNEL_COUNT)
return;
uint32_t escBaudrate = (mode == 2) ? BAUDRATE_KISS : BAUDRATE_NORMAL;
escPort = openEscSerial(ESCSERIAL1, NULL, motor_output, escBaudrate, 0, mode);
uint8_t ch;
while(1) {
if(mode!=2)
{
if (serialRxBytesWaiting(escPort)) {
LED0_ON;
while(serialRxBytesWaiting(escPort))
{
ch = serialRead(escPort);
serialWrite(escPassthroughPort, ch);
}
LED0_OFF;
}
}
if (serialRxBytesWaiting(escPassthroughPort)) {
LED1_ON;
while(serialRxBytesWaiting(escPassthroughPort))
{
ch = serialRead(escPassthroughPort);
exitEsc = ProcessExitCommand(ch);
if(exitEsc)
{
serialWrite(escPassthroughPort, 0x24);
serialWrite(escPassthroughPort, 0x4D);
serialWrite(escPassthroughPort, 0x3E);
serialWrite(escPassthroughPort, 0x00);
serialWrite(escPassthroughPort, 0xF4);
serialWrite(escPassthroughPort, 0xF4);
closeEscSerial(ESCSERIAL1, output);
return;
}
if(mode==1){
serialWrite(escPassthroughPort, ch); // blheli loopback
}
serialWrite(escPort, ch);
}
LED1_OFF;
}
delay(5);
}
}
#endif

View file

@ -0,0 +1,38 @@
/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#define ESCSERIAL_BUFFER_SIZE 1024
typedef enum {
ESCSERIAL1 = 0,
ESCSERIAL2
} escSerialPortIndex_e;
serialPort_t *openEscSerial(escSerialPortIndex_e portIndex, serialReceiveCallbackPtr callback, uint16_t output, uint32_t baud, portOptions_t options, uint8_t mode);
// serialPort API
void escSerialWriteByte(serialPort_t *instance, uint8_t ch);
uint32_t escSerialTotalBytesWaiting(const serialPort_t *instance);
uint32_t escSerialTxBytesFree(const serialPort_t *instance);
uint8_t escSerialReadByte(serialPort_t *instance);
void escSerialSetBaudRate(serialPort_t *s, uint32_t baudRate);
bool isEscSerialTransmitBufferEmpty(const serialPort_t *s);
void escSerialInitialize();
void escEnablePassthrough(serialPort_t *escPassthroughPort, uint16_t output, uint8_t mode);

View file

@ -73,6 +73,7 @@
#include "telemetry/telemetry.h"
#include "flight/mixer.h"
#include "flight/servos.h"
#include "flight/pid.h"
#include "flight/imu.h"
#include "flight/failsafe.h"
@ -260,7 +261,7 @@ void resetMotorConfig(motorConfig_t *motorConfig)
#endif
motorConfig->maxthrottle = 2000;
motorConfig->mincommand = 1000;
motorConfig->digitalIdleOffset = 0;
motorConfig->digitalIdleOffset = 40;
uint8_t motorIndex = 0;
for (int i = 0; i < USABLE_TIMER_CHANNEL_COUNT && i < MAX_SUPPORTED_MOTORS; i++) {
@ -381,7 +382,11 @@ void resetSerialConfig(serialConfig_t *serialConfig)
for (index = 0; index < SERIAL_PORT_COUNT; index++) {
serialConfig->portConfigs[index].identifier = serialPortIdentifiers[index];
#ifdef USE_VCP
serialConfig->portConfigs[index].msp_baudrateIndex = BAUD_500000;
#else
serialConfig->portConfigs[index].msp_baudrateIndex = BAUD_115200;
#endif
serialConfig->portConfigs[index].gps_baudrateIndex = BAUD_57600;
serialConfig->portConfigs[index].telemetry_baudrateIndex = BAUD_AUTO;
serialConfig->portConfigs[index].blackbox_baudrateIndex = BAUD_115200;
@ -408,13 +413,17 @@ void resetRcControlsConfig(rcControlsConfig_t *rcControlsConfig)
void resetMixerConfig(mixerConfig_t *mixerConfig)
{
mixerConfig->yaw_motor_direction = 1;
#ifdef USE_SERVOS
mixerConfig->tri_unarmed_servo = 1;
mixerConfig->servo_lowpass_freq = 400;
mixerConfig->servo_lowpass_enable = 0;
#endif
}
#ifdef USE_SERVOS
void resetServoMixerConfig(servoMixerConfig_t *servoMixerConfig)
{
servoMixerConfig->tri_unarmed_servo = 1;
servoMixerConfig->servo_lowpass_freq = 400;
servoMixerConfig->servo_lowpass_enable = 0;
}
#endif
uint8_t getCurrentProfile(void)
{
return masterConfig.current_profile_index;
@ -574,13 +583,13 @@ void createDefaultConfig(master_t *config)
config->auto_disarm_delay = 5;
config->small_angle = 25;
resetMixerConfig(&config->mixerConfig);
config->airplaneConfig.fixedwing_althold_dir = 1;
// Motor/ESC/Servo
resetMixerConfig(&config->mixerConfig);
resetMotorConfig(&config->motorConfig);
#ifdef USE_SERVOS
resetServoMixerConfig(&config->servoMixerConfig);
resetServoConfig(&config->servoConfig);
#endif
resetFlight3DConfig(&config->flight3DConfig);
@ -775,7 +784,7 @@ void activateConfig(void)
);
#ifdef USE_SERVOS
servoUseConfigs(masterConfig.servoConf, &masterConfig.gimbalConfig);
servoUseConfigs(&masterConfig.servoMixerConfig, masterConfig.servoConf, &masterConfig.gimbalConfig);
#endif
imuRuntimeConfig.dcm_kp = masterConfig.dcm_kp / 10000.0f;

View file

@ -660,7 +660,7 @@ static bool mspFcProcessOutCommand(uint8_t cmdMSP, sbuf_t *dst, mspPostProcessFn
sbufWriteU16(dst, 0);
continue;
}
if (masterConfig.motorConfig.motorPwmProtocol == PWM_TYPE_DSHOT150 || masterConfig.motorConfig.motorPwmProtocol == PWM_TYPE_DSHOT600)
if (isMotorProtocolDshot())
sbufWriteU16(dst, constrain((motor[i] / 2) + 1000, 1000, 2000)); // This is to get it working in the configurator
else
sbufWriteU16(dst, motor[i]);
@ -1789,10 +1789,9 @@ mspResult_e mspFcProcessCommand(mspPacket_t *cmd, mspPacket_t *reply, mspPostPro
/*
* Return a pointer to the process command function
*/
mspProcessCommandFnPtr mspFcInit(void)
void mspFcInit(void)
{
initActiveBoxIds();
return mspFcProcessCommand;
}
void mspServerPush(mspPacket_t *push, uint8_t *data, int len)

View file

@ -19,5 +19,7 @@
#include "msp/msp.h"
mspProcessCommandFnPtr mspFcInit(void);
void mspFcInit(void);
mspResult_e mspFcProcessCommand(mspPacket_t *cmd, mspPacket_t *reply, mspPostProcessFnPtr *mspPostProcessFn);
mspPushCommandFnPtr mspFcPushInit(void);

View file

@ -31,6 +31,7 @@
#include "drivers/serial.h"
#include "fc/config.h"
#include "fc/fc_msp.h"
#include "fc/fc_tasks.h"
#include "fc/mw.h"
#include "fc/rc_controls.h"
@ -100,7 +101,7 @@ static void taskHandleSerial(uint32_t currentTime)
return;
}
#endif
mspSerialProcess(ARMING_FLAG(ARMED) ? MSP_SKIP_NON_MSP_DATA : MSP_EVALUATE_NON_MSP_DATA);
mspSerialProcess(ARMING_FLAG(ARMED) ? MSP_SKIP_NON_MSP_DATA : MSP_EVALUATE_NON_MSP_DATA, mspFcProcessCommand);
}
#ifdef BEEPER

View file

@ -65,6 +65,7 @@
#include "scheduler/scheduler.h"
#include "flight/mixer.h"
#include "flight/servos.h"
#include "flight/pid.h"
#include "flight/failsafe.h"
#include "flight/gtune.h"
@ -740,7 +741,7 @@ void subTaskMainSubprocesses(void)
if (isUsingSticksForArming() && rcData[THROTTLE] <= masterConfig.rxConfig.mincheck
#ifndef USE_QUAD_MIXER_ONLY
#ifdef USE_SERVOS
&& !((masterConfig.mixerMode == MIXER_TRI || masterConfig.mixerMode == MIXER_CUSTOM_TRI) && masterConfig.mixerConfig.tri_unarmed_servo)
&& !((masterConfig.mixerMode == MIXER_TRI || masterConfig.mixerMode == MIXER_CUSTOM_TRI) && masterConfig.servoMixerConfig.tri_unarmed_servo)
#endif
&& masterConfig.mixerMode != MIXER_AIRPLANE
&& masterConfig.mixerMode != MIXER_FLYING_WING
@ -794,6 +795,8 @@ void subTaskMotorUpdate(void)
mixTable(&currentProfile->pidProfile);
#ifdef USE_SERVOS
// motor outputs are used as sources for servo mixing, so motors must be calculated using mixTable() before servos.
servoTable();
filterServos();
writeServos();
#endif

View file

@ -81,6 +81,7 @@ bool isAirmodeActive(void) {
void blackboxLogInflightAdjustmentEvent(adjustmentFunction_e adjustmentFunction, int32_t newValue) {
#ifndef BLACKBOX
#define UNUSED(x) (void)(x)
UNUSED(adjustmentFunction);
UNUSED(newValue);
#else

