1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-14 20:10:18 +03:00

Moved sensor detection into respective sensor modules

This commit is contained in:
Martin Budden 2016-12-05 15:26:14 +00:00
parent 4bee6193e8
commit 4bb6820c42
10 changed files with 535 additions and 508 deletions

View file

@ -17,6 +17,8 @@
#pragma once #pragma once
#include "io_types.h"
typedef struct bmp085Config_s { typedef struct bmp085Config_s {
ioTag_t xclrIO; ioTag_t xclrIO;
ioTag_t eocIO; ioTag_t eocIO;

View file

@ -26,9 +26,27 @@
#include "common/axis.h" #include "common/axis.h"
#include "common/filter.h" #include "common/filter.h"
#include "drivers/accgyro.h"
#include "drivers/accgyro_adxl345.h"
#include "drivers/accgyro_bma280.h"
#include "drivers/accgyro_fake.h"
#include "drivers/accgyro_l3g4200d.h"
#include "drivers/accgyro_mma845x.h"
#include "drivers/accgyro_mpu.h"
#include "drivers/accgyro_mpu3050.h"
#include "drivers/accgyro_mpu6050.h"
#include "drivers/accgyro_mpu6500.h"
#include "drivers/accgyro_l3gd20.h"
#include "drivers/accgyro_lsm303dlhc.h"
#include "drivers/bus_spi.h"
#include "drivers/accgyro_spi_icm20689.h"
#include "drivers/accgyro_spi_mpu6000.h"
#include "drivers/accgyro_spi_mpu6500.h"
#include "drivers/accgyro_spi_mpu9250.h"
#include "drivers/system.h" #include "drivers/system.h"
#include "fc/config.h" #include "fc/config.h"
#include "fc/runtime_config.h"
#include "io/beeper.h" #include "io/beeper.h"
@ -38,6 +56,10 @@
#include "config/feature.h" #include "config/feature.h"
#ifdef USE_HARDWARE_REVISION_DETECTION
#include "hardware_revision.h"
#endif
acc_t acc; // acc access functions acc_t acc; // acc access functions
@ -53,8 +75,161 @@ static flightDynamicsTrims_t *accelerationTrims;
static uint16_t accLpfCutHz = 0; static uint16_t accLpfCutHz = 0;
static biquadFilter_t accFilter[XYZ_AXIS_COUNT]; static biquadFilter_t accFilter[XYZ_AXIS_COUNT];
bool accDetect(accDev_t *dev, accelerationSensor_e accHardwareToUse)
{
accelerationSensor_e accHardware;
#ifdef USE_ACC_ADXL345
drv_adxl345_config_t acc_params;
#endif
retry:
acc.dev.accAlign = ALIGN_DEFAULT;
switch (accHardwareToUse) {
case ACC_DEFAULT:
; // fallthrough
case ACC_ADXL345: // ADXL345
#ifdef USE_ACC_ADXL345
acc_params.useFifo = false;
acc_params.dataRate = 800; // unused currently
#ifdef NAZE
if (hardwareRevision < NAZE32_REV5 && adxl345Detect(&acc_params, dev)) {
#else
if (adxl345Detect(&acc_params, dev)) {
#endif
#ifdef ACC_ADXL345_ALIGN
acc.dev.accAlign = ACC_ADXL345_ALIGN;
#endif
accHardware = ACC_ADXL345;
break;
}
#endif
; // fallthrough
case ACC_LSM303DLHC:
#ifdef USE_ACC_LSM303DLHC
if (lsm303dlhcAccDetect(dev)) {
#ifdef ACC_LSM303DLHC_ALIGN
acc.dev.accAlign = ACC_LSM303DLHC_ALIGN;
#endif
accHardware = ACC_LSM303DLHC;
break;
}
#endif
; // fallthrough
case ACC_MPU6050: // MPU6050
#ifdef USE_ACC_MPU6050
if (mpu6050AccDetect(dev)) {
#ifdef ACC_MPU6050_ALIGN
acc.dev.accAlign = ACC_MPU6050_ALIGN;
#endif
accHardware = ACC_MPU6050;
break;
}
#endif
; // fallthrough
case ACC_MMA8452: // MMA8452
#ifdef USE_ACC_MMA8452
#ifdef NAZE
// Not supported with this frequency
if (hardwareRevision < NAZE32_REV5 && mma8452Detect(dev)) {
#else
if (mma8452Detect(dev)) {
#endif
#ifdef ACC_MMA8452_ALIGN
acc.dev.accAlign = ACC_MMA8452_ALIGN;
#endif
accHardware = ACC_MMA8452;
break;
}
#endif
; // fallthrough
case ACC_BMA280: // BMA280
#ifdef USE_ACC_BMA280
if (bma280Detect(dev)) {
#ifdef ACC_BMA280_ALIGN
acc.dev.accAlign = ACC_BMA280_ALIGN;
#endif
accHardware = ACC_BMA280;
break;
}
#endif
; // fallthrough
case ACC_MPU6000:
#ifdef USE_ACC_SPI_MPU6000
if (mpu6000SpiAccDetect(dev)) {
#ifdef ACC_MPU6000_ALIGN
acc.dev.accAlign = ACC_MPU6000_ALIGN;
#endif
accHardware = ACC_MPU6000;
break;
}
#endif
; // fallthrough
case ACC_MPU6500:
#if defined(USE_ACC_MPU6500) || defined(USE_ACC_SPI_MPU6500)
#ifdef USE_ACC_SPI_MPU6500
if (mpu6500AccDetect(dev) || mpu6500SpiAccDetect(dev))
#else
if (mpu6500AccDetect(dev))
#endif
{
#ifdef ACC_MPU6500_ALIGN
acc.dev.accAlign = ACC_MPU6500_ALIGN;
#endif
accHardware = ACC_MPU6500;
break;
}
#endif
; // fallthrough
case ACC_ICM20689:
#ifdef USE_ACC_SPI_ICM20689
if (icm20689SpiAccDetect(dev))
{
#ifdef ACC_ICM20689_ALIGN
acc.dev.accAlign = ACC_ICM20689_ALIGN;
#endif
accHardware = ACC_ICM20689;
break;
}
#endif
; // fallthrough
case ACC_FAKE:
#ifdef USE_FAKE_ACC
if (fakeAccDetect(dev)) {
accHardware = ACC_FAKE;
break;
}
#endif
; // fallthrough
case ACC_NONE: // disable ACC
accHardware = ACC_NONE;
break;
}
// Found anything? Check if error or ACC is really missing.
if (accHardware == ACC_NONE && accHardwareToUse != ACC_DEFAULT && accHardwareToUse != ACC_NONE) {
// Nothing was found and we have a forced sensor that isn't present.
accHardwareToUse = ACC_DEFAULT;
goto retry;
}
if (accHardware == ACC_NONE) {
return false;
}
detectedSensors[SENSOR_INDEX_ACC] = accHardware;
sensorsSet(SENSOR_ACC);
return true;
}
void accInit(uint32_t gyroSamplingInverval) void accInit(uint32_t gyroSamplingInverval)
{ {
acc.dev.acc_1G = 256; // set default
acc.dev.init(&acc.dev); // driver initialisation
// set the acc sampling interval according to the gyro sampling interval // set the acc sampling interval according to the gyro sampling interval
switch (gyroSamplingInverval) { // Switch statement kept in place to change acc sampling interval in the future switch (gyroSamplingInverval) { // Switch statement kept in place to change acc sampling interval in the future
case 500: case 500:

