1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-17 21:35:44 +03:00

CHEBUZZF3 - Implement ADC driver for 3 ADC channels. Use STM32F3 linker

script so it uses the right values for RAM and FLASH size.
This commit is contained in:
Dominic Clifton 2014-05-12 00:17:14 +01:00
parent b3ee895f97
commit 4be9d953ac
9 changed files with 398 additions and 89 deletions

View file

@ -4,95 +4,33 @@
#include "platform.h"
#include "system_common.h"
#include "sensors_common.h" // FIXME dependency into the main code
#include "accgyro_common.h"
#include "adc_common.h"
// Driver for STM32F103CB onboard ADC
// VBAT is connected to PA4 (ADC1_IN4) with 10k:1k divider
// rev.5 hardware has PA5 (ADC1_IN5) on breakout pad on bottom of board
// Additional channel can be stolen from RC_CH2 (PA1, ADC1_IN1) or
// RC_CH8 (PB1, ADC1_IN9) by using set power_adc_channel=1|9
adc_config_t adcConfig[ADC_CHANNEL_COUNT];
volatile uint16_t adcValues[ADC_CHANNEL_COUNT];
uint8_t adcChannelCount = 0;
typedef struct adc_config_t {
uint8_t adcChannel; // ADC1_INxx channel number
uint8_t dmaIndex; // index into DMA buffer in case of sparse channels
} adc_config_t;
static adc_config_t adcConfig[ADC_CHANNEL_MAX];
static volatile uint16_t adcValues[ADC_CHANNEL_MAX];
void adcInit(drv_adc_config_t *init)
{
#ifndef STM32F3DISCOVERY
ADC_InitTypeDef adc;
DMA_InitTypeDef dma;
int numChannels = 1, i;
// configure always-present battery index (ADC4)
adcConfig[ADC_BATTERY].adcChannel = ADC_Channel_4;
adcConfig[ADC_BATTERY].dmaIndex = numChannels - 1;
// optional ADC5 input on rev.5 hardware
if (hse_value == 12000000) {
numChannels++;
adcConfig[ADC_EXTERNAL1].adcChannel = ADC_Channel_5;
adcConfig[ADC_EXTERNAL1].dmaIndex = numChannels - 1;
}
// another channel can be stolen from PWM for current measurement or other things
if (init->powerAdcChannel > 0) {
numChannels++;
adcConfig[ADC_EXTERNAL2].adcChannel = init->powerAdcChannel;
adcConfig[ADC_EXTERNAL2].dmaIndex = numChannels - 1;
}
// ADC driver assumes all the GPIO was already placed in 'AIN' mode
DMA_DeInit(DMA1_Channel1);
dma.DMA_PeripheralBaseAddr = (uint32_t)&ADC1->DR;
dma.DMA_MemoryBaseAddr = (uint32_t)adcValues;
dma.DMA_DIR = DMA_DIR_PeripheralSRC;
dma.DMA_BufferSize = numChannels;
dma.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
dma.DMA_MemoryInc = numChannels > 1 ? DMA_MemoryInc_Enable : DMA_MemoryInc_Disable;
dma.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
dma.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
dma.DMA_Mode = DMA_Mode_Circular;
dma.DMA_Priority = DMA_Priority_High;
dma.DMA_M2M = DMA_M2M_Disable;
DMA_Init(DMA1_Channel1, &dma);
DMA_Cmd(DMA1_Channel1, ENABLE);
adc.ADC_Mode = ADC_Mode_Independent;
adc.ADC_ScanConvMode = numChannels > 1 ? ENABLE : DISABLE;
adc.ADC_ContinuousConvMode = ENABLE;
adc.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
adc.ADC_DataAlign = ADC_DataAlign_Right;
adc.ADC_NbrOfChannel = numChannels;
ADC_Init(ADC1, &adc);
// fixed ADC4
ADC_RegularChannelConfig(ADC1, ADC_Channel_4, 1, ADC_SampleTime_28Cycles5);
// configure any additional ADC channels (2 + n)
for (i = 1; i < numChannels; i++)
ADC_RegularChannelConfig(ADC1, adcConfig[i].adcChannel, i + 1, ADC_SampleTime_28Cycles5);
ADC_DMACmd(ADC1, ENABLE);
ADC_Cmd(ADC1, ENABLE);
// Calibrate ADC
ADC_ResetCalibration(ADC1);
while(ADC_GetResetCalibrationStatus(ADC1));
ADC_StartCalibration(ADC1);
while(ADC_GetCalibrationStatus(ADC1));
// Fire off ADC
ADC_SoftwareStartConvCmd(ADC1, ENABLE);
#endif
}
extern int16_t debug[4];
uint16_t adcGetChannel(uint8_t channel)
{
#if 0
switch(adcChannelCount) {
case 3:
debug[2] = adcValues[adcConfig[2].dmaIndex];
/* no break */
case 2:
debug[1] = adcValues[adcConfig[1].dmaIndex];
/* no break */
case 1:
debug[0] = adcValues[adcConfig[0].dmaIndex];
/* no break */
default:
break;
}
#endif
return adcValues[adcConfig[channel].dmaIndex];
}