View file

@ -17,14 +17,12 @@
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "platform.h"
#include "build/build_config.h"
#include "build/debug.h"
#include "common/axis.h"
#include "common/maths.h"
@ -32,18 +30,11 @@
#include "drivers/system.h"
#include "drivers/pwm_output.h"
#include "drivers/sensor.h"
#include "drivers/accgyro.h"
#include "drivers/system.h"
#include "io/motors.h"
#include "rx/rx.h"
#include "io/gimbal.h"
#include "io/motors.h"
#include "io/servos.h"
#include "sensors/sensors.h"
#include "sensors/acceleration.h"
#include "sensors/battery.h"
#include "flight/mixer.h"
@ -66,20 +57,12 @@ static mixerConfig_t *mixerConfig;
static flight3DConfig_t *flight3DConfig;
static motorConfig_t *motorConfig;
static airplaneConfig_t *airplaneConfig;
static rxConfig_t *rxConfig;
rxConfig_t *rxConfig;
static bool syncMotorOutputWithPidLoop = false;
static mixerMode_e currentMixerMode;
mixerMode_e currentMixerMode;
static motorMixer_t currentMixer[MAX_SUPPORTED_MOTORS];
#ifdef USE_SERVOS
static uint8_t servoRuleCount = 0;
static servoMixer_t currentServoMixer[MAX_SERVO_RULES];
static gimbalConfig_t *gimbalConfig;
int16_t servo[MAX_SUPPORTED_SERVOS];
static int useServo;
static servoParam_t *servoConf;
#endif
static const motorMixer_t mixerQuadX[] = {
{ 1.0f, -1.0f, 1.0f, -1.0f }, // REAR_R
@ -245,100 +228,21 @@ const mixer_t mixers[] = {
};
#endif
#ifdef USE_SERVOS
#define COUNT_SERVO_RULES(rules) (sizeof(rules) / sizeof(servoMixer_t))
// mixer rule format servo, input, rate, speed, min, max, box
static const servoMixer_t servoMixerAirplane[] = {
{ SERVO_FLAPPERON_1, INPUT_STABILIZED_ROLL, 100, 0, 0, 100, 0 },
{ SERVO_FLAPPERON_2, INPUT_STABILIZED_ROLL, 100, 0, 0, 100, 0 },
{ SERVO_RUDDER, INPUT_STABILIZED_YAW, 100, 0, 0, 100, 0 },
{ SERVO_ELEVATOR, INPUT_STABILIZED_PITCH, 100, 0, 0, 100, 0 },
{ SERVO_THROTTLE, INPUT_STABILIZED_THROTTLE, 100, 0, 0, 100, 0 },
};
static const servoMixer_t servoMixerFlyingWing[] = {
{ SERVO_FLAPPERON_1, INPUT_STABILIZED_ROLL, 100, 0, 0, 100, 0 },
{ SERVO_FLAPPERON_1, INPUT_STABILIZED_PITCH, 100, 0, 0, 100, 0 },
{ SERVO_FLAPPERON_2, INPUT_STABILIZED_ROLL, -100, 0, 0, 100, 0 },
{ SERVO_FLAPPERON_2, INPUT_STABILIZED_PITCH, 100, 0, 0, 100, 0 },
{ SERVO_THROTTLE, INPUT_STABILIZED_THROTTLE, 100, 0, 0, 100, 0 },
};
static const servoMixer_t servoMixerBI[] = {
{ SERVO_BICOPTER_LEFT, INPUT_STABILIZED_YAW, 100, 0, 0, 100, 0 },
{ SERVO_BICOPTER_LEFT, INPUT_STABILIZED_PITCH, 100, 0, 0, 100, 0 },
{ SERVO_BICOPTER_RIGHT, INPUT_STABILIZED_YAW, 100, 0, 0, 100, 0 },
{ SERVO_BICOPTER_RIGHT, INPUT_STABILIZED_PITCH, 100, 0, 0, 100, 0 },
};
static const servoMixer_t servoMixerTri[] = {
{ SERVO_RUDDER, INPUT_STABILIZED_YAW, 100, 0, 0, 100, 0 },
};
static const servoMixer_t servoMixerDual[] = {
{ SERVO_DUALCOPTER_LEFT, INPUT_STABILIZED_PITCH, 100, 0, 0, 100, 0 },
{ SERVO_DUALCOPTER_RIGHT, INPUT_STABILIZED_ROLL, 100, 0, 0, 100, 0 },
};
static const servoMixer_t servoMixerSingle[] = {
{ SERVO_SINGLECOPTER_1, INPUT_STABILIZED_YAW, 100, 0, 0, 100, 0 },
{ SERVO_SINGLECOPTER_1, INPUT_STABILIZED_PITCH, 100, 0, 0, 100, 0 },
{ SERVO_SINGLECOPTER_2, INPUT_STABILIZED_YAW, 100, 0, 0, 100, 0 },
{ SERVO_SINGLECOPTER_2, INPUT_STABILIZED_PITCH, 100, 0, 0, 100, 0 },
{ SERVO_SINGLECOPTER_3, INPUT_STABILIZED_YAW, 100, 0, 0, 100, 0 },
{ SERVO_SINGLECOPTER_3, INPUT_STABILIZED_ROLL, 100, 0, 0, 100, 0 },
{ SERVO_SINGLECOPTER_4, INPUT_STABILIZED_YAW, 100, 0, 0, 100, 0 },
{ SERVO_SINGLECOPTER_4, INPUT_STABILIZED_ROLL, 100, 0, 0, 100, 0 },
};
static const servoMixer_t servoMixerGimbal[] = {
{ SERVO_GIMBAL_PITCH, INPUT_GIMBAL_PITCH, 125, 0, 0, 100, 0 },
{ SERVO_GIMBAL_ROLL, INPUT_GIMBAL_ROLL, 125, 0, 0, 100, 0 },
};
const mixerRules_t servoMixers[] = {
{ 0, NULL }, // entry 0
{ COUNT_SERVO_RULES(servoMixerTri), servoMixerTri }, // MULTITYPE_TRI
{ 0, NULL }, // MULTITYPE_QUADP
{ 0, NULL }, // MULTITYPE_QUADX
{ COUNT_SERVO_RULES(servoMixerBI), servoMixerBI }, // MULTITYPE_BI
{ COUNT_SERVO_RULES(servoMixerGimbal), servoMixerGimbal }, // * MULTITYPE_GIMBAL
{ 0, NULL }, // MULTITYPE_Y6
{ 0, NULL }, // MULTITYPE_HEX6
{ COUNT_SERVO_RULES(servoMixerFlyingWing), servoMixerFlyingWing },// * MULTITYPE_FLYING_WING
{ 0, NULL }, // MULTITYPE_Y4
{ 0, NULL }, // MULTITYPE_HEX6X
{ 0, NULL }, // MULTITYPE_OCTOX8
{ 0, NULL }, // MULTITYPE_OCTOFLATP
{ 0, NULL }, // MULTITYPE_OCTOFLATX
{ COUNT_SERVO_RULES(servoMixerAirplane), servoMixerAirplane }, // * MULTITYPE_AIRPLANE
{ 0, NULL }, // * MULTITYPE_HELI_120_CCPM
{ 0, NULL }, // * MULTITYPE_HELI_90_DEG
{ 0, NULL }, // MULTITYPE_VTAIL4
{ 0, NULL }, // MULTITYPE_HEX6H
{ 0, NULL }, // * MULTITYPE_PPM_TO_SERVO
{ COUNT_SERVO_RULES(servoMixerDual), servoMixerDual }, // MULTITYPE_DUALCOPTER
{ COUNT_SERVO_RULES(servoMixerSingle), servoMixerSingle }, // MULTITYPE_SINGLECOPTER
{ 0, NULL }, // MULTITYPE_ATAIL4
{ 0, NULL }, // MULTITYPE_CUSTOM
{ 0, NULL }, // MULTITYPE_CUSTOM_PLANE
{ 0, NULL }, // MULTITYPE_CUSTOM_TRI
{ 0, NULL },
};
static servoMixer_t *customServoMixers;
#endif
static motorMixer_t *customMixers;
static uint16_t disarmMotorOutput, minMotorOutputNormal, maxMotorOutputNormal, deadbandMotor3dHigh, deadbandMotor3dLow;
static float rcCommandThrottleRange;
bool isMotorProtocolDshot(void) {
if (motorConfig->motorPwmProtocol == PWM_TYPE_DSHOT150 || motorConfig->motorPwmProtocol == PWM_TYPE_DSHOT300 || motorConfig->motorPwmProtocol == PWM_TYPE_DSHOT600)
return true;
else
return false;
}
// Add here scaled ESC outputs for digital protol
void initEscEndpoints(void) {
if (motorConfig->motorPwmProtocol == PWM_TYPE_DSHOT150 || motorConfig->motorPwmProtocol == PWM_TYPE_DSHOT600) {
if (isMotorProtocolDshot()) {
disarmMotorOutput = DSHOT_DISARM_COMMAND;
minMotorOutputNormal = DSHOT_MIN_THROTTLE + motorConfig->digitalIdleOffset;
maxMotorOutputNormal = DSHOT_MAX_THROTTLE;
@ -370,51 +274,6 @@ void mixerUseConfigs(
initEscEndpoints();
}
#ifdef USE_SERVOS
void servoUseConfigs(servoParam_t *servoConfToUse, gimbalConfig_t *gimbalConfigToUse)
{
servoConf = servoConfToUse;
gimbalConfig = gimbalConfigToUse;
}
int16_t determineServoMiddleOrForwardFromChannel(servoIndex_e servoIndex)
{
uint8_t channelToForwardFrom = servoConf[servoIndex].forwardFromChannel;
if (channelToForwardFrom != CHANNEL_FORWARDING_DISABLED && channelToForwardFrom < rxRuntimeConfig.channelCount) {
return rcData[channelToForwardFrom];
}
return servoConf[servoIndex].middle;
}
int servoDirection(int servoIndex, int inputSource)
{
// determine the direction (reversed or not) from the direction bitfield of the servo
if (servoConf[servoIndex].reversedSources & (1 << inputSource))
return -1;
else
return 1;
}
void servoMixerInit(servoMixer_t *initialCustomServoMixers)
{
customServoMixers = initialCustomServoMixers;
// enable servos for mixes that require them. note, this shifts motor counts.
useServo = mixers[currentMixerMode].useServo;
// if we want camstab/trig, that also enables servos, even if mixer doesn't
if (feature(FEATURE_SERVO_TILT))
useServo = 1;
// give all servos a default command
for (uint8_t i = 0; i < MAX_SUPPORTED_SERVOS; i++) {
servo[i] = DEFAULT_SERVO_MIDDLE;
}
}
#endif
void mixerInit(mixerMode_e mixerMode, motorMixer_t *initialCustomMixers)
{
currentMixerMode = mixerMode;
@ -424,23 +283,6 @@ void mixerInit(mixerMode_e mixerMode, motorMixer_t *initialCustomMixers)
#ifndef USE_QUAD_MIXER_ONLY
void loadCustomServoMixer(void)
{
// reset settings
servoRuleCount = 0;
memset(currentServoMixer, 0, sizeof(currentServoMixer));
// load custom mixer into currentServoMixer
for (uint8_t i = 0; i < MAX_SERVO_RULES; i++) {
// check if done
if (customServoMixers[i].rate == 0)
break;
currentServoMixer[i] = customServoMixers[i];
servoRuleCount++;
}
}
void mixerConfigureOutput(void)
{
int i;
@ -467,14 +309,6 @@ void mixerConfigureOutput(void)
}
}
if (useServo) {
servoRuleCount = servoMixers[currentMixerMode].servoRuleCount;
if (servoMixers[currentMixerMode].rule) {
for (i = 0; i < servoRuleCount; i++)
currentServoMixer[i] = servoMixers[currentMixerMode].rule[i];
}
}
// in 3D mode, mixer gain has to be halved
if (feature(FEATURE_3D)) {
if (motorCount > 1) {
@ -486,42 +320,9 @@ void mixerConfigureOutput(void)
}
}
// set flag that we're on something with wings
if (currentMixerMode == MIXER_FLYING_WING ||
currentMixerMode == MIXER_AIRPLANE ||
currentMixerMode == MIXER_CUSTOM_AIRPLANE
) {
ENABLE_STATE(FIXED_WING);
if (currentMixerMode == MIXER_CUSTOM_AIRPLANE) {
loadCustomServoMixer();
}
} else {
DISABLE_STATE(FIXED_WING);
if (currentMixerMode == MIXER_CUSTOM_TRI) {
loadCustomServoMixer();
}
}
mixerResetDisarmedMotors();
}
void servoMixerLoadMix(int index, servoMixer_t *customServoMixers)
{
int i;
// we're 1-based
index++;
// clear existing
for (i = 0; i < MAX_SERVO_RULES; i++)
customServoMixers[i].targetChannel = customServoMixers[i].inputSource = customServoMixers[i].rate = customServoMixers[i].box = 0;
for (i = 0; i < servoMixers[index].servoRuleCount; i++)
customServoMixers[i] = servoMixers[index].rule[i];
}
void mixerLoadMix(int index, motorMixer_t *customMixers)
{
int i;
@ -561,90 +362,6 @@ void mixerResetDisarmedMotors(void)
motor_disarmed[i] = feature(FEATURE_3D) ? flight3DConfig->neutral3d : motorConfig->mincommand;
}
#ifdef USE_SERVOS
STATIC_UNIT_TESTED void forwardAuxChannelsToServos(uint8_t firstServoIndex)
{
// start forwarding from this channel
uint8_t channelOffset = AUX1;
uint8_t servoOffset;
for (servoOffset = 0; servoOffset < MAX_AUX_CHANNEL_COUNT && channelOffset < MAX_SUPPORTED_RC_CHANNEL_COUNT; servoOffset++) {
pwmWriteServo(firstServoIndex + servoOffset, rcData[channelOffset++]);
}
}
static void updateGimbalServos(uint8_t firstServoIndex)
{
pwmWriteServo(firstServoIndex + 0, servo[SERVO_GIMBAL_PITCH]);
pwmWriteServo(firstServoIndex + 1, servo[SERVO_GIMBAL_ROLL]);
}
void writeServos(void)
{
uint8_t servoIndex = 0;
switch (currentMixerMode) {
case MIXER_BICOPTER:
pwmWriteServo(servoIndex++, servo[SERVO_BICOPTER_LEFT]);
pwmWriteServo(servoIndex++, servo[SERVO_BICOPTER_RIGHT]);
break;
case MIXER_TRI:
case MIXER_CUSTOM_TRI:
if (mixerConfig->tri_unarmed_servo) {
// if unarmed flag set, we always move servo
pwmWriteServo(servoIndex++, servo[SERVO_RUDDER]);
} else {
// otherwise, only move servo when copter is armed
if (ARMING_FLAG(ARMED))
pwmWriteServo(servoIndex++, servo[SERVO_RUDDER]);
else
pwmWriteServo(servoIndex++, 0); // kill servo signal completely.
}
break;
case MIXER_FLYING_WING:
pwmWriteServo(servoIndex++, servo[SERVO_FLAPPERON_1]);
pwmWriteServo(servoIndex++, servo[SERVO_FLAPPERON_2]);
break;
case MIXER_DUALCOPTER:
pwmWriteServo(servoIndex++, servo[SERVO_DUALCOPTER_LEFT]);
pwmWriteServo(servoIndex++, servo[SERVO_DUALCOPTER_RIGHT]);
break;
case MIXER_CUSTOM_AIRPLANE:
case MIXER_AIRPLANE:
for (int i = SERVO_PLANE_INDEX_MIN; i <= SERVO_PLANE_INDEX_MAX; i++) {
pwmWriteServo(servoIndex++, servo[i]);
}
break;
case MIXER_SINGLECOPTER:
for (int i = SERVO_SINGLECOPTER_INDEX_MIN; i <= SERVO_SINGLECOPTER_INDEX_MAX; i++) {
pwmWriteServo(servoIndex++, servo[i]);
}
break;
default:
break;
}
// Two servos for SERVO_TILT, if enabled
if (feature(FEATURE_SERVO_TILT) || currentMixerMode == MIXER_GIMBAL) {
updateGimbalServos(servoIndex);
servoIndex += 2;
}
// forward AUX to remaining servo outputs (not constrained)
if (feature(FEATURE_CHANNEL_FORWARDING)) {
forwardAuxChannelsToServos(servoIndex);
servoIndex += MAX_AUX_CHANNEL_COUNT;
}
}
#endif
void writeMotors(void)
{
for (uint8_t i = 0; i < motorCount; i++) {
@ -679,91 +396,10 @@ void stopPwmAllMotors(void)
delayMicroseconds(1500);
}
#ifndef USE_QUAD_MIXER_ONLY
STATIC_UNIT_TESTED void servoMixer(void)
{
int16_t input[INPUT_SOURCE_COUNT]; // Range [-500:+500]
static int16_t currentOutput[MAX_SERVO_RULES];
uint8_t i;
if (FLIGHT_MODE(PASSTHRU_MODE)) {
// Direct passthru from RX
input[INPUT_STABILIZED_ROLL] = rcCommand[ROLL];
input[INPUT_STABILIZED_PITCH] = rcCommand[PITCH];
input[INPUT_STABILIZED_YAW] = rcCommand[YAW];
} else {
// Assisted modes (gyro only or gyro+acc according to AUX configuration in Gui
input[INPUT_STABILIZED_ROLL] = axisPIDf[ROLL];
input[INPUT_STABILIZED_PITCH] = axisPIDf[PITCH];
input[INPUT_STABILIZED_YAW] = axisPIDf[YAW];
// Reverse yaw servo when inverted in 3D mode
if (feature(FEATURE_3D) && (rcData[THROTTLE] < rxConfig->midrc)) {
input[INPUT_STABILIZED_YAW] *= -1;
}
}
input[INPUT_GIMBAL_PITCH] = scaleRange(attitude.values.pitch, -1800, 1800, -500, +500);
input[INPUT_GIMBAL_ROLL] = scaleRange(attitude.values.roll, -1800, 1800, -500, +500);
input[INPUT_STABILIZED_THROTTLE] = motor[0] - 1000 - 500; // Since it derives from rcCommand or mincommand and must be [-500:+500]
// center the RC input value around the RC middle value
// by subtracting the RC middle value from the RC input value, we get:
// data - middle = input
// 2000 - 1500 = +500
// 1500 - 1500 = 0
// 1000 - 1500 = -500
input[INPUT_RC_ROLL] = rcData[ROLL] - rxConfig->midrc;
input[INPUT_RC_PITCH] = rcData[PITCH] - rxConfig->midrc;
input[INPUT_RC_YAW] = rcData[YAW] - rxConfig->midrc;
input[INPUT_RC_THROTTLE] = rcData[THROTTLE] - rxConfig->midrc;
input[INPUT_RC_AUX1] = rcData[AUX1] - rxConfig->midrc;
input[INPUT_RC_AUX2] = rcData[AUX2] - rxConfig->midrc;
input[INPUT_RC_AUX3] = rcData[AUX3] - rxConfig->midrc;
input[INPUT_RC_AUX4] = rcData[AUX4] - rxConfig->midrc;
for (i = 0; i < MAX_SUPPORTED_SERVOS; i++)
servo[i] = 0;
// mix servos according to rules
for (i = 0; i < servoRuleCount; i++) {
// consider rule if no box assigned or box is active
if (currentServoMixer[i].box == 0 || IS_RC_MODE_ACTIVE(BOXSERVO1 + currentServoMixer[i].box - 1)) {
uint8_t target = currentServoMixer[i].targetChannel;
uint8_t from = currentServoMixer[i].inputSource;
uint16_t servo_width = servoConf[target].max - servoConf[target].min;
int16_t min = currentServoMixer[i].min * servo_width / 100 - servo_width / 2;
int16_t max = currentServoMixer[i].max * servo_width / 100 - servo_width / 2;
if (currentServoMixer[i].speed == 0)
currentOutput[i] = input[from];
else {
if (currentOutput[i] < input[from])
currentOutput[i] = constrain(currentOutput[i] + currentServoMixer[i].speed, currentOutput[i], input[from]);
else if (currentOutput[i] > input[from])
currentOutput[i] = constrain(currentOutput[i] - currentServoMixer[i].speed, input[from], currentOutput[i]);
}
servo[target] += servoDirection(target, from) * constrain(((int32_t)currentOutput[i] * currentServoMixer[i].rate) / 100, min, max);
} else {
currentOutput[i] = 0;
}
}
for (i = 0; i < MAX_SUPPORTED_SERVOS; i++) {
servo[i] = ((int32_t)servoConf[i].rate * servo[i]) / 100L;
servo[i] += determineServoMiddleOrForwardFromChannel(i);
}
}
#endif
void mixTable(void *pidProfilePtr)
void mixTable(pidProfile_t *pidProfile)
{
uint32_t i = 0;
float vbatCompensationFactor = 1;
pidProfile_t *pidProfile = (pidProfile_t *) pidProfilePtr;
// Scale roll/pitch/yaw uniformly to fit within throttle range
// Initial mixer concept by bdoiron74 reused and optimized for Air Mode
@ -843,7 +479,7 @@ void mixTable(void *pidProfilePtr)
motor[i] = lrintf( motorOutputMin + (motorOutputRange * (motorMix[i] + (throttle * currentMixer[i].throttle))) );
if (failsafeIsActive()) {
if (motorConfig->motorPwmProtocol == PWM_TYPE_DSHOT150 || motorConfig->motorPwmProtocol == PWM_TYPE_DSHOT600)
if (isMotorProtocolDshot())
motor[i] = (motor[i] < motorOutputMin) ? disarmMotorOutput : motor[i]; // Prevent getting into special reserved range
motor[i] = constrain(motor[i], disarmMotorOutput, motorOutputMax);
@ -875,7 +511,7 @@ void mixTable(void *pidProfilePtr)
// Disarmed mode
if (!ARMING_FLAG(ARMED)) {
for (i = 0; i < motorCount; i++) {
if (motorConfig->motorPwmProtocol == PWM_TYPE_DSHOT150 || motorConfig->motorPwmProtocol == PWM_TYPE_DSHOT600) {
if (isMotorProtocolDshot()) {
motor[i] = (motor_disarmed[i] < motorOutputMin) ? disarmMotorOutput : motor_disarmed[i]; // Prevent getting into special reserved range
if (motor_disarmed[i] != disarmMotorOutput)
@ -885,94 +521,4 @@ void mixTable(void *pidProfilePtr)
}
}
}
// motor outputs are used as sources for servo mixing, so motors must be calculated before servos.
#if !defined(USE_QUAD_MIXER_ONLY) || defined(USE_SERVOS)
// airplane / servo mixes
switch (currentMixerMode) {
case MIXER_CUSTOM_AIRPLANE:
case MIXER_FLYING_WING:
case MIXER_AIRPLANE:
case MIXER_BICOPTER:
case MIXER_CUSTOM_TRI:
case MIXER_TRI:
case MIXER_DUALCOPTER:
case MIXER_SINGLECOPTER:
case MIXER_GIMBAL:
servoMixer();
break;
/*
case MIXER_GIMBAL:
servo[SERVO_GIMBAL_PITCH] = (((int32_t)servoConf[SERVO_GIMBAL_PITCH].rate * attitude.values.pitch) / 50) + determineServoMiddleOrForwardFromChannel(SERVO_GIMBAL_PITCH);
servo[SERVO_GIMBAL_ROLL] = (((int32_t)servoConf[SERVO_GIMBAL_ROLL].rate * attitude.values.roll) / 50) + determineServoMiddleOrForwardFromChannel(SERVO_GIMBAL_ROLL);
break;
*/
default:
break;
}
// camera stabilization
if (feature(FEATURE_SERVO_TILT)) {
// center at fixed position, or vary either pitch or roll by RC channel
servo[SERVO_GIMBAL_PITCH] = determineServoMiddleOrForwardFromChannel(SERVO_GIMBAL_PITCH);
servo[SERVO_GIMBAL_ROLL] = determineServoMiddleOrForwardFromChannel(SERVO_GIMBAL_ROLL);
if (IS_RC_MODE_ACTIVE(BOXCAMSTAB)) {
if (gimbalConfig->mode == GIMBAL_MODE_MIXTILT) {
servo[SERVO_GIMBAL_PITCH] -= (-(int32_t)servoConf[SERVO_GIMBAL_PITCH].rate) * attitude.values.pitch / 50 - (int32_t)servoConf[SERVO_GIMBAL_ROLL].rate * attitude.values.roll / 50;
servo[SERVO_GIMBAL_ROLL] += (-(int32_t)servoConf[SERVO_GIMBAL_PITCH].rate) * attitude.values.pitch / 50 + (int32_t)servoConf[SERVO_GIMBAL_ROLL].rate * attitude.values.roll / 50;
} else {
servo[SERVO_GIMBAL_PITCH] += (int32_t)servoConf[SERVO_GIMBAL_PITCH].rate * attitude.values.pitch / 50;
servo[SERVO_GIMBAL_ROLL] += (int32_t)servoConf[SERVO_GIMBAL_ROLL].rate * attitude.values.roll / 50;
}
}
}
// constrain servos
for (i = 0; i < MAX_SUPPORTED_SERVOS; i++) {
servo[i] = constrain(servo[i], servoConf[i].min, servoConf[i].max); // limit the values
}
#endif
}
#ifdef USE_SERVOS
bool isMixerUsingServos(void)
{
return useServo;
}
#endif
void filterServos(void)
{
#ifdef USE_SERVOS
static int16_t servoIdx;
static bool servoFilterIsSet;
static biquadFilter_t servoFilter[MAX_SUPPORTED_SERVOS];
#if defined(MIXER_DEBUG)
uint32_t startTime = micros();
#endif
if (mixerConfig->servo_lowpass_enable) {
for (servoIdx = 0; servoIdx < MAX_SUPPORTED_SERVOS; servoIdx++) {
if (!servoFilterIsSet) {
biquadFilterInitLPF(&servoFilter[servoIdx], mixerConfig->servo_lowpass_freq, targetPidLooptime);
servoFilterIsSet = true;
}
servo[servoIdx] = lrintf(biquadFilterApply(&servoFilter[servoIdx], (float)servo[servoIdx]));
// Sanity check
servo[servoIdx] = constrain(servo[servoIdx], servoConf[servoIdx].min, servoConf[servoIdx].max);
}
}
#if defined(MIXER_DEBUG)
debug[0] = (int16_t)(micros() - startTime);
#endif
#endif
}