View file

@ -61,6 +61,7 @@ typedef struct accelerometerConfig_s {
flightDynamicsTrims_t accZero; flightDynamicsTrims_t accZero;
} accelerometerConfig_t; } accelerometerConfig_t;
bool accDetect(accDev_t *dev, accelerationSensor_e accHardwareToUse);
void accInit(uint32_t gyroTargetLooptime); void accInit(uint32_t gyroTargetLooptime);
bool isAccelerationCalibrationComplete(void); bool isAccelerationCalibrationComplete(void);
void accSetCalibrationCycles(uint16_t calibrationCyclesRequired); void accSetCalibrationCycles(uint16_t calibrationCyclesRequired);

View file

@ -24,9 +24,20 @@
#include "common/maths.h" #include "common/maths.h"
#include "drivers/barometer.h" #include "drivers/barometer.h"
#include "drivers/barometer_bmp085.h"
#include "drivers/barometer_bmp280.h"
#include "drivers/barometer_fake.h"
#include "drivers/barometer_ms5611.h"
#include "drivers/system.h" #include "drivers/system.h"
#include "fc/runtime_config.h"
#include "sensors/barometer.h" #include "sensors/barometer.h"
#include "sensors/sensors.h"
#ifdef USE_HARDWARE_REVISION_DETECTION
#include "hardware_revision.h"
#endif
baro_t baro; // barometer access functions baro_t baro; // barometer access functions
@ -40,9 +51,75 @@ static int32_t baroGroundAltitude = 0;
static int32_t baroGroundPressure = 0; static int32_t baroGroundPressure = 0;
static uint32_t baroPressureSum = 0; static uint32_t baroPressureSum = 0;
static barometerConfig_t *barometerConfig; static const barometerConfig_t *barometerConfig;
void useBarometerConfig(barometerConfig_t *barometerConfigToUse) bool baroDetect(baroDev_t *dev, baroSensor_e baroHardwareToUse)
{
// Detect what pressure sensors are available. baro->update() is set to sensor-specific update function
baroSensor_e baroHardware = baroHardwareToUse;
#ifdef USE_BARO_BMP085
const bmp085Config_t *bmp085Config = NULL;
#if defined(BARO_XCLR_GPIO) && defined(BARO_EOC_GPIO)
static const bmp085Config_t defaultBMP085Config = {
.xclrIO = IO_TAG(BARO_XCLR_PIN),
.eocIO = IO_TAG(BARO_EOC_PIN),
};
bmp085Config = &defaultBMP085Config;
#endif
#ifdef NAZE
if (hardwareRevision == NAZE32) {
bmp085Disable(bmp085Config);
}
#endif
#endif
switch (baroHardware) {
case BARO_DEFAULT:
; // fallthough
case BARO_BMP085:
#ifdef USE_BARO_BMP085
if (bmp085Detect(bmp085Config, dev)) {
baroHardware = BARO_BMP085;
break;
}
#endif
; // fallthough
case BARO_MS5611:
#ifdef USE_BARO_MS5611
if (ms5611Detect(dev)) {
baroHardware = BARO_MS5611;
break;
}
#endif
; // fallthough
case BARO_BMP280:
#if defined(USE_BARO_BMP280) || defined(USE_BARO_SPI_BMP280)
if (bmp280Detect(dev)) {
baroHardware = BARO_BMP280;
break;
}
#endif
; // fallthough
case BARO_NONE:
baroHardware = BARO_NONE;
break;
}
if (baroHardware == BARO_NONE) {
return false;
}
detectedSensors[SENSOR_INDEX_BARO] = baroHardware;
sensorsSet(SENSOR_BARO);
return true;
}
void useBarometerConfig(const barometerConfig_t *barometerConfigToUse)
{ {
barometerConfig = barometerConfigToUse; barometerConfig = barometerConfigToUse;
} }