View file

@ -4,9 +4,16 @@ typedef enum {
ADC_BATTERY = 0,
ADC_EXTERNAL1 = 1,
ADC_EXTERNAL2 = 2,
ADC_CHANNEL_MAX = 3
ADC_CHANNEL_MAX = ADC_EXTERNAL2
} AdcChannel;
#define ADC_CHANNEL_COUNT (ADC_CHANNEL_MAX + 1)
typedef struct adc_config_t {
uint8_t adcChannel; // ADC1_INxx channel number
uint8_t dmaIndex; // index into DMA buffer in case of sparse channels
} adc_config_t;
typedef struct drv_adc_config_t {
uint8_t powerAdcChannel; // which channel used for current monitor, allowed PA1, PB1 (ADC_Channel_1, ADC_Channel_9)
} drv_adc_config_t;

View file

@ -0,0 +1,88 @@
#include <stdbool.h>
#include <stdint.h>
#include "platform.h"
#include "system_common.h"
#include "sensors_common.h" // FIXME dependency into the main code
#include "accgyro_common.h"
#include "adc_common.h"
// Driver for STM32F103CB onboard ADC
// VBAT is connected to PA4 (ADC1_IN4) with 10k:1k divider
// rev.5 hardware has PA5 (ADC1_IN5) on breakout pad on bottom of board
// Additional channel can be stolen from RC_CH2 (PA1, ADC1_IN1) or
// RC_CH8 (PB1, ADC1_IN9) by using set power_adc_channel=1|9
extern adc_config_t adcConfig[ADC_CHANNEL_COUNT];
extern volatile uint16_t adcValues[ADC_CHANNEL_COUNT];
uint8_t adcChannelCount;
void adcInit(drv_adc_config_t *init)
{
ADC_InitTypeDef adc;
DMA_InitTypeDef dma;
uint8_t i;
// configure always-present battery index (ADC4)
adcConfig[ADC_BATTERY].adcChannel = ADC_Channel_4;
adcConfig[ADC_BATTERY].dmaIndex = adcChannelCount - 1;
// optional ADC5 input on rev.5 hardware
if (hse_value == 12000000) {
adcChannelCount++;
adcConfig[ADC_EXTERNAL1].adcChannel = ADC_Channel_5;
adcConfig[ADC_EXTERNAL1].dmaIndex = adcChannelCount - 1;
}
// another channel can be stolen from PWM for current measurement or other things
if (init->powerAdcChannel > 0) {
adcChannelCount++;
adcConfig[ADC_EXTERNAL2].adcChannel = init->powerAdcChannel;
adcConfig[ADC_EXTERNAL2].dmaIndex = adcChannelCount - 1;
}
// ADC driver assumes all the GPIO was already placed in 'AIN' mode
DMA_DeInit(DMA1_Channel1);
dma.DMA_PeripheralBaseAddr = (uint32_t)&ADC1->DR;
dma.DMA_MemoryBaseAddr = (uint32_t)adcValues;
dma.DMA_DIR = DMA_DIR_PeripheralSRC;
dma.DMA_BufferSize = adcChannelCount;
dma.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
dma.DMA_MemoryInc = adcChannelCount > 1 ? DMA_MemoryInc_Enable : DMA_MemoryInc_Disable;
dma.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
dma.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
dma.DMA_Mode = DMA_Mode_Circular;
dma.DMA_Priority = DMA_Priority_High;
dma.DMA_M2M = DMA_M2M_Disable;
DMA_Init(DMA1_Channel1, &dma);
DMA_Cmd(DMA1_Channel1, ENABLE);
adc.ADC_Mode = ADC_Mode_Independent;
adc.ADC_ScanConvMode = adcChannelCount > 1 ? ENABLE : DISABLE;
adc.ADC_ContinuousConvMode = ENABLE;
adc.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
adc.ADC_DataAlign = ADC_DataAlign_Right;
adc.ADC_NbrOfChannel = adcChannelCount;
ADC_Init(ADC1, &adc);
// fixed ADC4
ADC_RegularChannelConfig(ADC1, ADC_Channel_4, 1, ADC_SampleTime_28Cycles5);
// configure any additional ADC channels (2 + n)
for (i = 1; i < adcChannelCount; i++)
ADC_RegularChannelConfig(ADC1, adcConfig[i].adcChannel, i + 1, ADC_SampleTime_28Cycles5);
ADC_DMACmd(ADC1, ENABLE);
ADC_Cmd(ADC1, ENABLE);
// Calibrate ADC
ADC_ResetCalibration(ADC1);
while(ADC_GetResetCalibrationStatus(ADC1));
ADC_StartCalibration(ADC1);
while(ADC_GetCalibrationStatus(ADC1));
// Fire off ADC
ADC_SoftwareStartConvCmd(ADC1, ENABLE);
}