View file

@ -18,7 +18,6 @@
#pragma once
#define MAX_SUPPORTED_MOTORS 12
#define MAX_SUPPORTED_SERVOS 8
#define QUAD_MOTOR_COUNT 4
@ -77,11 +76,6 @@ typedef struct mixer_s {
typedef struct mixerConfig_s {
int8_t yaw_motor_direction;
#ifdef USE_SERVOS
uint8_t tri_unarmed_servo; // send tail servo correction pulses even when unarmed
uint16_t servo_lowpass_freq; // lowpass servo filter frequency selection; 1/1000ths of loop freq
int8_t servo_lowpass_enable; // enable/disable lowpass filter
#endif
} mixerConfig_t;
typedef struct flight3DConfig_s {
@ -97,105 +91,6 @@ typedef struct airplaneConfig_s {
#define CHANNEL_FORWARDING_DISABLED (uint8_t)0xFF
#ifdef USE_SERVOS
// These must be consecutive, see 'reversedSources'
enum {
INPUT_STABILIZED_ROLL = 0,
INPUT_STABILIZED_PITCH,
INPUT_STABILIZED_YAW,
INPUT_STABILIZED_THROTTLE,
INPUT_RC_ROLL,
INPUT_RC_PITCH,
INPUT_RC_YAW,
INPUT_RC_THROTTLE,
INPUT_RC_AUX1,
INPUT_RC_AUX2,
INPUT_RC_AUX3,
INPUT_RC_AUX4,
INPUT_GIMBAL_PITCH,
INPUT_GIMBAL_ROLL,
INPUT_SOURCE_COUNT
} inputSource_e;
// target servo channels
typedef enum {
SERVO_GIMBAL_PITCH = 0,
SERVO_GIMBAL_ROLL = 1,
SERVO_FLAPS = 2,
SERVO_FLAPPERON_1 = 3,
SERVO_FLAPPERON_2 = 4,
SERVO_RUDDER = 5,
SERVO_ELEVATOR = 6,
SERVO_THROTTLE = 7, // for internal combustion (IC) planes
SERVO_BICOPTER_LEFT = 4,
SERVO_BICOPTER_RIGHT = 5,
SERVO_DUALCOPTER_LEFT = 4,
SERVO_DUALCOPTER_RIGHT = 5,
SERVO_SINGLECOPTER_1 = 3,
SERVO_SINGLECOPTER_2 = 4,
SERVO_SINGLECOPTER_3 = 5,
SERVO_SINGLECOPTER_4 = 6,
} servoIndex_e; // FIXME rename to servoChannel_e
#define SERVO_PLANE_INDEX_MIN SERVO_FLAPS
#define SERVO_PLANE_INDEX_MAX SERVO_THROTTLE
#define SERVO_DUALCOPTER_INDEX_MIN SERVO_DUALCOPTER_LEFT
#define SERVO_DUALCOPTER_INDEX_MAX SERVO_DUALCOPTER_RIGHT
#define SERVO_SINGLECOPTER_INDEX_MIN SERVO_SINGLECOPTER_1
#define SERVO_SINGLECOPTER_INDEX_MAX SERVO_SINGLECOPTER_4
#define SERVO_FLAPPERONS_MIN SERVO_FLAPPERON_1
#define SERVO_FLAPPERONS_MAX SERVO_FLAPPERON_2
typedef struct servoMixer_s {
uint8_t targetChannel; // servo that receives the output of the rule
uint8_t inputSource; // input channel for this rule
int8_t rate; // range [-125;+125] ; can be used to adjust a rate 0-125% and a direction
uint8_t speed; // reduces the speed of the rule, 0=unlimited speed
int8_t min; // lower bound of rule range [0;100]% of servo max-min
int8_t max; // lower bound of rule range [0;100]% of servo max-min
uint8_t box; // active rule if box is enabled, range [0;3], 0=no box, 1=BOXSERVO1, 2=BOXSERVO2, 3=BOXSERVO3
} servoMixer_t;
#define MAX_SERVO_RULES (2 * MAX_SUPPORTED_SERVOS)
#define MAX_SERVO_SPEED UINT8_MAX
#define MAX_SERVO_BOXES 3
// Custom mixer configuration
typedef struct mixerRules_s {
uint8_t servoRuleCount;
const servoMixer_t *rule;
} mixerRules_t;
typedef struct servoParam_s {
int16_t min; // servo min
int16_t max; // servo max
int16_t middle; // servo middle
int8_t rate; // range [-125;+125] ; can be used to adjust a rate 0-125% and a direction
uint8_t angleAtMin; // range [0;180] the measured angle in degrees from the middle when the servo is at the 'min' value.
uint8_t angleAtMax; // range [0;180] the measured angle in degrees from the middle when the servo is at the 'max' value.
int8_t forwardFromChannel; // RX channel index, 0 based. See CHANNEL_FORWARDING_DISABLED
uint32_t reversedSources; // the direction of servo movement for each input source of the servo mixer, bit set=inverted
} __attribute__ ((__packed__)) servoParam_t;
struct gimbalConfig_s;
struct motorConfig_s;
struct rxConfig_s;
extern int16_t servo[MAX_SUPPORTED_SERVOS];
bool isMixerUsingServos(void);
void writeServos(void);
void filterServos(void);
#endif
extern const mixer_t mixers[];
extern int16_t motor[MAX_SUPPORTED_MOTORS];
extern int16_t motor_disarmed[MAX_SUPPORTED_MOTORS];
@ -211,22 +106,15 @@ void mixerUseConfigs(
void writeAllMotors(int16_t mc);
void mixerLoadMix(int index, motorMixer_t *customMixers);
#ifdef USE_SERVOS
void servoMixerInit(servoMixer_t *customServoMixers);
struct servoParam_s;
struct gimbalConfig_s;
void servoUseConfigs(struct servoParam_s *servoConfToUse, struct gimbalConfig_s *gimbalConfigToUse);
void servoMixerLoadMix(int index, servoMixer_t *customServoMixers);
void loadCustomServoMixer(void);
int servoDirection(int servoIndex, int fromChannel);
#endif
void mixerInit(mixerMode_e mixerMode, motorMixer_t *customMotorMixers);
void mixerConfigureOutput(void);
void mixerResetDisarmedMotors(void);
void mixTable(void *pidProfilePtr);
struct pidProfile_s;
void mixTable(struct pidProfile_s *pidProfile);
void syncMotors(bool enabled);
void writeMotors(void);
void stopMotors(void);
void stopPwmAllMotors(void);
bool isMotorProtocolDshot(void);

