mirror of
https://github.com/betaflight/betaflight.git
synced 2025-07-24 16:55:36 +03:00
IMU - increase gain on large Course over ground error (#12792)
* IMU - increase gain on large Course over ground error * Fix Cog calculation in IMU Old code did align CoG antiparallel to Yaw. Cross product stays the same, but dot product is inverted. @iNav - this is probably reason for magic numbers in iNav IMU rewrite (especially wind compensation) * Update gtest Copy of debian/stable libgtest-dev * Add unittest for IMU CoG Work in progress * IMU - convert compass to new alignment calculation * IMU Unittests - new wrapped EXPECT_NEAR_DEG / EXPECT_NEAR_RAD - magnetometer testing * IMU - CoG evaluation based on thrust vector --------- Co-authored-by: Petr Ledvina <ledvinap@hp124.ekotip.cz>
This commit is contained in:
parent
a98364fa55
commit
5eaab0226d
4 changed files with 363 additions and 27 deletions
|
@ -40,7 +40,9 @@
|
|||
#define DEGREES_TO_DECIDEGREES(angle) ((angle) * 10)
|
||||
#define DECIDEGREES_TO_DEGREES(angle) ((angle) / 10)
|
||||
#define DECIDEGREES_TO_RADIANS(angle) ((angle) / 10.0f * 0.0174532925f)
|
||||
#define DEGREES_TO_RADIANS(angle) ((angle) * 0.0174532925f)
|
||||
#define DEGREES_TO_RADIANS(angle) ((angle) * RAD)
|
||||
#define RADIANS_TO_DEGREES(angle) ((angle) / RAD)
|
||||
|
||||
|
||||
#define CM_S_TO_KM_H(centimetersPerSecond) ((centimetersPerSecond) * 36 / 1000)
|
||||
#define CM_S_TO_MPH(centimetersPerSecond) ((centimetersPerSecond) * 10000 / 5080 / 88)
|
||||
|
|
149
src/main/common/vector.h
Normal file
149
src/main/common/vector.h
Normal file
|
@ -0,0 +1,149 @@
|
|||
/*
|
||||
* This file is part of Cleanflight and Betaflight.
|
||||
*
|
||||
* Cleanflight and Betaflight are free software. You can redistribute
|
||||
* this software and/or modify this software under the terms of the
|
||||
* GNU General Public License as published by the Free Software
|
||||
* Foundation, either version 3 of the License, or (at your option)
|
||||
* any later version.
|
||||
*
|
||||
* Cleanflight and Betaflight are distributed in the hope that they
|
||||
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
|
||||
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
||||
* See the GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this software.
|
||||
*
|
||||
* If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/*
|
||||
* some functions are taken from https://github.com/iNavFlight/inav/
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "common/maths.h"
|
||||
|
||||
typedef union {
|
||||
float v[2];
|
||||
struct {
|
||||
float x,y;
|
||||
};
|
||||
} fpVector2_t;
|
||||
|
||||
|
||||
typedef union {
|
||||
float v[3];
|
||||
struct {
|
||||
float x, y, z;
|
||||
};
|
||||
} fpVector3_t;
|
||||
|
||||
typedef struct {
|
||||
float m[3][3];
|
||||
} fpMat33_t;
|
||||
|
||||
static inline fpVector3_t * vectorZero(fpVector3_t *v)
|
||||
{
|
||||
v->x = 0.0f;
|
||||
v->y = 0.0f;
|
||||
v->z = 0.0f;
|
||||
return v;
|
||||
}
|
||||
|
||||
static inline float vectorNormSquared(const fpVector3_t * v)
|
||||
{
|
||||
return sq(v->x) + sq(v->y) + sq(v->z);
|
||||
}
|
||||
|
||||