111
src/drivers/adc_stm32f30x.c Normal file
View file

@ -0,0 +1,111 @@
#include <stdbool.h>
#include <stdint.h>
#include "platform.h"
#include "system_common.h"
#include "gpio_common.h"
#include "sensors_common.h" // FIXME dependency into the main code
#include "accgyro_common.h"
#include "adc_common.h"
extern adc_config_t adcConfig[ADC_CHANNEL_COUNT];
extern volatile uint16_t adcValues[ADC_CHANNEL_COUNT];
uint8_t adcChannelCount;
void adcInit(drv_adc_config_t *init)
{
ADC_InitTypeDef ADC_InitStructure;
DMA_InitTypeDef DMA_InitStructure;
GPIO_InitTypeDef GPIO_InitStructure;
uint8_t i;
adcConfig[ADC_BATTERY].adcChannel = ADC_Channel_6;
adcConfig[ADC_BATTERY].dmaIndex = adcChannelCount;
adcChannelCount++;
adcConfig[ADC_EXTERNAL1].adcChannel = ADC_Channel_7;
adcConfig[ADC_EXTERNAL1].dmaIndex = adcChannelCount;
adcChannelCount++;
adcConfig[ADC_EXTERNAL2].adcChannel = ADC_Channel_8;
adcConfig[ADC_EXTERNAL2].dmaIndex = adcChannelCount;
adcChannelCount++;
DMA_DeInit(DMA1_Channel1);
DMA_StructInit(&DMA_InitStructure);
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&ADC1->DR;
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)adcValues;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
DMA_InitStructure.DMA_BufferSize = adcChannelCount;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = adcChannelCount > 1 ? DMA_MemoryInc_Enable : DMA_MemoryInc_Disable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(DMA1_Channel1, &DMA_InitStructure);
DMA_Cmd(DMA1_Channel1, ENABLE);
GPIO_StructInit(&GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ;
GPIO_Init(GPIOC, &GPIO_InitStructure);
// calibrate
ADC_VoltageRegulatorCmd(ADC1, ENABLE);
delay(10);
ADC_SelectCalibrationMode(ADC1, ADC_CalibrationMode_Single);
ADC_StartCalibration(ADC1);
while(ADC_GetCalibrationStatus(ADC1) != RESET);
ADC_VoltageRegulatorCmd(ADC1, DISABLE);
ADC_CommonInitTypeDef ADC_CommonInitStructure;
ADC_CommonStructInit(&ADC_CommonInitStructure);
ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent;
ADC_CommonInitStructure.ADC_Clock = ADC_Clock_SynClkModeDiv4;
ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_1;
ADC_CommonInitStructure.ADC_DMAMode = ADC_DMAMode_Circular;
ADC_CommonInitStructure.ADC_TwoSamplingDelay = 0;
ADC_CommonInit(ADC1, &ADC_CommonInitStructure);
ADC_StructInit(&ADC_InitStructure);
ADC_InitStructure.ADC_ContinuousConvMode = ADC_ContinuousConvMode_Enable;
ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b;
ADC_InitStructure.ADC_ExternalTrigConvEvent = ADC_ExternalTrigConvEvent_0;
ADC_InitStructure.ADC_ExternalTrigEventEdge = ADC_ExternalTrigEventEdge_None;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_OverrunMode = ADC_OverrunMode_Disable;
ADC_InitStructure.ADC_AutoInjMode = ADC_AutoInjec_Disable;
ADC_InitStructure.ADC_NbrOfRegChannel = adcChannelCount;
ADC_Init(ADC1, &ADC_InitStructure);
for (i = 0; i < adcChannelCount; i++)
ADC_RegularChannelConfig(ADC1, adcConfig[i].adcChannel, i + 1, ADC_SampleTime_181Cycles5);
ADC_Cmd(ADC1, ENABLE);
while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_RDY));
ADC_DMAConfig(ADC1, ADC_DMAMode_Circular);
ADC_DMACmd(ADC1, ENABLE);
ADC_StartConversion(ADC1);
}

View file

@ -103,6 +103,8 @@ void systemInit(bool overclock)
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
#endif
#ifdef STM32F303xC
RCC_ADCCLKConfig(RCC_ADC12PLLCLK_Div256); // 72 MHz divided by 256 = 281.25 kHz
RCC_APB1PeriphClockCmd(
RCC_APB1Periph_TIM2 |
RCC_APB1Periph_TIM3 |
@ -143,7 +145,7 @@ void systemInit(bool overclock)
gpio.mode = Mode_AIN;
gpio.pin = Pin_All;
#ifdef STM32F3DISCOVERY
gpio.pin = Pin_All & ~(Pin_13|Pin_14);
gpio.pin = Pin_All & ~(Pin_13|Pin_14|Pin_15); // Leave JTAG pins alone
gpioInit(GPIOA, &gpio);
gpio.pin = Pin_All;
#else
@ -151,6 +153,13 @@ void systemInit(bool overclock)
#endif
gpioInit(GPIOB, &gpio);
gpioInit(GPIOC, &gpio);
#ifdef STM32F303xC
gpioInit(GPIOD, &gpio);
gpioInit(GPIOE, &gpio);
#ifdef CHEBUZZF3
gpioInit(GPIOF, &gpio);
#endif
#endif
#ifdef STM32F10X_MD
// Turn off JTAG port 'cause we're using the GPIO for leds