View file

@ -45,7 +45,8 @@ typedef struct baro_s {
extern baro_t baro; extern baro_t baro;
void useBarometerConfig(barometerConfig_t *barometerConfigToUse); bool baroDetect(baroDev_t *dev, baroSensor_e baroHardwareToUse);
void useBarometerConfig(const barometerConfig_t *barometerConfigToUse);
bool isBaroCalibrationComplete(void); bool isBaroCalibrationComplete(void);
void baroSetCalibrationCycles(uint16_t calibrationCyclesRequired); void baroSetCalibrationCycles(uint16_t calibrationCyclesRequired);
uint32_t baroUpdate(void); uint32_t baroUpdate(void);

View file

@ -22,6 +22,12 @@
#include "common/axis.h" #include "common/axis.h"
#include "drivers/compass.h"
#include "drivers/compass_ak8975.h"
#include "drivers/compass_ak8963.h"
#include "drivers/compass_fake.h"
#include "drivers/compass_hmc5883l.h"
#include "drivers/io.h"
#include "drivers/light_led.h" #include "drivers/light_led.h"
#include "fc/config.h" #include "fc/config.h"
@ -42,9 +48,108 @@ mag_t mag; // mag access functions
static int16_t magADCRaw[XYZ_AXIS_COUNT]; static int16_t magADCRaw[XYZ_AXIS_COUNT];
static uint8_t magInit = 0; static uint8_t magInit = 0;
void compassInit(void) bool compassDetect(magDev_t *dev, magSensor_e magHardwareToUse)
{
magSensor_e magHardware;
#ifdef USE_MAG_HMC5883
const hmc5883Config_t *hmc5883Config = 0;
#ifdef NAZE // TODO remove this target specific define
static const hmc5883Config_t nazeHmc5883Config_v1_v4 = {
.intTag = IO_TAG(PB12) /* perhaps disabled? */
};
static const hmc5883Config_t nazeHmc5883Config_v5 = {
.intTag = IO_TAG(MAG_INT_EXTI)
};
if (hardwareRevision < NAZE32_REV5) {
hmc5883Config = &nazeHmc5883Config_v1_v4;
} else {
hmc5883Config = &nazeHmc5883Config_v5;
}
#endif
#ifdef MAG_INT_EXTI
static const hmc5883Config_t extiHmc5883Config = {
.intTag = IO_TAG(MAG_INT_EXTI)
};
hmc5883Config = &extiHmc5883Config;
#endif
#endif
retry:
mag.dev.magAlign = ALIGN_DEFAULT;
switch(magHardwareToUse) {
case MAG_DEFAULT:
; // fallthrough
case MAG_HMC5883:
#ifdef USE_MAG_HMC5883
if (hmc5883lDetect(dev, hmc5883Config)) {
#ifdef MAG_HMC5883_ALIGN
mag.dev.magAlign = MAG_HMC5883_ALIGN;
#endif
magHardware = MAG_HMC5883;
break;
}
#endif
; // fallthrough
case MAG_AK8975:
#ifdef USE_MAG_AK8975
if (ak8975Detect(dev)) {
#ifdef MAG_AK8975_ALIGN
mag.dev.magAlign = MAG_AK8975_ALIGN;
#endif
magHardware = MAG_AK8975;
break;
}
#endif
; // fallthrough
case MAG_AK8963:
#ifdef USE_MAG_AK8963
if (ak8963Detect(dev)) {
#ifdef MAG_AK8963_ALIGN
mag.dev.magAlign = MAG_AK8963_ALIGN;
#endif
magHardware = MAG_AK8963;
break;
}
#endif
; // fallthrough
case MAG_NONE:
magHardware = MAG_NONE;
break;
}
if (magHardware == MAG_NONE && magHardwareToUse != MAG_DEFAULT && magHardwareToUse != MAG_NONE) {
// Nothing was found and we have a forced sensor that isn't present.
magHardwareToUse = MAG_DEFAULT;
goto retry;
}
if (magHardware == MAG_NONE) {
return false;
}
detectedSensors[SENSOR_INDEX_MAG] = magHardware;
sensorsSet(SENSOR_MAG);
return true;
}
void compassInit(const compassConfig_t *compassConfig)
{ {
// initialize and calibration. turn on led during mag calibration (calibration routine blinks it) // initialize and calibration. turn on led during mag calibration (calibration routine blinks it)
// calculate magnetic declination
const int16_t deg = compassConfig->mag_declination / 100;
const int16_t min = compassConfig->mag_declination % 100;
mag.magneticDeclination = (deg + ((float)min * (1.0f / 60.0f))) * 10; // heading is in 0.1deg units
LED1_ON; LED1_ON;
mag.dev.init(); mag.dev.init();
LED1_OFF; LED1_OFF;