static inline float vectorNorm(const fpVector3_t * v)
|
||||
{
|
||||
return sqrtf(vectorNormSquared(v));
|
||||
}
|
||||
|
||||
static inline fpVector3_t * vectorCrossProduct(fpVector3_t *result, const fpVector3_t *a, const fpVector3_t *b)
|
||||
{
|
||||
fpVector3_t ab;
|
||||
|
||||
ab.x = a->y * b->z - a->z * b->y;
|
||||
ab.y = a->z * b->x - a->x * b->z;
|
||||
ab.z = a->x * b->y - a->y * b->x;
|
||||
|
||||
*result = ab;
|
||||
return result;
|
||||
}
|
||||
|
||||
static inline fpVector3_t * vectorAdd(fpVector3_t *result, const fpVector3_t *a, const fpVector3_t *b)
|
||||
{
|
||||
fpVector3_t ab;
|
||||
|
||||
ab.x = a->x + b->x;
|
||||
ab.y = a->y + b->y;
|
||||
ab.z = a->z + b->z;
|
||||
|
||||
*result = ab;
|
||||
return result;
|
||||
}
|
||||
|
||||
static inline fpVector3_t * vectorScale(fpVector3_t *result, const fpVector3_t *a, const float b)
|
||||
{
|
||||
fpVector3_t ab;
|
||||
|
||||
ab.x = a->x * b;
|
||||
ab.y = a->y * b;
|
||||
ab.z = a->z * b;
|
||||
|
||||
*result = ab;
|
||||
return result;
|
||||
}
|
||||
|
||||
static inline fpVector3_t * vectorNormalize(fpVector3_t *result, const fpVector3_t *v)
|
||||
{
|
||||
float normSq = vectorNormSquared(v);
|
||||
if (normSq > 0) { // Hopefully sqrt(nonzero) is quite large
|
||||
return vectorScale(result, v, 1.0f / sqrtf(normSq));
|
||||
} else {
|
||||
return vectorZero(result);
|
||||
}
|
||||
}
|
||||
|
||||
static inline fpVector3_t * matrixVectorMul(fpVector3_t * result, const fpMat33_t * mat, const fpVector3_t * a)
|
||||
{
|
||||
fpVector3_t r;
|
||||
|
||||
r.x = mat->m[0][0] * a->x + mat->m[0][1] * a->y + mat->m[0][2] * a->z;
|
||||
r.y = mat->m[1][0] * a->x + mat->m[1][1] * a->y + mat->m[1][2] * a->z;
|
||||
r.z = mat->m[2][0] * a->x + mat->m[2][1] * a->y + mat->m[2][2] * a->z;
|
||||
|
||||
*result = r;
|
||||
return result;
|
||||
}
|
||||
|
||||
static inline fpVector3_t * matrixTrnVectorMul(fpVector3_t * result, const fpMat33_t * mat, const fpVector3_t * a)
|
||||
{
|
||||
fpVector3_t r;
|
||||
|
||||
r.x = mat->m[0][0] * a->x + mat->m[1][0] * a->y + mat->m[2][0] * a->z;
|
||||
r.y = mat->m[0][1] * a->x + mat->m[1][1] * a->y + mat->m[2][1] * a->z;
|
||||
r.z = mat->m[0][2] * a->x + mat->m[1][2] * a->y + mat->m[2][2] * a->z;
|
||||
|
||||
*result = r;
|
||||
return result;
|
||||
}
|
||||
|
||||
static inline float vector2Cross(const fpVector2_t *a, const fpVector2_t *b)
|
||||
{
|
||||
return a->x * b->y - a->y * b->x;
|
||||
}
|
||||
|
||||
static inline float vector2Dot(const fpVector2_t *a, const fpVector2_t *b)
|
||||
{
|
||||
return a->x * b->x + a->y * b->y;
|
||||
}
|
||||
|
||||
static inline float vector2Mag(const fpVector2_t *a)
|
||||
{
|
||||
return sqrtf(sq(a->x) + sq(a->y));
|
||||
}
|
|
@ -31,6 +31,7 @@
|
|||
#include "build/debug.h"
|
||||
|
||||
#include "common/axis.h"
|
||||
#include "common/vector.h"
|
||||
|
||||
#include "pg/pg.h"
|
||||
#include "pg/pg_ids.h"
|
||||
|
@ -198,7 +199,7 @@ static float invSqrt(float x)
|
|||
return 1.0f / sqrtf(x);
|
||||
}
|
||||
|
||||
static void imuMahonyAHRSupdate(float dt, float gx, float gy, float gz,
|
||||
STATIC_UNIT_TESTED void imuMahonyAHRSupdate(float dt, float gx, float gy, float gz,
|