View file

@ -102,9 +102,9 @@ biquadFilter_t dtermFilterLpf[3];
biquadFilter_t dtermFilterNotch[3];
bool dtermNotchInitialised;
bool dtermBiquadLpfInitialised;
firFilterState_t dtermDenoisingState[3];
firFilterDenoise_t dtermDenoisingState[3];
void initFilters(const pidProfile_t *pidProfile) {
static void pidInitFilters(const pidProfile_t *pidProfile) {
int axis;
static uint8_t lowpassFilterType;
@ -120,7 +120,7 @@ void initFilters(const pidProfile_t *pidProfile) {
}
if (pidProfile->dterm_filter_type == FILTER_FIR) {
for (axis = 0; axis < 3; axis++) initFirFilter(&dtermDenoisingState[axis], pidProfile->dterm_lpf_hz, targetPidLooptime);
for (axis = 0; axis < 3; axis++) firFilterDenoiseInit(&dtermDenoisingState[axis], pidProfile->dterm_lpf_hz, targetPidLooptime);
}
lowpassFilterType = pidProfile->dterm_filter_type;
}
@ -141,7 +141,7 @@ void pidController(const pidProfile_t *pidProfile, uint16_t max_angle_inclinatio
float tpaFactor = PIDweight[0] / 100.0f; // tpa is now float
initFilters(pidProfile);
pidInitFilters(pidProfile);
if (FLIGHT_MODE(HORIZON_MODE)) {
// Figure out the raw stick positions
@ -284,7 +284,7 @@ void pidController(const pidProfile_t *pidProfile, uint16_t max_angle_inclinatio
else if (pidProfile->dterm_filter_type == FILTER_PT1)
delta = pt1FilterApply4(&deltaFilter[axis], delta, pidProfile->dterm_lpf_hz, getdT());
else
delta = firFilterUpdate(&dtermDenoisingState[axis], delta);
delta = firFilterDenoiseUpdate(&dtermDenoisingState[axis], delta);
}
DTerm = Kd[axis] * delta * tpaFactor;