View file

@ -47,7 +47,8 @@ typedef struct compassConfig_s {
flightDynamicsTrims_t magZero; flightDynamicsTrims_t magZero;
} compassConfig_t; } compassConfig_t;
void compassInit(void); bool compassDetect(magDev_t *dev, magSensor_e magHardwareToUse);
void compassInit(const compassConfig_t *compassConfig);
union flightDynamicsTrims_u; union flightDynamicsTrims_u;
void compassUpdate(uint32_t currentTime, union flightDynamicsTrims_u *magZero); void compassUpdate(uint32_t currentTime, union flightDynamicsTrims_u *magZero);

View file

@ -27,8 +27,28 @@
#include "common/maths.h" #include "common/maths.h"
#include "common/filter.h" #include "common/filter.h"
#include "drivers/accgyro.h"
#include "drivers/accgyro_adxl345.h"
#include "drivers/accgyro_bma280.h"
#include "drivers/accgyro_fake.h"
#include "drivers/accgyro_l3g4200d.h"
#include "drivers/accgyro_mma845x.h"
#include "drivers/accgyro_mpu.h"
#include "drivers/accgyro_mpu3050.h"
#include "drivers/accgyro_mpu6050.h"
#include "drivers/accgyro_mpu6500.h"
#include "drivers/accgyro_l3gd20.h"
#include "drivers/accgyro_lsm303dlhc.h"
#include "drivers/bus_spi.h"
#include "drivers/accgyro_spi_icm20689.h"
#include "drivers/accgyro_spi_mpu6000.h"
#include "drivers/accgyro_spi_mpu6500.h"
#include "drivers/accgyro_spi_mpu9250.h"
#include "drivers/gyro_sync.h"
#include "drivers/system.h" #include "drivers/system.h"
#include "fc/runtime_config.h"
#include "io/beeper.h" #include "io/beeper.h"
#include "io/statusindicator.h" #include "io/statusindicator.h"
@ -51,6 +71,143 @@ static void *notchFilter1[3];
static filterApplyFnPtr notchFilter2ApplyFn; static filterApplyFnPtr notchFilter2ApplyFn;
static void *notchFilter2[3]; static void *notchFilter2[3];
bool gyroDetect(gyroDev_t *dev)
{
gyroSensor_e gyroHardware = GYRO_DEFAULT;
gyro.dev.gyroAlign = ALIGN_DEFAULT;
switch(gyroHardware) {
case GYRO_DEFAULT:
; // fallthrough
case GYRO_MPU6050:
#ifdef USE_GYRO_MPU6050
if (mpu6050GyroDetect(dev)) {
gyroHardware = GYRO_MPU6050;
#ifdef GYRO_MPU6050_ALIGN
gyro.dev.gyroAlign = GYRO_MPU6050_ALIGN;
#endif
break;
}
#endif
; // fallthrough
case GYRO_L3G4200D:
#ifdef USE_GYRO_L3G4200D
if (l3g4200dDetect(dev)) {
gyroHardware = GYRO_L3G4200D;
#ifdef GYRO_L3G4200D_ALIGN
gyro.dev.gyroAlign = GYRO_L3G4200D_ALIGN;
#endif
break;
}
#endif
; // fallthrough
case GYRO_MPU3050:
#ifdef USE_GYRO_MPU3050
if (mpu3050Detect(dev)) {
gyroHardware = GYRO_MPU3050;
#ifdef GYRO_MPU3050_ALIGN
gyro.dev.gyroAlign = GYRO_MPU3050_ALIGN;
#endif
break;
}
#endif
; // fallthrough
case GYRO_L3GD20:
#ifdef USE_GYRO_L3GD20
if (l3gd20Detect(dev)) {
gyroHardware = GYRO_L3GD20;
#ifdef GYRO_L3GD20_ALIGN
gyro.dev.gyroAlign = GYRO_L3GD20_ALIGN;
#endif
break;
}
#endif
; // fallthrough
case GYRO_MPU6000:
#ifdef USE_GYRO_SPI_MPU6000
if (mpu6000SpiGyroDetect(dev)) {
gyroHardware = GYRO_MPU6000;
#ifdef GYRO_MPU6000_ALIGN
gyro.dev.gyroAlign = GYRO_MPU6000_ALIGN;
#endif
break;
}
#endif
; // fallthrough
case GYRO_MPU6500:
#if defined(USE_GYRO_MPU6500) || defined(USE_GYRO_SPI_MPU6500)
#ifdef USE_GYRO_SPI_MPU6500
if (mpu6500GyroDetect(dev) || mpu6500SpiGyroDetect(dev))
#else
if (mpu6500GyroDetect(dev))
#endif
{
gyroHardware = GYRO_MPU6500;
#ifdef GYRO_MPU6500_ALIGN
gyro.dev.gyroAlign = GYRO_MPU6500_ALIGN;
#endif
break;
}
#endif
; // fallthrough
case GYRO_MPU9250:
#ifdef USE_GYRO_SPI_MPU9250
if (mpu9250SpiGyroDetect(dev))
{
gyroHardware = GYRO_MPU9250;
#ifdef GYRO_MPU9250_ALIGN
gyro.dev.gyroAlign = GYRO_MPU9250_ALIGN;
#endif
break;
}
#endif
; // fallthrough
case GYRO_ICM20689:
#ifdef USE_GYRO_SPI_ICM20689
if (icm20689SpiGyroDetect(dev))
{
gyroHardware = GYRO_ICM20689;
#ifdef GYRO_ICM20689_ALIGN
gyro.dev.gyroAlign = GYRO_ICM20689_ALIGN;
#endif
break;
}
#endif
; // fallthrough
case GYRO_FAKE:
#ifdef USE_FAKE_GYRO
if (fakeGyroDetect(dev)) {
gyroHardware = GYRO_FAKE;
break;
}
#endif
; // fallthrough
case GYRO_NONE:
gyroHardware = GYRO_NONE;
}
if (gyroHardware == GYRO_NONE) {
return false;
}
detectedSensors[SENSOR_INDEX_GYRO] = gyroHardware;
sensorsSet(SENSOR_GYRO);
return true;
}
void gyroInit(const gyroConfig_t *gyroConfigToUse) void gyroInit(const gyroConfig_t *gyroConfigToUse)
{ {
static biquadFilter_t gyroFilterLPF[XYZ_AXIS_COUNT]; static biquadFilter_t gyroFilterLPF[XYZ_AXIS_COUNT];
@ -59,6 +216,9 @@ void gyroInit(const gyroConfig_t *gyroConfigToUse)
static biquadFilter_t gyroFilterNotch_1[XYZ_AXIS_COUNT]; static biquadFilter_t gyroFilterNotch_1[XYZ_AXIS_COUNT];
static biquadFilter_t gyroFilterNotch_2[XYZ_AXIS_COUNT]; static biquadFilter_t gyroFilterNotch_2[XYZ_AXIS_COUNT];
gyro.targetLooptime = gyroSetSampleRate(gyroConfig->gyro_lpf, gyroConfig->gyro_sync_denom); // Set gyro sample rate before initialisation
gyro.dev.lpf = gyroConfig->gyro_lpf;
gyro.dev.init(&gyro.dev);
gyroConfig = gyroConfigToUse; gyroConfig = gyroConfigToUse;
softLpfFilterApplyFn = nullFilterApply; softLpfFilterApplyFn = nullFilterApply;