||||
bool useAcc, float ax, float ay, float az,
|
||||
bool useMag,
|
||||
float cogYawGain, float courseOverGround, const float dcmKpGain)
|
||||
|
@ -212,43 +213,59 @@ static void imuMahonyAHRSupdate(float dt, float gx, float gy, float gz,
|
|||
float ex = 0, ey = 0, ez = 0;
|
||||
if (cogYawGain != 0.0f) {
|
||||
// Used in a GPS Rescue to boost IMU yaw gain when course over ground and velocity to home differ significantly
|
||||
while (courseOverGround > M_PIf) {
|
||||
courseOverGround -= (2.0f * M_PIf);
|
||||
}
|
||||
while (courseOverGround < -M_PIf) {
|
||||
courseOverGround += (2.0f * M_PIf);
|
||||
}
|
||||
const float ez_ef = cogYawGain * (- sin_approx(courseOverGround) * rMat[0][0] - cos_approx(courseOverGround) * rMat[1][0]);
|
||||
ex = rMat[2][0] * ez_ef;
|
||||
ey = rMat[2][1] * ez_ef;
|
||||
ez = rMat[2][2] * ez_ef;
|
||||
|
||||
// Compute heading vector in EF from scalar CoG. CoG is clockwise from North
|
||||
// Note that Earth frame X is pointing north and sin/cos argument is anticlockwise
|
||||
const fpVector2_t cog_ef = {.x = cos_approx(-courseOverGround), .y = sin_approx(-courseOverGround)};
|
||||
#define THRUST_COG 1
|
||||
#if THRUST_COG
|
||||
const fpVector2_t heading_ef = {.x = rMat[X][Z], .y = rMat[Y][Z]}; // body Z axis (up) - direction of thrust vector
|
||||
#else
|
||||
const fpVector2_t heading_ef = {.x = rMat[0][0], .y = rMat[1][0]}; // body X axis. Projected vector magnitude is reduced as pitch increases
|
||||
#endif
|
||||
// cross product = 1 * |heading| * sin(angle) (magnitude of Z vector in 3D)
|
||||
// order operands so that rotation is in direction of zero error
|
||||
const float cross = vector2Cross(&heading_ef, &cog_ef);
|
||||
// dot product, 1 * |heading| * cos(angle)
|
||||
const float dot = vector2Dot(&heading_ef, &cog_ef);
|
||||
// use cross product / sin(angle) when error < 90deg (cos > 0),
|
||||
// |heading| if error is larger (cos < 0)
|
||||
const float heading_mag = vector2Mag(&heading_ef);
|
||||
float ez_ef = (dot > 0) ? cross : (cross < 0 ? -1.0f : 1.0f) * heading_mag;
|
||||
#if THRUST_COG
|
||||
// increase gain for small tilt (just heuristic; sqrt is cheap on F4+)
|
||||
ez_ef /= sqrtf(heading_mag);
|
||||
#endif
|
||||
ez_ef *= cogYawGain; // apply gain parameter
|
||||
// covert to body frame
|
||||
ex += rMat[2][0] * ez_ef;
|
||||
ey += rMat[2][1] * ez_ef;
|
||||
ez += rMat[2][2] * ez_ef;
|
||||
}
|
||||
|
||||
#ifdef USE_MAG
|
||||
// Use measured magnetic field vector
|
||||
float mx = mag.magADC[X];
|
||||
float my = mag.magADC[Y];
|
||||
float mz = mag.magADC[Z];
|
||||
float recipMagNorm = sq(mx) + sq(my) + sq(mz);
|
||||
fpVector3_t mag_bf = {{mag.magADC[X], mag.magADC[Y], mag.magADC[Z]}};
|
||||
float recipMagNorm = vectorNormSquared(&mag_bf);
|
||||
if (useMag && recipMagNorm > 0.01f) {
|
||||
// Normalise magnetometer measurement
|
||||
recipMagNorm = invSqrt(recipMagNorm);
|
||||
mx *= recipMagNorm;
|
||||
my *= recipMagNorm;
|
||||
mz *= recipMagNorm;
|
||||
vectorNormalize(&mag_bf, &mag_bf);
|
||||
|
||||
// For magnetometer correction we make an assumption that magnetic field is perpendicular to gravity (ignore Z-component in EF).