490
src/main/flight/servos.c Executable file
View file

@ -0,0 +1,490 @@
/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include <math.h>
#include "platform.h"
#ifdef USE_SERVOS
#include "build/build_config.h"
#include "common/filter.h"
#include "drivers/pwm_output.h"
#include "drivers/system.h"
#include "rx/rx.h"
#include "io/gimbal.h"
#include "io/servos.h"
#include "flight/mixer.h"
#include "flight/pid.h"
#include "flight/imu.h"
#include "fc/config.h"
#include "fc/rc_controls.h"
#include "fc/runtime_config.h"
#include "config/feature.h"
extern mixerMode_e currentMixerMode;
extern rxConfig_t *rxConfig;
static servoMixerConfig_t *servoMixerConfig;
static uint8_t servoRuleCount = 0;
static servoMixer_t currentServoMixer[MAX_SERVO_RULES];
static gimbalConfig_t *gimbalConfig;
int16_t servo[MAX_SUPPORTED_SERVOS];
static int useServo;
static servoParam_t *servoConf;
#define COUNT_SERVO_RULES(rules) (sizeof(rules) / sizeof(servoMixer_t))
// mixer rule format servo, input, rate, speed, min, max, box
static const servoMixer_t servoMixerAirplane[] = {
{ SERVO_FLAPPERON_1, INPUT_STABILIZED_ROLL, 100, 0, 0, 100, 0 },
{ SERVO_FLAPPERON_2, INPUT_STABILIZED_ROLL, 100, 0, 0, 100, 0 },
{ SERVO_RUDDER, INPUT_STABILIZED_YAW, 100, 0, 0, 100, 0 },
{ SERVO_ELEVATOR, INPUT_STABILIZED_PITCH, 100, 0, 0, 100, 0 },
{ SERVO_THROTTLE, INPUT_STABILIZED_THROTTLE, 100, 0, 0, 100, 0 },
};
static const servoMixer_t servoMixerFlyingWing[] = {
{ SERVO_FLAPPERON_1, INPUT_STABILIZED_ROLL, 100, 0, 0, 100, 0 },
{ SERVO_FLAPPERON_1, INPUT_STABILIZED_PITCH, 100, 0, 0, 100, 0 },
{ SERVO_FLAPPERON_2, INPUT_STABILIZED_ROLL, -100, 0, 0, 100, 0 },
{ SERVO_FLAPPERON_2, INPUT_STABILIZED_PITCH, 100, 0, 0, 100, 0 },
{ SERVO_THROTTLE, INPUT_STABILIZED_THROTTLE, 100, 0, 0, 100, 0 },
};
static const servoMixer_t servoMixerBI[] = {
{ SERVO_BICOPTER_LEFT, INPUT_STABILIZED_YAW, 100, 0, 0, 100, 0 },
{ SERVO_BICOPTER_LEFT, INPUT_STABILIZED_PITCH, 100, 0, 0, 100, 0 },
{ SERVO_BICOPTER_RIGHT, INPUT_STABILIZED_YAW, 100, 0, 0, 100, 0 },
{ SERVO_BICOPTER_RIGHT, INPUT_STABILIZED_PITCH, 100, 0, 0, 100, 0 },
};
static const servoMixer_t servoMixerTri[] = {
{ SERVO_RUDDER, INPUT_STABILIZED_YAW, 100, 0, 0, 100, 0 },
};
static const servoMixer_t servoMixerDual[] = {
{ SERVO_DUALCOPTER_LEFT, INPUT_STABILIZED_PITCH, 100, 0, 0, 100, 0 },
{ SERVO_DUALCOPTER_RIGHT, INPUT_STABILIZED_ROLL, 100, 0, 0, 100, 0 },
};
static const servoMixer_t servoMixerSingle[] = {
{ SERVO_SINGLECOPTER_1, INPUT_STABILIZED_YAW, 100, 0, 0, 100, 0 },
{ SERVO_SINGLECOPTER_1, INPUT_STABILIZED_PITCH, 100, 0, 0, 100, 0 },
{ SERVO_SINGLECOPTER_2, INPUT_STABILIZED_YAW, 100, 0, 0, 100, 0 },
{ SERVO_SINGLECOPTER_2, INPUT_STABILIZED_PITCH, 100, 0, 0, 100, 0 },
{ SERVO_SINGLECOPTER_3, INPUT_STABILIZED_YAW, 100, 0, 0, 100, 0 },
{ SERVO_SINGLECOPTER_3, INPUT_STABILIZED_ROLL, 100, 0, 0, 100, 0 },
{ SERVO_SINGLECOPTER_4, INPUT_STABILIZED_YAW, 100, 0, 0, 100, 0 },
{ SERVO_SINGLECOPTER_4, INPUT_STABILIZED_ROLL, 100, 0, 0, 100, 0 },
};
static const servoMixer_t servoMixerGimbal[] = {
{ SERVO_GIMBAL_PITCH, INPUT_GIMBAL_PITCH, 125, 0, 0, 100, 0 },
{ SERVO_GIMBAL_ROLL, INPUT_GIMBAL_ROLL, 125, 0, 0, 100, 0 },
};
const mixerRules_t servoMixers[] = {
{ 0, NULL }, // entry 0
{ COUNT_SERVO_RULES(servoMixerTri), servoMixerTri }, // MULTITYPE_TRI
{ 0, NULL }, // MULTITYPE_QUADP
{ 0, NULL }, // MULTITYPE_QUADX
{ COUNT_SERVO_RULES(servoMixerBI), servoMixerBI }, // MULTITYPE_BI
{ COUNT_SERVO_RULES(servoMixerGimbal), servoMixerGimbal }, // * MULTITYPE_GIMBAL
{ 0, NULL }, // MULTITYPE_Y6
{ 0, NULL }, // MULTITYPE_HEX6
{ COUNT_SERVO_RULES(servoMixerFlyingWing), servoMixerFlyingWing },// * MULTITYPE_FLYING_WING
{ 0, NULL }, // MULTITYPE_Y4
{ 0, NULL }, // MULTITYPE_HEX6X
{ 0, NULL }, // MULTITYPE_OCTOX8
{ 0, NULL }, // MULTITYPE_OCTOFLATP
{ 0, NULL }, // MULTITYPE_OCTOFLATX
{ COUNT_SERVO_RULES(servoMixerAirplane), servoMixerAirplane }, // * MULTITYPE_AIRPLANE
{ 0, NULL }, // * MULTITYPE_HELI_120_CCPM
{ 0, NULL }, // * MULTITYPE_HELI_90_DEG
{ 0, NULL }, // MULTITYPE_VTAIL4
{ 0, NULL }, // MULTITYPE_HEX6H
{ 0, NULL }, // * MULTITYPE_PPM_TO_SERVO
{ COUNT_SERVO_RULES(servoMixerDual), servoMixerDual }, // MULTITYPE_DUALCOPTER
{ COUNT_SERVO_RULES(servoMixerSingle), servoMixerSingle }, // MULTITYPE_SINGLECOPTER
{ 0, NULL }, // MULTITYPE_ATAIL4
{ 0, NULL }, // MULTITYPE_CUSTOM
{ 0, NULL }, // MULTITYPE_CUSTOM_PLANE
{ 0, NULL }, // MULTITYPE_CUSTOM_TRI
{ 0, NULL },
};
static servoMixer_t *customServoMixers;
void servoUseConfigs(servoMixerConfig_t *servoMixerConfigToUse, servoParam_t *servoParamsToUse, struct gimbalConfig_s *gimbalConfigToUse)
{
servoMixerConfig = servoMixerConfigToUse;
servoConf = servoParamsToUse;
gimbalConfig = gimbalConfigToUse;
}
int16_t determineServoMiddleOrForwardFromChannel(servoIndex_e servoIndex)
{
uint8_t channelToForwardFrom = servoConf[servoIndex].forwardFromChannel;
if (channelToForwardFrom != CHANNEL_FORWARDING_DISABLED && channelToForwardFrom < rxRuntimeConfig.channelCount) {
return rcData[channelToForwardFrom];
}
return servoConf[servoIndex].middle;
}
int servoDirection(int servoIndex, int inputSource)
{
// determine the direction (reversed or not) from the direction bitfield of the servo
if (servoConf[servoIndex].reversedSources & (1 << inputSource))
return -1;
else
return 1;
}
void servoMixerInit(servoMixer_t *initialCustomServoMixers)
{
customServoMixers = initialCustomServoMixers;
// enable servos for mixes that require them. note, this shifts motor counts.
useServo = mixers[currentMixerMode].useServo;
// if we want camstab/trig, that also enables servos, even if mixer doesn't
if (feature(FEATURE_SERVO_TILT))
useServo = 1;
// give all servos a default command
for (uint8_t i = 0; i < MAX_SUPPORTED_SERVOS; i++) {
servo[i] = DEFAULT_SERVO_MIDDLE;
}
}
void loadCustomServoMixer(void)
{
// reset settings
servoRuleCount = 0;
memset(currentServoMixer, 0, sizeof(currentServoMixer));
// load custom mixer into currentServoMixer
for (uint8_t i = 0; i < MAX_SERVO_RULES; i++) {
// check if done
if (customServoMixers[i].rate == 0)
break;
currentServoMixer[i] = customServoMixers[i];
servoRuleCount++;
}
}
void servoConfigureOutput(void)
{
if (useServo) {
servoRuleCount = servoMixers[currentMixerMode].servoRuleCount;
if (servoMixers[currentMixerMode].rule) {
for (int i = 0; i < servoRuleCount; i++)
currentServoMixer[i] = servoMixers[currentMixerMode].rule[i];
}
}
// set flag that we're on something with wings
if (currentMixerMode == MIXER_FLYING_WING ||
currentMixerMode == MIXER_AIRPLANE ||
currentMixerMode == MIXER_CUSTOM_AIRPLANE
) {
ENABLE_STATE(FIXED_WING);
if (currentMixerMode == MIXER_CUSTOM_AIRPLANE) {
loadCustomServoMixer();
}
} else {
DISABLE_STATE(FIXED_WING);
if (currentMixerMode == MIXER_CUSTOM_TRI) {
loadCustomServoMixer();
}
}
}
void servoMixerLoadMix(int index, servoMixer_t *customServoMixers)
{
int i;
// we're 1-based
index++;
// clear existing
for (i = 0; i < MAX_SERVO_RULES; i++)
customServoMixers[i].targetChannel = customServoMixers[i].inputSource = customServoMixers[i].rate = customServoMixers[i].box = 0;
for (i = 0; i < servoMixers[index].servoRuleCount; i++)
customServoMixers[i] = servoMixers[index].rule[i];
}
STATIC_UNIT_TESTED void forwardAuxChannelsToServos(uint8_t firstServoIndex)
{
// start forwarding from this channel
uint8_t channelOffset = AUX1;
uint8_t servoOffset;
for (servoOffset = 0; servoOffset < MAX_AUX_CHANNEL_COUNT && channelOffset < MAX_SUPPORTED_RC_CHANNEL_COUNT; servoOffset++) {
pwmWriteServo(firstServoIndex + servoOffset, rcData[channelOffset++]);
}
}
static void updateGimbalServos(uint8_t firstServoIndex)
{
pwmWriteServo(firstServoIndex + 0, servo[SERVO_GIMBAL_PITCH]);
pwmWriteServo(firstServoIndex + 1, servo[SERVO_GIMBAL_ROLL]);
}
void writeServos(void)
{
uint8_t servoIndex = 0;
switch (currentMixerMode) {
case MIXER_BICOPTER:
pwmWriteServo(servoIndex++, servo[SERVO_BICOPTER_LEFT]);
pwmWriteServo(servoIndex++, servo[SERVO_BICOPTER_RIGHT]);
break;
case MIXER_TRI:
case MIXER_CUSTOM_TRI:
if (servoMixerConfig->tri_unarmed_servo) {
// if unarmed flag set, we always move servo
pwmWriteServo(servoIndex++, servo[SERVO_RUDDER]);
} else {
// otherwise, only move servo when copter is armed
if (ARMING_FLAG(ARMED))
pwmWriteServo(servoIndex++, servo[SERVO_RUDDER]);
else
pwmWriteServo(servoIndex++, 0); // kill servo signal completely.
}
break;
case MIXER_FLYING_WING:
pwmWriteServo(servoIndex++, servo[SERVO_FLAPPERON_1]);
pwmWriteServo(servoIndex++, servo[SERVO_FLAPPERON_2]);
break;
case MIXER_DUALCOPTER:
pwmWriteServo(servoIndex++, servo[SERVO_DUALCOPTER_LEFT]);
pwmWriteServo(servoIndex++, servo[SERVO_DUALCOPTER_RIGHT]);
break;
case MIXER_CUSTOM_AIRPLANE:
case MIXER_AIRPLANE:
for (int i = SERVO_PLANE_INDEX_MIN; i <= SERVO_PLANE_INDEX_MAX; i++) {
pwmWriteServo(servoIndex++, servo[i]);
}
break;
case MIXER_SINGLECOPTER:
for (int i = SERVO_SINGLECOPTER_INDEX_MIN; i <= SERVO_SINGLECOPTER_INDEX_MAX; i++) {
pwmWriteServo(servoIndex++, servo[i]);
}
break;
default:
break;
}
// Two servos for SERVO_TILT, if enabled
if (feature(FEATURE_SERVO_TILT) || currentMixerMode == MIXER_GIMBAL) {
updateGimbalServos(servoIndex);
servoIndex += 2;
}
// forward AUX to remaining servo outputs (not constrained)
if (feature(FEATURE_CHANNEL_FORWARDING)) {
forwardAuxChannelsToServos(servoIndex);
servoIndex += MAX_AUX_CHANNEL_COUNT;
}
}
STATIC_UNIT_TESTED void servoMixer(void)
{
int16_t input[INPUT_SOURCE_COUNT]; // Range [-500:+500]
static int16_t currentOutput[MAX_SERVO_RULES];
uint8_t i;
if (FLIGHT_MODE(PASSTHRU_MODE)) {
// Direct passthru from RX
input[INPUT_STABILIZED_ROLL] = rcCommand[ROLL];
input[INPUT_STABILIZED_PITCH] = rcCommand[PITCH];
input[INPUT_STABILIZED_YAW] = rcCommand[YAW];
} else {
// Assisted modes (gyro only or gyro+acc according to AUX configuration in Gui
input[INPUT_STABILIZED_ROLL] = axisPIDf[ROLL];
input[INPUT_STABILIZED_PITCH] = axisPIDf[PITCH];
input[INPUT_STABILIZED_YAW] = axisPIDf[YAW];
// Reverse yaw servo when inverted in 3D mode
if (feature(FEATURE_3D) && (rcData[THROTTLE] < rxConfig->midrc)) {
input[INPUT_STABILIZED_YAW] *= -1;
}
}
input[INPUT_GIMBAL_PITCH] = scaleRange(attitude.values.pitch, -1800, 1800, -500, +500);
input[INPUT_GIMBAL_ROLL] = scaleRange(attitude.values.roll, -1800, 1800, -500, +500);
input[INPUT_STABILIZED_THROTTLE] = motor[0] - 1000 - 500; // Since it derives from rcCommand or mincommand and must be [-500:+500]
// center the RC input value around the RC middle value
// by subtracting the RC middle value from the RC input value, we get:
// data - middle = input
// 2000 - 1500 = +500
// 1500 - 1500 = 0
// 1000 - 1500 = -500
input[INPUT_RC_ROLL] = rcData[ROLL] - rxConfig->midrc;
input[INPUT_RC_PITCH] = rcData[PITCH] - rxConfig->midrc;
input[INPUT_RC_YAW] = rcData[YAW] - rxConfig->midrc;
input[INPUT_RC_THROTTLE] = rcData[THROTTLE] - rxConfig->midrc;
input[INPUT_RC_AUX1] = rcData[AUX1] - rxConfig->midrc;
input[INPUT_RC_AUX2] = rcData[AUX2] - rxConfig->midrc;
input[INPUT_RC_AUX3] = rcData[AUX3] - rxConfig->midrc;
input[INPUT_RC_AUX4] = rcData[AUX4] - rxConfig->midrc;
for (i = 0; i < MAX_SUPPORTED_SERVOS; i++)
servo[i] = 0;
// mix servos according to rules
for (i = 0; i < servoRuleCount; i++) {
// consider rule if no box assigned or box is active
if (currentServoMixer[i].box == 0 || IS_RC_MODE_ACTIVE(BOXSERVO1 + currentServoMixer[i].box - 1)) {
uint8_t target = currentServoMixer[i].targetChannel;
uint8_t from = currentServoMixer[i].inputSource;
uint16_t servo_width = servoConf[target].max - servoConf[target].min;
int16_t min = currentServoMixer[i].min * servo_width / 100 - servo_width / 2;
int16_t max = currentServoMixer[i].max * servo_width / 100 - servo_width / 2;
if (currentServoMixer[i].speed == 0)
currentOutput[i] = input[from];
else {
if (currentOutput[i] < input[from])
currentOutput[i] = constrain(currentOutput[i] + currentServoMixer[i].speed, currentOutput[i], input[from]);
else if (currentOutput[i] > input[from])
currentOutput[i] = constrain(currentOutput[i] - currentServoMixer[i].speed, input[from], currentOutput[i]);
}
servo[target] += servoDirection(target, from) * constrain(((int32_t)currentOutput[i] * currentServoMixer[i].rate) / 100, min, max);
} else {
currentOutput[i] = 0;
}
}
for (i = 0; i < MAX_SUPPORTED_SERVOS; i++) {
servo[i] = ((int32_t)servoConf[i].rate * servo[i]) / 100L;
servo[i] += determineServoMiddleOrForwardFromChannel(i);
}
}
void servoTable(void)
{
// airplane / servo mixes
switch (currentMixerMode) {
case MIXER_CUSTOM_AIRPLANE:
case MIXER_FLYING_WING:
case MIXER_AIRPLANE:
case MIXER_BICOPTER:
case MIXER_CUSTOM_TRI:
case MIXER_TRI:
case MIXER_DUALCOPTER:
case MIXER_SINGLECOPTER:
case MIXER_GIMBAL:
servoMixer();
break;
/*
case MIXER_GIMBAL:
servo[SERVO_GIMBAL_PITCH] = (((int32_t)servoConf[SERVO_GIMBAL_PITCH].rate * attitude.values.pitch) / 50) + determineServoMiddleOrForwardFromChannel(SERVO_GIMBAL_PITCH);
servo[SERVO_GIMBAL_ROLL] = (((int32_t)servoConf[SERVO_GIMBAL_ROLL].rate * attitude.values.roll) / 50) + determineServoMiddleOrForwardFromChannel(SERVO_GIMBAL_ROLL);
break;
*/
default:
break;
}
// camera stabilization
if (feature(FEATURE_SERVO_TILT)) {
// center at fixed position, or vary either pitch or roll by RC channel
servo[SERVO_GIMBAL_PITCH] = determineServoMiddleOrForwardFromChannel(SERVO_GIMBAL_PITCH);
servo[SERVO_GIMBAL_ROLL] = determineServoMiddleOrForwardFromChannel(SERVO_GIMBAL_ROLL);
if (IS_RC_MODE_ACTIVE(BOXCAMSTAB)) {
if (gimbalConfig->mode == GIMBAL_MODE_MIXTILT) {
servo[SERVO_GIMBAL_PITCH] -= (-(int32_t)servoConf[SERVO_GIMBAL_PITCH].rate) * attitude.values.pitch / 50 - (int32_t)servoConf[SERVO_GIMBAL_ROLL].rate * attitude.values.roll / 50;
servo[SERVO_GIMBAL_ROLL] += (-(int32_t)servoConf[SERVO_GIMBAL_PITCH].rate) * attitude.values.pitch / 50 + (int32_t)servoConf[SERVO_GIMBAL_ROLL].rate * attitude.values.roll / 50;
} else {
servo[SERVO_GIMBAL_PITCH] += (int32_t)servoConf[SERVO_GIMBAL_PITCH].rate * attitude.values.pitch / 50;
servo[SERVO_GIMBAL_ROLL] += (int32_t)servoConf[SERVO_GIMBAL_ROLL].rate * attitude.values.roll / 50;
}
}
}
// constrain servos
for (int i = 0; i < MAX_SUPPORTED_SERVOS; i++) {
servo[i] = constrain(servo[i], servoConf[i].min, servoConf[i].max); // limit the values
}
}
bool isMixerUsingServos(void)
{
return useServo;
}
void filterServos(void)
{
static int16_t servoIdx;
static bool servoFilterIsSet;
static biquadFilter_t servoFilter[MAX_SUPPORTED_SERVOS];
#if defined(MIXER_DEBUG)
uint32_t startTime = micros();
#endif
if (servoMixerConfig->servo_lowpass_enable) {
for (servoIdx = 0; servoIdx < MAX_SUPPORTED_SERVOS; servoIdx++) {
if (!servoFilterIsSet) {
biquadFilterInitLPF(&servoFilter[servoIdx], servoMixerConfig->servo_lowpass_freq, targetPidLooptime);
servoFilterIsSet = true;
}
servo[servoIdx] = lrintf(biquadFilterApply(&servoFilter[servoIdx], (float)servo[servoIdx]));
// Sanity check
servo[servoIdx] = constrain(servo[servoIdx], servoConf[servoIdx].min, servoConf[servoIdx].max);
}
}
#if defined(MIXER_DEBUG)
debug[0] = (int16_t)(micros() - startTime);
#endif
}
#endif

129
src/main/flight/servos.h Normal file
View file

@ -0,0 +1,129 @@
/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#define MAX_SUPPORTED_SERVOS 8
// These must be consecutive, see 'reversedSources'
enum {
INPUT_STABILIZED_ROLL = 0,
INPUT_STABILIZED_PITCH,
INPUT_STABILIZED_YAW,
INPUT_STABILIZED_THROTTLE,
INPUT_RC_ROLL,
INPUT_RC_PITCH,
INPUT_RC_YAW,
INPUT_RC_THROTTLE,
INPUT_RC_AUX1,
INPUT_RC_AUX2,
INPUT_RC_AUX3,
INPUT_RC_AUX4,
INPUT_GIMBAL_PITCH,
INPUT_GIMBAL_ROLL,
INPUT_SOURCE_COUNT
} inputSource_e;
// target servo channels
typedef enum {
SERVO_GIMBAL_PITCH = 0,
SERVO_GIMBAL_ROLL = 1,
SERVO_FLAPS = 2,
SERVO_FLAPPERON_1 = 3,
SERVO_FLAPPERON_2 = 4,
SERVO_RUDDER = 5,
SERVO_ELEVATOR = 6,
SERVO_THROTTLE = 7, // for internal combustion (IC) planes
SERVO_BICOPTER_LEFT = 4,
SERVO_BICOPTER_RIGHT = 5,
SERVO_DUALCOPTER_LEFT = 4,
SERVO_DUALCOPTER_RIGHT = 5,
SERVO_SINGLECOPTER_1 = 3,
SERVO_SINGLECOPTER_2 = 4,
SERVO_SINGLECOPTER_3 = 5,
SERVO_SINGLECOPTER_4 = 6,
} servoIndex_e; // FIXME rename to servoChannel_e
#define SERVO_PLANE_INDEX_MIN SERVO_FLAPS
#define SERVO_PLANE_INDEX_MAX SERVO_THROTTLE
#define SERVO_DUALCOPTER_INDEX_MIN SERVO_DUALCOPTER_LEFT
#define SERVO_DUALCOPTER_INDEX_MAX SERVO_DUALCOPTER_RIGHT
#define SERVO_SINGLECOPTER_INDEX_MIN SERVO_SINGLECOPTER_1
#define SERVO_SINGLECOPTER_INDEX_MAX SERVO_SINGLECOPTER_4
#define SERVO_FLAPPERONS_MIN SERVO_FLAPPERON_1
#define SERVO_FLAPPERONS_MAX SERVO_FLAPPERON_2
typedef struct servoMixer_s {
uint8_t targetChannel; // servo that receives the output of the rule
uint8_t inputSource; // input channel for this rule
int8_t rate; // range [-125;+125] ; can be used to adjust a rate 0-125% and a direction
uint8_t speed; // reduces the speed of the rule, 0=unlimited speed
int8_t min; // lower bound of rule range [0;100]% of servo max-min
int8_t max; // lower bound of rule range [0;100]% of servo max-min
uint8_t box; // active rule if box is enabled, range [0;3], 0=no box, 1=BOXSERVO1, 2=BOXSERVO2, 3=BOXSERVO3
} servoMixer_t;
#define MAX_SERVO_RULES (2 * MAX_SUPPORTED_SERVOS)
#define MAX_SERVO_SPEED UINT8_MAX
#define MAX_SERVO_BOXES 3
// Custom mixer configuration
typedef struct mixerRules_s {
uint8_t servoRuleCount;
const servoMixer_t *rule;
} mixerRules_t;
typedef struct servoParam_s {
int16_t min; // servo min
int16_t max; // servo max
int16_t middle; // servo middle
int8_t rate; // range [-125;+125] ; can be used to adjust a rate 0-125% and a direction
uint8_t angleAtMin; // range [0;180] the measured angle in degrees from the middle when the servo is at the 'min' value.
uint8_t angleAtMax; // range [0;180] the measured angle in degrees from the middle when the servo is at the 'max' value.
int8_t forwardFromChannel; // RX channel index, 0 based. See CHANNEL_FORWARDING_DISABLED
uint32_t reversedSources; // the direction of servo movement for each input source of the servo mixer, bit set=inverted
} __attribute__ ((__packed__)) servoParam_t;
typedef struct servoMixerConfig_s{
uint8_t tri_unarmed_servo; // send tail servo correction pulses even when unarmed
uint16_t servo_lowpass_freq; // lowpass servo filter frequency selection; 1/1000ths of loop freq
int8_t servo_lowpass_enable; // enable/disable lowpass filter
} servoMixerConfig_t;
extern int16_t servo[MAX_SUPPORTED_SERVOS];
void servoTable(void);
bool isMixerUsingServos(void);
void writeServos(void);
void filterServos(void);
void servoMixerInit(servoMixer_t *customServoMixers);
struct gimbalConfig_s;
void servoUseConfigs(servoMixerConfig_t *servoConfigToUse, servoParam_t *servoParamsToUse, struct gimbalConfig_s *gimbalConfigToUse);
void servoMixerLoadMix(int index, servoMixer_t *customServoMixers);
void loadCustomServoMixer(void);
void servoConfigureOutput(void);
int servoDirection(int servoIndex, int fromChannel);