View file

@ -55,6 +55,7 @@ typedef struct gyroConfig_s {
uint16_t gyro_soft_notch_cutoff_2; uint16_t gyro_soft_notch_cutoff_2;
} gyroConfig_t; } gyroConfig_t;
bool gyroDetect(gyroDev_t *dev);
void gyroSetCalibrationCycles(void); void gyroSetCalibrationCycles(void);
void gyroInit(const gyroConfig_t *gyroConfigToUse); void gyroInit(const gyroConfig_t *gyroConfigToUse);
void gyroUpdate(void); void gyroUpdate(void);

View file

@ -26,44 +26,14 @@
#include "config/feature.h" #include "config/feature.h"
#include "drivers/accgyro_mpu.h"
#include "drivers/io.h" #include "drivers/io.h"
#include "drivers/system.h" #include "drivers/system.h"
#include "drivers/exti.h" #include "drivers/exti.h"
#include "drivers/sensor.h" #include "drivers/sensor.h"
#include "drivers/accgyro.h" #include "drivers/accgyro.h"
#include "drivers/accgyro_adxl345.h"
#include "drivers/accgyro_bma280.h"
#include "drivers/accgyro_fake.h"
#include "drivers/accgyro_l3g4200d.h"
#include "drivers/accgyro_mma845x.h"
#include "drivers/accgyro_mpu.h"
#include "drivers/accgyro_mpu3050.h"
#include "drivers/accgyro_mpu6050.h"
#include "drivers/accgyro_mpu6500.h"
#include "drivers/accgyro_l3gd20.h"
#include "drivers/accgyro_lsm303dlhc.h"
#include "drivers/bus_spi.h"
#include "drivers/accgyro_spi_icm20689.h"
#include "drivers/accgyro_spi_mpu6000.h"
#include "drivers/accgyro_spi_mpu6500.h"
#include "drivers/accgyro_spi_mpu9250.h"
#include "drivers/gyro_sync.h"
#include "drivers/barometer.h" #include "drivers/barometer.h"
#include "drivers/barometer_bmp085.h"
#include "drivers/barometer_bmp280.h"
#include "drivers/barometer_fake.h"
#include "drivers/barometer_ms5611.h"
#include "drivers/compass.h" #include "drivers/compass.h"
#include "drivers/compass_ak8975.h"
#include "drivers/compass_ak8963.h"
#include "drivers/compass_fake.h"
#include "drivers/compass_hmc5883l.h"
#include "drivers/sonar_hcsr04.h" #include "drivers/sonar_hcsr04.h"
#include "fc/config.h" #include "fc/config.h"
@ -97,459 +67,6 @@ const extiConfig_t *selectMPUIntExtiConfig(void)
#endif #endif
} }
bool gyroDetect(gyroDev_t *dev)
{
gyroSensor_e gyroHardware = GYRO_DEFAULT;
gyro.dev.gyroAlign = ALIGN_DEFAULT;
switch(gyroHardware) {
case GYRO_DEFAULT:
; // fallthrough
case GYRO_MPU6050:
#ifdef USE_GYRO_MPU6050
if (mpu6050GyroDetect(dev)) {
gyroHardware = GYRO_MPU6050;
#ifdef GYRO_MPU6050_ALIGN
gyro.dev.gyroAlign = GYRO_MPU6050_ALIGN;
#endif
break;
}
#endif
; // fallthrough
case GYRO_L3G4200D:
#ifdef USE_GYRO_L3G4200D
if (l3g4200dDetect(dev)) {
gyroHardware = GYRO_L3G4200D;
#ifdef GYRO_L3G4200D_ALIGN
gyro.dev.gyroAlign = GYRO_L3G4200D_ALIGN;
#endif
break;
}
#endif
; // fallthrough
case GYRO_MPU3050:
#ifdef USE_GYRO_MPU3050
if (mpu3050Detect(dev)) {
gyroHardware = GYRO_MPU3050;
#ifdef GYRO_MPU3050_ALIGN
gyro.dev.gyroAlign = GYRO_MPU3050_ALIGN;
#endif
break;
}
#endif
; // fallthrough
case GYRO_L3GD20:
#ifdef USE_GYRO_L3GD20
if (l3gd20Detect(dev)) {
gyroHardware = GYRO_L3GD20;
#ifdef GYRO_L3GD20_ALIGN
gyro.dev.gyroAlign = GYRO_L3GD20_ALIGN;
#endif
break;
}
#endif
; // fallthrough
case GYRO_MPU6000:
#ifdef USE_GYRO_SPI_MPU6000
if (mpu6000SpiGyroDetect(dev)) {
gyroHardware = GYRO_MPU6000;
#ifdef GYRO_MPU6000_ALIGN
gyro.dev.gyroAlign = GYRO_MPU6000_ALIGN;
#endif
break;
}
#endif
; // fallthrough
case GYRO_MPU6500:
#if defined(USE_GYRO_MPU6500) || defined(USE_GYRO_SPI_MPU6500)