View file

@ -17,7 +17,7 @@
#pragma once
#include "drivers/io.h"
#include "drivers/io_types.h"
#include "flight/mixer.h"
typedef struct motorConfig_s {

View file

@ -55,6 +55,7 @@ uint8_t cliMode = 0;
#include "drivers/pwm_rx.h"
#include "drivers/sdcard.h"
#include "drivers/buf_writer.h"
#include "drivers/serial_escserial.h"
#include "fc/config.h"
#include "fc/rc_controls.h"
@ -154,6 +155,9 @@ static void cliResource(char *cmdline);
#ifdef GPS
static void cliGpsPassthrough(char *cmdline);
#endif
#ifdef USE_ESCSERIAL
static void cliEscPassthrough(char *cmdline);
#endif
static void cliHelp(char *cmdline);
static void cliMap(char *cmdline);
@ -305,6 +309,9 @@ const clicmd_t cmdTable[] = {
"[name]", cliGet),
#ifdef GPS
CLI_COMMAND_DEF("gpspassthrough", "passthrough gps to serial", NULL, cliGpsPassthrough),
#endif
#ifdef USE_ESCSERIAL
CLI_COMMAND_DEF("escprog", "passthrough esc to serial", "<mode [sk/bl/ki]> <index>", cliEscPassthrough),
#endif
CLI_COMMAND_DEF("help", NULL, NULL, cliHelp),
#ifdef LED_STRIP
@ -519,7 +526,7 @@ static const char * const lookupTableSuperExpoYaw[] = {
static const char * const lookupTablePwmProtocol[] = {
"OFF", "ONESHOT125", "ONESHOT42", "MULTISHOT", "BRUSHED",
#ifdef USE_DSHOT
"DSHOT600", "DSHOT150"
"DSHOT600", "DSHOT300", "DSHOT150"
#endif
};
@ -817,9 +824,9 @@ const clivalue_t valueTable[] = {
{ "pidsum_limit", VAR_FLOAT | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.pidSumLimit, .config.minmax = { 0.1, 1.0 } },
#ifdef USE_SERVOS
{ "servo_center_pulse", VAR_UINT16 | MASTER_VALUE, &masterConfig.servoConfig.servoCenterPulse, .config.minmax = { PWM_RANGE_ZERO, PWM_RANGE_MAX } },
{ "tri_unarmed_servo", VAR_INT8 | MASTER_VALUE | MODE_LOOKUP, &masterConfig.mixerConfig.tri_unarmed_servo, .config.lookup = { TABLE_OFF_ON } },
{ "servo_lowpass_freq", VAR_UINT16 | MASTER_VALUE, &masterConfig.mixerConfig.servo_lowpass_freq, .config.minmax = { 10, 400} },
{ "servo_lowpass_enable", VAR_INT8 | MASTER_VALUE | MODE_LOOKUP, &masterConfig.mixerConfig.servo_lowpass_enable, .config.lookup = { TABLE_OFF_ON } },
{ "tri_unarmed_servo", VAR_INT8 | MASTER_VALUE | MODE_LOOKUP, &masterConfig.servoMixerConfig.tri_unarmed_servo, .config.lookup = { TABLE_OFF_ON } },
{ "servo_lowpass_freq", VAR_UINT16 | MASTER_VALUE, &masterConfig.servoMixerConfig.servo_lowpass_freq, .config.minmax = { 10, 400} },
{ "servo_lowpass_enable", VAR_INT8 | MASTER_VALUE | MODE_LOOKUP, &masterConfig.servoMixerConfig.servo_lowpass_enable, .config.lookup = { TABLE_OFF_ON } },
{ "servo_pwm_rate", VAR_UINT16 | MASTER_VALUE, &masterConfig.servoConfig.servoPwmRate, .config.minmax = { 50, 498 } },
{ "gimbal_mode", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &masterConfig.gimbalConfig.mode, .config.lookup = { TABLE_GIMBAL_MODE } },
#endif
@ -2945,6 +2952,60 @@ static void cliGpsPassthrough(char *cmdline)
}
#endif
#ifdef USE_ESCSERIAL
static void cliEscPassthrough(char *cmdline)
{
uint8_t mode = 0;
int index = 0;
int i = 0;
char *pch = NULL;
char *saveptr;
if (isEmpty(cmdline)) {
cliShowParseError();
return;
}
pch = strtok_r(cmdline, " ", &saveptr);
while (pch != NULL) {
switch (i) {
case 0:
if(strncasecmp(pch, "sk", strlen(pch)) == 0)
{
mode = 0;
}
else if(strncasecmp(pch, "bl", strlen(pch)) == 0)
{
mode = 1;
}
else if(strncasecmp(pch, "ki", strlen(pch)) == 0)
{
mode = 2;
}
else
{
cliShowParseError();
return;
}
break;
case 1:
index = atoi(pch);
if ((index >= 0) && (index < USABLE_TIMER_CHANNEL_COUNT)) {
printf("passthru at pwm output %d enabled\r\n", index);
}
else {
printf("invalid pwm output, valid range: 1 to %d\r\n", USABLE_TIMER_CHANNEL_COUNT);
return;
}
break;
}
i++;
pch = strtok_r(NULL, " ", &saveptr);
}
escEnablePassthrough(cliPort,index,mode);
}
#endif
static void cliHelp(char *cmdline)
{
UNUSED(cmdline);

View file

@ -17,8 +17,8 @@
#pragma once
#include "drivers/io.h"
#include "flight/mixer.h"
#include "drivers/io_types.h"
#include "flight/servos.h"
typedef struct servoConfig_s {
// PWM values, in milliseconds, common range is 1000-2000 (1 to 2ms)

View file

@ -291,7 +291,9 @@ void init(void)
#endif
mixerConfigureOutput();
// pwmInit() needs to be called as soon as possible for ESC compatibility reasons
#ifdef USE_SERVOS
servoConfigureOutput();
#endif
systemState |= SYSTEM_STATE_MOTORS_READY;
#ifdef BEEPER
@ -456,7 +458,8 @@ void init(void)
imuInit();
mspSerialInit(mspFcInit());
mspFcInit();
mspSerialInit();
#ifdef USE_CLI
cliInit(&masterConfig.serialConfig);

View file

@ -31,8 +31,6 @@
#include "msp/msp.h"
#include "msp/msp_serial.h"
static mspProcessCommandFnPtr mspProcessCommandFn;
static mspPushCommandFnPtr mspPushCommandFn;
static mspPort_t mspPorts[MAX_MSP_PORT_COUNT];
@ -146,7 +144,7 @@ static void mspSerialEncode(mspPort_t *msp, mspPacket_t *packet)
serialEndWrite(msp->port);
}
static mspPostProcessFnPtr mspSerialProcessReceivedCommand(mspPort_t *msp)
static mspPostProcessFnPtr mspSerialProcessReceivedCommand(mspPort_t *msp, mspProcessCommandFnPtr mspProcessCommandFn)
{
static uint8_t outBuf[MSP_PORT_OUTBUF_SIZE];
@ -180,7 +178,7 @@ static mspPostProcessFnPtr mspSerialProcessReceivedCommand(mspPort_t *msp)
*
* Called periodically by the scheduler.
*/
void mspSerialProcess(mspEvaluateNonMspData_e evaluateNonMspData)
void mspSerialProcess(mspEvaluateNonMspData_e evaluateNonMspData, mspProcessCommandFnPtr mspProcessCommandFn)
{
for (uint8_t portIndex = 0; portIndex < MAX_MSP_PORT_COUNT; portIndex++) {
mspPort_t * const mspPort = &mspPorts[portIndex];
@ -198,7 +196,7 @@ void mspSerialProcess(mspEvaluateNonMspData_e evaluateNonMspData)
}
if (mspPort->c_state == MSP_COMMAND_RECEIVED) {
mspPostProcessFn = mspSerialProcessReceivedCommand(mspPort);
mspPostProcessFn = mspSerialProcessReceivedCommand(mspPort, mspProcessCommandFn);
break; // process one command at a time so as not to block.
}
}
@ -209,13 +207,14 @@ void mspSerialProcess(mspEvaluateNonMspData_e evaluateNonMspData)
}
}
void mspSerialInit(mspProcessCommandFnPtr mspProcessCommandFnToUse)
void mspSerialInit(void)
{
mspProcessCommandFn = mspProcessCommandFnToUse;
memset(mspPorts, 0, sizeof(mspPorts));
mspSerialAllocatePorts();
}
mspPushCommandFnPtr mspPushCommandFn;
void mspSerialPush(uint8_t cmd, uint8_t *data, int datalen)
{
static uint8_t pushBuf[30];

View file

@ -62,8 +62,8 @@ typedef struct mspPort_s {
} mspPort_t;
void mspSerialInit(mspProcessCommandFnPtr mspProcessCommandFn);
void mspSerialProcess(mspEvaluateNonMspData_e evaluateNonMspData);
void mspSerialInit(void);
void mspSerialProcess(mspEvaluateNonMspData_e evaluateNonMspData, mspProcessCommandFnPtr mspProcessCommandFn);
void mspSerialAllocatePorts(void);
void mspSerialReleasePortIfAllocated(struct serialPort_s *serialPort);
void mspSerialPushInit(mspPushCommandFnPtr mspPushCommandFn);

View file

@ -49,7 +49,7 @@ static const gyroConfig_t *gyroConfig;
static biquadFilter_t gyroFilterLPF[XYZ_AXIS_COUNT];
static biquadFilter_t gyroFilterNotch_1[XYZ_AXIS_COUNT], gyroFilterNotch_2[XYZ_AXIS_COUNT];
static pt1Filter_t gyroFilterPt1[XYZ_AXIS_COUNT];
static firFilterState_t gyroDenoiseState[XYZ_AXIS_COUNT];
static firFilterDenoise_t gyroDenoiseState[XYZ_AXIS_COUNT];
static uint8_t gyroSoftLpfType;
static uint16_t gyroSoftNotchHz1, gyroSoftNotchHz2;
static float gyroSoftNotchQ1, gyroSoftNotchQ2;
@ -83,7 +83,7 @@ void gyroInit(void)
else if (gyroSoftLpfType == FILTER_PT1)
gyroDt = (float) gyro.targetLooptime * 0.000001f;
else
initFirFilter(&gyroDenoiseState[axis], gyroSoftLpfHz, gyro.targetLooptime);
firFilterDenoiseInit(&gyroDenoiseState[axis], gyroSoftLpfHz, gyro.targetLooptime);
}
}
@ -198,7 +198,7 @@ void gyroUpdate(void)
else if (gyroSoftLpfType == FILTER_PT1)
gyroADCf[axis] = pt1FilterApply4(&gyroFilterPt1[axis], (float) gyroADC[axis], gyroSoftLpfHz, gyroDt);
else
gyroADCf[axis] = firFilterUpdate(&gyroDenoiseState[axis], (float) gyroADC[axis]);
gyroADCf[axis] = firFilterDenoiseUpdate(&gyroDenoiseState[axis], (float) gyroADC[axis]);
if (debugMode == DEBUG_NOTCH)
debug[axis] = lrintf(gyroADCf[axis]);

View file

@ -67,6 +67,9 @@
#define USE_UART3
#define SERIAL_PORT_COUNT 4
#define USE_ESCSERIAL
#define ESCSERIAL_TIMER_TX_HARDWARE 0 // PWM 1
#define UART1_TX_PIN PA9
#define UART1_RX_PIN PA10

View file

@ -62,6 +62,9 @@
#define USE_UART3
#define SERIAL_PORT_COUNT 4
#define USE_ESCSERIAL
#define ESCSERIAL_TIMER_TX_HARDWARE 0 // PWM 1
#define UART1_TX_PIN PB6
#define UART1_RX_PIN PB7

View file

@ -60,6 +60,9 @@
#define USE_SOFTSERIAL2
#define SERIAL_PORT_COUNT 5
#define USE_ESCSERIAL
#define ESCSERIAL_TIMER_TX_HARDWARE 0 // PWM 1
#define SOFTSERIAL_1_TIMER TIM3
#define SOFTSERIAL_1_TIMER_RX_HARDWARE 4 // PWM 5
#define SOFTSERIAL_1_TIMER_TX_HARDWARE 5 // PWM 6

View file

@ -70,6 +70,9 @@
#define SERIAL_PORT_COUNT 4
#define AVOID_UART2_FOR_PWM_PPM
#define USE_ESCSERIAL
#define ESCSERIAL_TIMER_TX_HARDWARE 0 // PWM 1
#define UART1_TX_PIN PB6
#define UART1_RX_PIN PB7

View file

@ -118,6 +118,9 @@
#define SERIAL_PORT_COUNT 4
#define USE_ESCSERIAL
#define ESCSERIAL_TIMER_TX_HARDWARE 0 // PWM 1
#define USE_SPI
#define USE_SPI_DEVICE_1
#define USE_SPI_DEVICE_2

View file

@ -18,7 +18,7 @@
#pragma once
#define TARGET_BOARD_IDENTIFIER "BETAFC"
#define TARGET_BOARD_IDENTIFIER "BFFC"
#define CONFIG_FASTLOOP_PREFERRED_ACC ACC_NONE
@ -32,7 +32,7 @@
#define USE_MAG_DATA_READY_SIGNAL
#define ENSURE_MAG_DATA_READY_IS_HIGH
#define MPU6000_CS_PIN PA15
#define MPU6000_CS_PIN PC13
#define MPU6000_SPI_INSTANCE SPI1
@ -62,6 +62,9 @@
#define USE_SOFTSERIAL2
#define SERIAL_PORT_COUNT 5
#define USE_ESCSERIAL
#define ESCSERIAL_TIMER_TX_HARDWARE 0 // PWM 1
#define UART1_TX_PIN PA9
#define UART1_RX_PIN PA10
@ -75,7 +78,6 @@
#define SOFTSERIAL_2_TIMER_RX_HARDWARE 6 // PWM 5
#define SOFTSERIAL_2_TIMER_TX_HARDWARE 7 // PWM 6
#undef USE_I2C
#define USE_SPI
@ -93,8 +95,13 @@
#define SPI2_MISO_PIN PB14
#define SPI2_MOSI_PIN PB15
#define OSD
// include the max7456 driver
#define USE_MAX7456
#define MAX7456_SPI_INSTANCE SPI1
#define MAX7456_SPI_CS_PIN PA1
#define MAX7456_SPI_CLK (SPI_CLOCK_STANDARD*2)
#define MAX7456_RESTORE_CLK (SPI_CLOCK_FAST)
#define USE_SDCARD
#define USE_SDCARD_SPI2

View file

@ -9,5 +9,6 @@ TARGET_SRC = \
drivers/compass_ak8975.c \
drivers/compass_hmc5883l.c \
drivers/display_ug2864hsweg01.h \
drivers/flash_m25p16.c
drivers/flash_m25p16.c \
drivers/max7456.c \
io/osd.c

View file

@ -111,6 +111,9 @@
#define USE_SOFTSERIAL1
#define SERIAL_PORT_COUNT 5
#define USE_ESCSERIAL
#define ESCSERIAL_TIMER_TX_HARDWARE 0 // PWM 1
#define SOFTSERIAL_1_TIMER TIM3
#define SOFTSERIAL_1_TIMER_RX_HARDWARE 4 // PWM 5
#define SOFTSERIAL_1_TIMER_TX_HARDWARE 5 // PWM 6

View file

@ -93,6 +93,9 @@
#define USE_UART2
#define SERIAL_PORT_COUNT 3
#define USE_ESCSERIAL
#define ESCSERIAL_TIMER_TX_HARDWARE 0 // PWM 1
#define USE_I2C
#define I2C_DEVICE (I2CDEV_1)

View file

@ -32,8 +32,8 @@
#define ACC
#define USE_ACC_MPU6050
#define MAG
#define USE_MAG_HMC5883
//#define MAG
//#define USE_MAG_HMC5883
#define BRUSHED_MOTORS

View file

@ -97,6 +97,9 @@
#define SERIAL_PORT_COUNT 4 //VCP, UART1, UART2, UART3
#define USE_ESCSERIAL
#define ESCSERIAL_TIMER_TX_HARDWARE 0 // PWM 1
#define USE_SPI
#define USE_SPI_DEVICE_1

View file

@ -84,6 +84,9 @@
#define USE_UART3
#define SERIAL_PORT_COUNT 4
#define USE_ESCSERIAL
#define ESCSERIAL_TIMER_TX_HARDWARE 0 // PWM 1
#define UART1_TX_PIN PC4
#define UART1_RX_PIN PC5

View file

@ -98,6 +98,9 @@
#define USE_UART3
#define SERIAL_PORT_COUNT 4
#define USE_ESCSERIAL
#define ESCSERIAL_TIMER_TX_HARDWARE 0 // PWM 1
#define UART1_TX_PIN PB6
#define UART1_RX_PIN PB7

View file

@ -117,6 +117,9 @@
#define USE_SOFTSERIAL1
#define SERIAL_PORT_COUNT 5
#define USE_ESCSERIAL
#define ESCSERIAL_TIMER_TX_HARDWARE 0 // PWM 1
#define UART1_TX_PIN PA9
#define UART1_RX_PIN PA10

View file

@ -122,10 +122,11 @@
#define USE_UART1
#define USE_UART2
#define USE_UART3
/* only 2 uarts available on the NAZE, add ifdef here if present on other boards */
//#define USE_UART3
//#define USE_SOFTSERIAL1
//#define USE_SOFTSERIAL2
#define SERIAL_PORT_COUNT 3
#define SERIAL_PORT_COUNT 2
//#define SOFTSERIAL_1_TIMER TIM3
//#define SOFTSERIAL_1_TIMER_RX_HARDWARE 4 // PWM 5
@ -134,7 +135,6 @@
//#define SOFTSERIAL_2_TIMER_RX_HARDWARE 6 // PWM 7
//#define SOFTSERIAL_2_TIMER_TX_HARDWARE 7 // PWM 8
// USART3 only on NAZE32_SP - Flex Port
#define UART3_RX_PIN PB11
#define UART3_TX_PIN PB10

View file

@ -1,41 +0,0 @@
/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <platform.h>
#include "drivers/io.h"
#include "drivers/timer.h"
const timerHardware_t timerHardware[USABLE_TIMER_CHANNEL_COUNT] = {
{ TIM2, IO_TAG(PA0), TIM_Channel_1, TIM2_IRQn, 0, IOCFG_IPD }, // PWM1 - RC1
{ TIM2, IO_TAG(PA1), TIM_Channel_2, TIM2_IRQn, 0, IOCFG_IPD }, // PWM2 - RC2
{ TIM2, IO_TAG(PA2), TIM_Channel_3, TIM2_IRQn, 0, IOCFG_IPD }, // PWM3 - RC3
{ TIM2, IO_TAG(PA3), TIM_Channel_4, TIM2_IRQn, 0, IOCFG_IPD }, // PWM4 - RC4
{ TIM3, IO_TAG(PA6), TIM_Channel_1, TIM3_IRQn, 0, IOCFG_IPD }, // PWM5 - RC5
{ TIM3, IO_TAG(PA7), TIM_Channel_2, TIM3_IRQn, 0, IOCFG_IPD }, // PWM6 - RC6
{ TIM3, IO_TAG(PB0), TIM_Channel_3, TIM3_IRQn, 0, IOCFG_IPD }, // PWM7 - RC7
{ TIM3, IO_TAG(PB1), TIM_Channel_4, TIM3_IRQn, 0, IOCFG_IPD }, // PWM8 - RC8
{ TIM1, IO_TAG(PA8), TIM_Channel_1, TIM1_CC_IRQn, 1, IOCFG_IPD }, // PWM9 - OUT1
{ TIM1, IO_TAG(PA11),TIM_Channel_4, TIM1_CC_IRQn, 1, IOCFG_IPD }, // PWM10 - OUT2
{ TIM4, IO_TAG(PB6), TIM_Channel_1, TIM4_IRQn, 0, IOCFG_IPD }, // PWM11 - OUT3
{ TIM4, IO_TAG(PB7), TIM_Channel_2, TIM4_IRQn, 0, IOCFG_IPD }, // PWM12 - OUT4
{ TIM4, IO_TAG(PB8), TIM_Channel_3, TIM4_IRQn, 0, IOCFG_IPD }, // PWM13 - OUT5
{ TIM4, IO_TAG(PB9), TIM_Channel_4, TIM4_IRQn, 0, IOCFG_IPD } // PWM14 - OUT6
};

View file

@ -1,95 +0,0 @@
/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#define TARGET_BOARD_IDENTIFIER "OLI1" // Olimexino
//#define OLIMEXINO_UNCUT_LED1_E_JUMPER
//#define OLIMEXINO_UNCUT_LED2_E_JUMPER
#ifdef OLIMEXINO_UNCUT_LED1_E_JUMPER
#define LED0 PA5 // D13, PA5/SPI1_SCK/ADC5 - "LED1" on silkscreen, Green
#endif
#ifdef OLIMEXINO_UNCUT_LED2_E_JUMPER
// "LED2" is using one of the PWM pins (CH2/PWM2), so we must not use PWM2 unless the jumper is cut. @See pwmInit()
#define LED1 PA1 // D3, PA1/UART2_RTS/ADC1/TIM2_CH3 - "LED2" on silkscreen, Yellow
#endif
#define GYRO
#define USE_FAKE_GYRO
//#define USE_GYRO_L3G4200D
//#define USE_GYRO_L3GD20
//#define USE_GYRO_MPU3050
#define USE_GYRO_MPU6050
//#define USE_GYRO_SPI_MPU6000
//#define USE_GYRO_SPI_MPU6500
#define ACC
#define USE_FAKE_ACC
//#define USE_ACC_ADXL345
//#define USE_ACC_BMA280
//#define USE_ACC_MMA8452
//#define USE_ACC_LSM303DLHC
#define USE_ACC_MPU6050
//#define USE_ACC_SPI_MPU6000
//#define USE_ACC_SPI_MPU6500
#define BARO
//#define USE_BARO_MS5611
#define USE_BARO_BMP085
#define USE_BARO_BMP280
#define MAG
#define USE_MAG_HMC5883
#define SONAR
#define SONAR_ECHO_PIN PB1
#define SONAR_TRIGGER_PIN PB0
#define USE_UART1
#define USE_UART2
#define USE_SOFTSERIAL1
#define USE_SOFTSERIAL2
#define SERIAL_PORT_COUNT 4
#define SOFTSERIAL_1_TIMER TIM3
#define SOFTSERIAL_1_TIMER_RX_HARDWARE 4 // PWM 5
#define SOFTSERIAL_1_TIMER_TX_HARDWARE 5 // PWM 6
#define SOFTSERIAL_2_TIMER TIM3
#define SOFTSERIAL_2_TIMER_RX_HARDWARE 6 // PWM 7
#define SOFTSERIAL_2_TIMER_TX_HARDWARE 7 // PWM 8
#define USE_I2C
#define I2C_DEVICE (I2CDEV_2)
#define USE_ADC
#define CURRENT_METER_ADC_PIN PB1
#define VBAT_ADC_PIN PA4
#define RSSI_ADC_PIN PA1
#define EXTERNAL1_ADC_PIN PA5
// IO - assuming all IOs on smt32f103rb LQFP64 package
#define TARGET_IO_PORTA 0xffff
#define TARGET_IO_PORTB 0xffff
#define TARGET_IO_PORTC 0xffff
#define TARGET_IO_PORTD (BIT(2))
#define USABLE_TIMER_CHANNEL_COUNT 14
#define USED_TIMERS (TIM_N(1) | TIM_N(2) | TIM_N(3) | TIM_N(4))

View file

@ -1,10 +0,0 @@
F1_TARGETS += $(TARGET)
FEATURES = HIGHEND
TARGET_SRC = \
drivers/accgyro_mpu.c \
drivers/accgyro_mpu6050.c \
drivers/barometer_bmp085.c \
drivers/barometer_bmp280.c \
drivers/compass_hmc5883l.c

View file

@ -81,6 +81,9 @@
#define USE_I2C
#define I2C_DEVICE (I2CDEV_1) // PB6/SCL, PB7/SDA
#define USE_ESCSERIAL
#define ESCSERIAL_TIMER_TX_HARDWARE 0 // PWM 1
#define USE_SPI
#define USE_SPI_DEVICE_1

View file

@ -96,6 +96,9 @@
#define UART6_RX_PIN PC7
#define UART6_TX_PIN PC6
#define USE_ESCSERIAL
#define ESCSERIAL_TIMER_TX_HARDWARE 0 // PWM 1
#define SERIAL_PORT_COUNT 4 //VCP, USART1, USART3, USART6
#define USE_SPI

View file

@ -52,6 +52,9 @@
#define USE_UART3
#define SERIAL_PORT_COUNT 4
#define USE_ESCSERIAL
#define ESCSERIAL_TIMER_TX_HARDWARE 0 // PWM 1
#define UART1_TX_PIN PB6
#define UART1_RX_PIN PB7

View file

@ -54,6 +54,9 @@
#define USE_UART3
#define SERIAL_PORT_COUNT 3
#define USE_ESCSERIAL
#define ESCSERIAL_TIMER_TX_HARDWARE 0 // PWM 1
#define UART1_TX_PIN PA9
#define UART1_RX_PIN PA10