#ifdef USE_GYRO_SPI_MPU6500
if (mpu6500GyroDetect(dev) || mpu6500SpiGyroDetect(dev))
#else
if (mpu6500GyroDetect(dev))
#endif
{
gyroHardware = GYRO_MPU6500;
#ifdef GYRO_MPU6500_ALIGN
gyro.dev.gyroAlign = GYRO_MPU6500_ALIGN;
#endif
break;
}
#endif
; // fallthrough
case GYRO_MPU9250:
#ifdef USE_GYRO_SPI_MPU9250
if (mpu9250SpiGyroDetect(dev))
{
gyroHardware = GYRO_MPU9250;
#ifdef GYRO_MPU9250_ALIGN
gyro.dev.gyroAlign = GYRO_MPU9250_ALIGN;
#endif
break;
}
#endif
; // fallthrough
case GYRO_ICM20689:
#ifdef USE_GYRO_SPI_ICM20689
if (icm20689SpiGyroDetect(dev))
{
gyroHardware = GYRO_ICM20689;
#ifdef GYRO_ICM20689_ALIGN
gyro.dev.gyroAlign = GYRO_ICM20689_ALIGN;
#endif
break;
}
#endif
; // fallthrough
case GYRO_FAKE:
#ifdef USE_FAKE_GYRO
if (fakeGyroDetect(dev)) {
gyroHardware = GYRO_FAKE;
break;
}
#endif
; // fallthrough
case GYRO_NONE:
gyroHardware = GYRO_NONE;
}
if (gyroHardware == GYRO_NONE) {
return false;
}
detectedSensors[SENSOR_INDEX_GYRO] = gyroHardware;
sensorsSet(SENSOR_GYRO);
return true;
}
static bool accDetect(accDev_t *dev, accelerationSensor_e accHardwareToUse)
{
accelerationSensor_e accHardware;
#ifdef USE_ACC_ADXL345
drv_adxl345_config_t acc_params;
#endif
retry:
acc.dev.accAlign = ALIGN_DEFAULT;
switch (accHardwareToUse) {
case ACC_DEFAULT:
; // fallthrough
case ACC_ADXL345: // ADXL345
#ifdef USE_ACC_ADXL345
acc_params.useFifo = false;
acc_params.dataRate = 800; // unused currently
#ifdef NAZE
if (hardwareRevision < NAZE32_REV5 && adxl345Detect(&acc_params, dev)) {
#else
if (adxl345Detect(&acc_params, dev)) {
#endif
#ifdef ACC_ADXL345_ALIGN
acc.dev.accAlign = ACC_ADXL345_ALIGN;
#endif
accHardware = ACC_ADXL345;
break;
}
#endif
; // fallthrough
case ACC_LSM303DLHC:
#ifdef USE_ACC_LSM303DLHC
if (lsm303dlhcAccDetect(dev)) {
#ifdef ACC_LSM303DLHC_ALIGN
acc.dev.accAlign = ACC_LSM303DLHC_ALIGN;
#endif
accHardware = ACC_LSM303DLHC;
break;
}
#endif
; // fallthrough
case ACC_MPU6050: // MPU6050
#ifdef USE_ACC_MPU6050
if (mpu6050AccDetect(dev)) {
#ifdef ACC_MPU6050_ALIGN
acc.dev.accAlign = ACC_MPU6050_ALIGN;
#endif
accHardware = ACC_MPU6050;
break;
}
#endif
; // fallthrough
case ACC_MMA8452: // MMA8452
#ifdef USE_ACC_MMA8452
#ifdef NAZE
// Not supported with this frequency
if (hardwareRevision < NAZE32_REV5 && mma8452Detect(dev)) {
#else
if (mma8452Detect(dev)) {
#endif
#ifdef ACC_MMA8452_ALIGN
acc.dev.accAlign = ACC_MMA8452_ALIGN;
#endif
accHardware = ACC_MMA8452;
break;
}
#endif
; // fallthrough
case ACC_BMA280: // BMA280
#ifdef USE_ACC_BMA280
if (bma280Detect(dev)) {
#ifdef ACC_BMA280_ALIGN
acc.dev.accAlign = ACC_BMA280_ALIGN;
#endif
accHardware = ACC_BMA280;
break;
}
#endif
; // fallthrough
case ACC_MPU6000:
#ifdef USE_ACC_SPI_MPU6000
if (mpu6000SpiAccDetect(dev)) {
#ifdef ACC_MPU6000_ALIGN
acc.dev.accAlign = ACC_MPU6000_ALIGN;
#endif
accHardware = ACC_MPU6000;
break;
}
#endif
; // fallthrough
case ACC_MPU6500:
#if defined(USE_ACC_MPU6500) || defined(USE_ACC_SPI_MPU6500)
#ifdef USE_ACC_SPI_MPU6500
if (mpu6500AccDetect(dev) || mpu6500SpiAccDetect(dev))
#else
if (mpu6500AccDetect(dev))
#endif
{
#ifdef ACC_MPU6500_ALIGN
acc.dev.accAlign = ACC_MPU6500_ALIGN;
#endif
accHardware = ACC_MPU6500;
break;
}
#endif
; // fallthrough
case ACC_ICM20689:
#ifdef USE_ACC_SPI_ICM20689
if (icm20689SpiAccDetect(dev))
{
#ifdef ACC_ICM20689_ALIGN
acc.dev.accAlign = ACC_ICM20689_ALIGN;
#endif
accHardware = ACC_ICM20689;
break;
}
#endif
; // fallthrough
case ACC_FAKE:
#ifdef USE_FAKE_ACC
if (fakeAccDetect(dev)) {
accHardware = ACC_FAKE;
break;
}
#endif
; // fallthrough
case ACC_NONE: // disable ACC
accHardware = ACC_NONE;
break;
}
// Found anything? Check if error or ACC is really missing.
if (accHardware == ACC_NONE && accHardwareToUse != ACC_DEFAULT && accHardwareToUse != ACC_NONE) {
// Nothing was found and we have a forced sensor that isn't present.
accHardwareToUse = ACC_DEFAULT;
goto retry;
}
if (accHardware == ACC_NONE) {
return false;
}
detectedSensors[SENSOR_INDEX_ACC] = accHardware;
sensorsSet(SENSOR_ACC);
return true;
}
#ifdef BARO
static bool baroDetect(baroDev_t *dev, baroSensor_e baroHardwareToUse)
{
// Detect what pressure sensors are available. baro->update() is set to sensor-specific update function
baroSensor_e baroHardware = baroHardwareToUse;
#ifdef USE_BARO_BMP085
const bmp085Config_t *bmp085Config = NULL;
#if defined(BARO_XCLR_GPIO) && defined(BARO_EOC_GPIO)
static const bmp085Config_t defaultBMP085Config = {
.xclrIO = IO_TAG(BARO_XCLR_PIN),
.eocIO = IO_TAG(BARO_EOC_PIN),
};
bmp085Config = &defaultBMP085Config;
#endif
#ifdef NAZE
if (hardwareRevision == NAZE32) {
bmp085Disable(bmp085Config);
}
#endif
#endif
switch (baroHardware) {
case BARO_DEFAULT:
; // fallthough
case BARO_BMP085:
#ifdef USE_BARO_BMP085
if (bmp085Detect(bmp085Config, dev)) {
baroHardware = BARO_BMP085;
break;
}
#endif
; // fallthough
case BARO_MS5611:
#ifdef USE_BARO_MS5611
if (ms5611Detect(dev)) {
baroHardware = BARO_MS5611;
break;
}
#endif
; // fallthough
case BARO_BMP280:
#if defined(USE_BARO_BMP280) || defined(USE_BARO_SPI_BMP280)
if (bmp280Detect(dev)) {
baroHardware = BARO_BMP280;
break;
}
#endif
; // fallthough
case BARO_NONE:
baroHardware = BARO_NONE;
break;
}
if (baroHardware == BARO_NONE) {
return false;
}
detectedSensors[SENSOR_INDEX_BARO] = baroHardware;
sensorsSet(SENSOR_BARO);
return true;
}
#endif
#ifdef MAG
static bool compassDetect(magDev_t *dev, magSensor_e magHardwareToUse)
{
magSensor_e magHardware;
#ifdef USE_MAG_HMC5883
const hmc5883Config_t *hmc5883Config = 0;
#ifdef NAZE // TODO remove this target specific define
static const hmc5883Config_t nazeHmc5883Config_v1_v4 = {
.intTag = IO_TAG(PB12) /* perhaps disabled? */
};
static const hmc5883Config_t nazeHmc5883Config_v5 = {
.intTag = IO_TAG(MAG_INT_EXTI)
};
if (hardwareRevision < NAZE32_REV5) {
hmc5883Config = &nazeHmc5883Config_v1_v4;
} else {
hmc5883Config = &nazeHmc5883Config_v5;
}
#endif
#ifdef MAG_INT_EXTI
static const hmc5883Config_t extiHmc5883Config = {
.intTag = IO_TAG(MAG_INT_EXTI)
};
hmc5883Config = &extiHmc5883Config;
#endif
#endif
retry:
mag.dev.magAlign = ALIGN_DEFAULT;
switch(magHardwareToUse) {
case MAG_DEFAULT:
; // fallthrough
case MAG_HMC5883:
#ifdef USE_MAG_HMC5883
if (hmc5883lDetect(dev, hmc5883Config)) {
#ifdef MAG_HMC5883_ALIGN
mag.dev.magAlign = MAG_HMC5883_ALIGN;
#endif
magHardware = MAG_HMC5883;
break;
}
#endif
; // fallthrough
case MAG_AK8975:
#ifdef USE_MAG_AK8975
if (ak8975Detect(dev)) {
#ifdef MAG_AK8975_ALIGN
mag.dev.magAlign = MAG_AK8975_ALIGN;
#endif
magHardware = MAG_AK8975;
break;
}
#endif
; // fallthrough
case MAG_AK8963:
#ifdef USE_MAG_AK8963
if (ak8963Detect(dev)) {
#ifdef MAG_AK8963_ALIGN
mag.dev.magAlign = MAG_AK8963_ALIGN;