View file

@ -69,6 +69,9 @@
#define USE_UART3
#define SERIAL_PORT_COUNT 4
#define USE_ESCSERIAL
#define ESCSERIAL_TIMER_TX_HARDWARE 0 // PWM 1
#define UART1_TX_PIN PB6
#define UART1_RX_PIN PB7

View file

@ -92,6 +92,9 @@
#define SERIAL_PORT_COUNT 4 //VCP, USART1, USART3, USART6
#define USE_ESCSERIAL
#define ESCSERIAL_TIMER_TX_HARDWARE 0 // PWM 1
#define USE_SPI
#define USE_SPI_DEVICE_1

View file

@ -71,6 +71,9 @@
#define SERIAL_PORT_COUNT 3 //VCP, USART1, USART2
#define USE_ESCSERIAL
#define ESCSERIAL_TIMER_TX_HARDWARE 0 // PWM 1
#define USE_SPI
//#define USE_SPI_DEVICE_1
#define USE_SPI_DEVICE_2

View file

@ -58,6 +58,9 @@
#define USE_SOFTSERIAL2
#define SERIAL_PORT_COUNT 5
#define USE_ESCSERIAL
#define ESCSERIAL_TIMER_TX_HARDWARE 0 // PWM 1
#define UART1_TX_PIN PA9
#define UART1_RX_PIN PA10

View file

@ -47,6 +47,9 @@
#define USE_SOFTSERIAL1 // Telemetry
#define SERIAL_PORT_COUNT 5
#define USE_ESCSERIAL
#define ESCSERIAL_TIMER_TX_HARDWARE 0 // PWM 1
#define UART1_TX_PIN PA9
#define UART1_RX_PIN PA10

View file

@ -61,6 +61,9 @@
#define USE_UART3
#define SERIAL_PORT_COUNT 4
#define USE_ESCSERIAL
#define ESCSERIAL_TIMER_TX_HARDWARE 0 // PWM 1
#define UART1_TX_PIN PA9
#define UART1_RX_PIN PA10

View file

@ -77,6 +77,9 @@
#define SERIAL_PORT_COUNT 4 //VCP, USART1, USART3, USART6
#define USE_ESCSERIAL
#define ESCSERIAL_TIMER_TX_HARDWARE 0 // PWM 1
#define USE_SPI
#define USE_SPI_DEVICE_1

View file

@ -58,6 +58,9 @@
#define SERIAL_PORT_COUNT 4
#define AVOID_UART2_FOR_PWM_PPM
#define USE_ESCSERIAL
#define ESCSERIAL_TIMER_TX_HARDWARE 0 // PWM 1
#define UART1_TX_PIN PB6
#define UART1_RX_PIN PB7

View file

@ -93,6 +93,9 @@
#define SERIAL_PORT_COUNT 4
#define USE_ESCSERIAL
#define ESCSERIAL_TIMER_TX_HARDWARE 0 // PWM 1
#define USE_SPI
#define USE_SPI_DEVICE_1 //MPU9250
@ -112,6 +115,8 @@
//#define I2C_DEVICE_EXT (I2CDEV_2)
#define USE_ADC
#define VBAT_ADC_PIN PC3
#define CURRENT_METER_ADC_PIN PC2
#define LED_STRIP
#define LED_STRIP_TIMER TIM5

View file

@ -67,6 +67,9 @@
#define USE_SOFTSERIAL2
#define SERIAL_PORT_COUNT 5
#define USE_ESCSERIAL
#define ESCSERIAL_TIMER_TX_HARDWARE 0 // PWM 1
#define UART1_TX_PIN PA9
#define UART1_RX_PIN PA10
@ -134,7 +137,7 @@
#define CMS
// Use external OSD to run CMS
//#define CANVAS
#define CANVAS
// USE I2C OLED display to run CMS
#define OLEDCMS
//#define OLEDCMS

View file

@ -64,6 +64,9 @@
#define USE_UART3
#define SERIAL_PORT_COUNT 4
#define USE_ESCSERIAL
#define ESCSERIAL_TIMER_TX_HARDWARE 0 // PWM 1
#define UART1_TX_PIN PA9
#define UART1_RX_PIN PA10

View file

@ -73,6 +73,9 @@
#define USE_SOFTSERIAL1
#define SERIAL_PORT_COUNT 5
#define USE_ESCSERIAL
#define ESCSERIAL_TIMER_TX_HARDWARE 0 // PWM 1
#define UART1_TX_PIN PA9
#define UART1_RX_PIN PA10

View file

@ -153,6 +153,9 @@
#define USE_UART5
#define SERIAL_PORT_COUNT 6
#define USE_ESCSERIAL
#define ESCSERIAL_TIMER_TX_HARDWARE 0 // PWM 1
#define UART3_TX_PIN PB10 // PB10 (AF7)
#define UART3_RX_PIN PB11 // PB11 (AF7)

View file

@ -120,10 +120,11 @@
#define SOFTSERIAL_1_TIMER TIM1
#define SOFTSERIAL_1_TIMER_RX_HARDWARE 2 // PWM 3
#define SOFTSERIAL_1_TIMER_TX_HARDWARE 1 // PWM 2
#define SERIAL_PORT_COUNT 6 //VCP, USART1, USART2, USART3, USART6, SOFTSERIAL1
#define USE_ESCSERIAL
#define ESCSERIAL_TIMER_TX_HARDWARE 0 // PWM 1
#define USE_SPI

View file

@ -56,6 +56,9 @@
#define USE_SOFTSERIAL1
#define SERIAL_PORT_COUNT 4
#define USE_ESCSERIAL
#define ESCSERIAL_TIMER_TX_HARDWARE 0 // PWM 1
#define UART1_TX_PIN PA9
#define UART1_RX_PIN PA10

View file

@ -70,6 +70,8 @@
#define SERIAL_PORT_COUNT 4 // VCP, UART1, UART3, UART6
#define USE_ESCSERIAL
#define ESCSERIAL_TIMER_TX_HARDWARE 0 // PWM 1
// SD Card
#define USE_SDCARD

View file

@ -54,6 +54,8 @@
#define USE_UART3
#define SERIAL_PORT_COUNT 3
#define USE_ESCSERIAL
#define ESCSERIAL_TIMER_TX_HARDWARE 0 // PWM 1
#define UART2_TX_PIN PA14 // PA14 / SWCLK
#define UART2_RX_PIN PA15

View file

@ -110,6 +110,28 @@ $(OBJECT_DIR)/common/maths.o : \
@mkdir -p $(dir $@)
$(CC) $(C_FLAGS) $(TEST_CFLAGS) -c $(USER_DIR)/common/maths.c -o $@
$(OBJECT_DIR)/common/filter.o : \
$(USER_DIR)/common/filter.c \
$(USER_DIR)/common/filter.h \
$(GTEST_HEADERS)
@mkdir -p $(dir $@)
$(CC) $(C_FLAGS) $(TEST_CFLAGS) -c $(USER_DIR)/common/filter.c -o $@
$(OBJECT_DIR)/common_filter_unittest.o : \
$(TEST_DIR)/common_filter_unittest.cc \
$(GTEST_HEADERS)
@mkdir -p $(dir $@)
$(CXX) $(CXX_FLAGS) $(TEST_CFLAGS) -c $(TEST_DIR)/common_filter_unittest.cc -o $@
$(OBJECT_DIR)/common_filter_unittest : \
$(OBJECT_DIR)/common_filter_unittest.o \
$(OBJECT_DIR)/common/filter.o \
$(OBJECT_DIR)/gtest_main.a
$(CXX) $(CXX_FLAGS) $^ -o $(OBJECT_DIR)/$@
$(OBJECT_DIR)/drivers/io.o : \
$(USER_DIR)/drivers/io.c \

View file

@ -0,0 +1,147 @@
/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <stdbool.h>
#include <limits.h>
#include <math.h>
extern "C" {
#include "common/filter.h"
}
#include "unittest_macros.h"
#include "gtest/gtest.h"
TEST(FilterUnittest, TestFirFilterInit)
{
#define BUFLEN 4
float buf[BUFLEN];
firFilter_t filter;
firFilterInit(&filter, buf, BUFLEN, NULL);
EXPECT_EQ(buf, filter.buf);
EXPECT_EQ(0, filter.coeffs);
EXPECT_EQ(0, filter.movingSum);
EXPECT_EQ(0, filter.index);
EXPECT_EQ(0, filter.count);
EXPECT_EQ(BUFLEN, filter.bufLength);
EXPECT_EQ(BUFLEN, filter.coeffsLength);
}
TEST(FilterUnittest, TestFirFilterUpdateAverage)
{
#define BUFLEN 4
float buf[BUFLEN];
const float coeffs[BUFLEN] = {1.0f, 1.0f, 1.0f, 1.0f};
firFilter_t filter;
firFilterInit(&filter, buf, BUFLEN, coeffs);
firFilterUpdateAverage(&filter, 2.0f);
EXPECT_FLOAT_EQ(2.0f, filter.buf[0]);
EXPECT_FLOAT_EQ(2.0f, filter.movingSum);
EXPECT_EQ(1, filter.index);
EXPECT_EQ(1, filter.count);
EXPECT_EQ(2.0f, firFilterCalcMovingAverage(&filter));
EXPECT_FLOAT_EQ(2.0f, firFilterCalcPartialAverage(&filter, 1));
EXPECT_FLOAT_EQ(2.0f, firFilterApply(&filter));
firFilterUpdateAverage(&filter, 3.0f);
EXPECT_FLOAT_EQ(3.0f, filter.buf[1]);
EXPECT_FLOAT_EQ(5.0f, filter.movingSum);
EXPECT_EQ(2, filter.index);
EXPECT_EQ(2, filter.count);
EXPECT_EQ(2.5f, firFilterCalcMovingAverage(&filter));
EXPECT_FLOAT_EQ(2.5f, firFilterCalcPartialAverage(&filter, 2));
EXPECT_FLOAT_EQ(5.0f, firFilterApply(&filter));
firFilterUpdateAverage(&filter, 4.0f);
EXPECT_FLOAT_EQ(4.0f, filter.buf[2]);
EXPECT_FLOAT_EQ(9.0f, filter.movingSum);
EXPECT_EQ(3, filter.index);
EXPECT_EQ(3, filter.count);
EXPECT_EQ(3.0f, firFilterCalcMovingAverage(&filter));
EXPECT_FLOAT_EQ(3.0f, firFilterCalcPartialAverage(&filter, 3));
EXPECT_FLOAT_EQ(9.0f, firFilterApply(&filter));
firFilterUpdateAverage(&filter, 5.0f);
EXPECT_FLOAT_EQ(5.0f, filter.buf[3]);
EXPECT_FLOAT_EQ(14.0f, filter.movingSum);
EXPECT_EQ(0, filter.index);
EXPECT_EQ(4, filter.count);
EXPECT_EQ(3.5f, firFilterCalcMovingAverage(&filter));
EXPECT_FLOAT_EQ(3.5f, firFilterCalcPartialAverage(&filter, 4));
EXPECT_FLOAT_EQ(14.0f, firFilterApply(&filter));
firFilterUpdateAverage(&filter, 6.0f);
EXPECT_FLOAT_EQ(6.0f, filter.buf[0]);
EXPECT_FLOAT_EQ(18.0f, filter.movingSum);
EXPECT_EQ(1, filter.index);
EXPECT_EQ(BUFLEN, filter.count);
EXPECT_EQ(4.5f, firFilterCalcMovingAverage(&filter));
EXPECT_FLOAT_EQ(4.5f, firFilterCalcPartialAverage(&filter, BUFLEN));
EXPECT_FLOAT_EQ(18.0f, firFilterApply(&filter));
firFilterUpdateAverage(&filter, 7.0f);
EXPECT_FLOAT_EQ(7.0f, filter.buf[1]);
EXPECT_FLOAT_EQ(22.0f, filter.movingSum);
EXPECT_EQ(2, filter.index);
EXPECT_EQ(BUFLEN, filter.count);
EXPECT_EQ(5.5f, firFilterCalcMovingAverage(&filter));
EXPECT_FLOAT_EQ(5.5f, firFilterCalcPartialAverage(&filter, BUFLEN));
EXPECT_FLOAT_EQ(22.0f, firFilterApply(&filter));
}
TEST(FilterUnittest, TestFirFilterApply)
{
#define BUFLEN 4
float buf[BUFLEN];
firFilter_t filter;
const float coeffs[BUFLEN] = {26.0f, 27.0f, 28.0f, 29.0f};
float expected = 0.0f;
firFilterInit(&filter, buf, BUFLEN, coeffs);
firFilterUpdate(&filter, 2.0f);
expected = 2.0f * 26.0f;
EXPECT_FLOAT_EQ(expected, firFilterApply(&filter));
firFilterUpdate(&filter, 3.0f);
expected = 3.0f * 26.0f + 2.0 * 27.0;
EXPECT_FLOAT_EQ(expected, firFilterApply(&filter));
firFilterUpdate(&filter, 4.0f);
expected = 4.0f * 26.0f + 3.0 * 27.0 + 2.0 * 28.0;
EXPECT_FLOAT_EQ(expected, firFilterApply(&filter));
firFilterUpdate(&filter, 5.0f);
expected = 5.0f * 26.0f + 4.0 * 27.0 + 3.0 * 28.0 + 2.0f * 29.0f;
EXPECT_FLOAT_EQ(expected, firFilterApply(&filter));
firFilterUpdate(&filter, 6.0f);
expected = 6.0f * 26.0f + 5.0 * 27.0 + 4.0 * 28.0 + 3.0f * 29.0f;
EXPECT_FLOAT_EQ(expected, firFilterApply(&filter));
firFilterUpdate(&filter, 7.0f);
expected = 7.0f * 26.0f + 6.0 * 27.0 + 5.0 * 28.0 + 4.0f * 29.0f;
EXPECT_FLOAT_EQ(expected, firFilterApply(&filter));
}