#endif
magHardware = MAG_AK8963;
break;
}
#endif
; // fallthrough
case MAG_NONE:
magHardware = MAG_NONE;
break;
}
if (magHardware == MAG_NONE && magHardwareToUse != MAG_DEFAULT && magHardwareToUse != MAG_NONE) {
// Nothing was found and we have a forced sensor that isn't present.
magHardwareToUse = MAG_DEFAULT;
goto retry;
}
if (magHardware == MAG_NONE) {
return false;
}
detectedSensors[SENSOR_INDEX_MAG] = magHardware;
sensorsSet(SENSOR_MAG);
return true;
}
#endif
#ifdef SONAR #ifdef SONAR
static bool sonarDetect(void) static bool sonarDetect(void)
{ {
@ -569,8 +86,6 @@ bool sensorsAutodetect(const gyroConfig_t *gyroConfig,
const barometerConfig_t *barometerConfig, const barometerConfig_t *barometerConfig,
const sonarConfig_t *sonarConfig) const sonarConfig_t *sonarConfig)
{ {
memset(&acc, 0, sizeof(acc));
memset(&gyro, 0, sizeof(gyro));
#if defined(USE_GYRO_MPU6050) || defined(USE_GYRO_MPU3050) || defined(USE_GYRO_MPU6500) || defined(USE_GYRO_SPI_MPU6500) || defined(USE_GYRO_SPI_MPU6000) || defined(USE_ACC_MPU6050) || defined(USE_GYRO_SPI_MPU9250) || defined(USE_GYRO_SPI_ICM20689) #if defined(USE_GYRO_MPU6050) || defined(USE_GYRO_MPU3050) || defined(USE_GYRO_MPU6500) || defined(USE_GYRO_SPI_MPU6500) || defined(USE_GYRO_SPI_MPU6000) || defined(USE_ACC_MPU6050) || defined(USE_GYRO_SPI_MPU9250) || defined(USE_GYRO_SPI_ICM20689)
@ -580,33 +95,22 @@ bool sensorsAutodetect(const gyroConfig_t *gyroConfig,
UNUSED(mpuDetectionResult); UNUSED(mpuDetectionResult);
#endif #endif
memset(&gyro, 0, sizeof(gyro));
if (!gyroDetect(&gyro.dev)) { if (!gyroDetect(&gyro.dev)) {
return false; return false;
} }
// gyro must be initialised before accelerometer
gyroInit(gyroConfig);
// Now time to init things memset(&acc, 0, sizeof(acc));
// this is safe because either mpu6050 or mpu3050 or lg3d20 sets it, and in case of fail, we never get here.
gyro.targetLooptime = gyroSetSampleRate(gyroConfig->gyro_lpf, gyroConfig->gyro_sync_denom); // Set gyro sample rate before initialisation
gyro.dev.lpf = gyroConfig->gyro_lpf;
gyro.dev.init(&gyro.dev); // driver initialisation
gyroInit(gyroConfig); // sensor initialisation
if (accDetect(&acc.dev, accelerometerConfig->acc_hardware)) { if (accDetect(&acc.dev, accelerometerConfig->acc_hardware)) {
acc.dev.acc_1G = 256; // set default accInit(gyro.targetLooptime);
acc.dev.init(&acc.dev); // driver initialisation
accInit(gyro.targetLooptime); // sensor initialisation
} }
mag.magneticDeclination = 0.0f; // TODO investigate if this is actually needed if there is no mag sensor or if the value stored in the config should be used. mag.magneticDeclination = 0.0f; // TODO investigate if this is actually needed if there is no mag sensor or if the value stored in the config should be used.
#ifdef MAG #ifdef MAG
// FIXME extract to a method to reduce dependencies, maybe move to sensors_compass.c
if (compassDetect(&mag.dev, compassConfig->mag_hardware)) { if (compassDetect(&mag.dev, compassConfig->mag_hardware)) {
// calculate magnetic declination compassInit(compassConfig);
const int16_t deg = compassConfig->mag_declination / 100;
const int16_t min = compassConfig->mag_declination % 100;
mag.magneticDeclination = (deg + ((float)min * (1.0f / 60.0f))) * 10; // heading is in 0.1deg units
compassInit();
} }
#else #else
UNUSED(compassConfig); UNUSED(compassConfig);