|
||||
// This way magnetic field will only affect heading and wont mess roll/pitch angles
|
||||
|
||||
// (hx; hy; 0) - measured mag field vector in EF (assuming Z-component is zero)
|
||||
// (hx; hy; 0) - measured mag field vector in EF (forcing Z-component to zero)
|
||||
// (bx; 0; 0) - reference mag field vector heading due North in EF (assuming Z-component is zero)
|
||||
const float hx = rMat[0][0] * mx + rMat[0][1] * my + rMat[0][2] * mz;
|
||||
const float hy = rMat[1][0] * mx + rMat[1][1] * my + rMat[1][2] * mz;
|
||||
const float bx = sqrtf(hx * hx + hy * hy);
|
||||
fpVector3_t mag_ef;
|
||||
matrixVectorMul(&mag_ef, (const fpMat33_t*)&rMat, &mag_bf); // BF->EF
|
||||
mag_ef.z = 0.0f; // project to XY plane (optimized away)
|
||||
|
||||
fpVector2_t north_ef = {{ 1.0f, 0.0f }};
|
||||
// magnetometer error is cross product between estimated magnetic north and measured magnetic north (calculated in EF)
|
||||
const float ez_ef = -(hy * bx);
|
||||
|
||||
// increase gain on large misalignment
|
||||
const float dot = vector2Dot((fpVector2_t*)&mag_ef, &north_ef);
|
||||
const float cross = vector2Cross((fpVector2_t*)&mag_ef, &north_ef);
|
||||
const float ez_ef = (dot > 0) ? cross : (cross < 0 ? -1.0f : 1.0f) * vector2Mag((fpVector2_t*)&mag_ef);
|
||||
// Rotate mag error vector back to BF and accumulate
|
||||
ex += rMat[2][0] * ez_ef;
|
||||
ey += rMat[2][1] * ez_ef;
|
||||
|
|
|
@ -26,6 +26,7 @@ extern "C" {
|
|||
|
||||
#include "common/axis.h"
|
||||
#include "common/maths.h"
|
||||
#include "common/vector.h"
|
||||
|
||||
#include "config/feature.h"
|
||||
#include "pg/pg.h"
|
||||
|
@ -57,7 +58,10 @@ extern "C" {
|
|||
|
||||
void imuComputeRotationMatrix(void);
|
||||
void imuUpdateEulerAngles(void);
|
||||
|
||||
void imuMahonyAHRSupdate(float dt, float gx, float gy, float gz,
|
||||
bool useAcc, float ax, float ay, float az,
|
||||
bool useMag,
|
||||
float cogYawGain, float courseOverGround, const float dcmKpGain);
|
||||
extern quaternion q;
|
||||
extern float rMat[3][3];
|
||||
extern bool attitudeIsEstablished;
|
||||
|
@ -76,6 +80,15 @@ extern "C" {
|
|||
|
||||
const float sqrt2over2 = sqrtf(2) / 2.0f;
|
||||
|
||||
void quaternion_from_axis_angle(quaternion* q, float angle, float x, float y, float z) {
|
||||
fpVector3_t a = {{x, y, z}};
|
||||
vectorNormalize(&a, &a);
|
||||
q->w = cos(angle / 2);
|
||||
q->x = a.x * sin(angle / 2);
|
||||
q->y = a.y * sin(angle / 2);
|
||||
q->z = a.z * sin(angle / 2);
|
||||
}
|
||||
|
||||
TEST(FlightImuTest, TestCalculateRotationMatrix)
|
||||
{
|
||||
#define TOL 1e-6
|
||||
|
@ -201,6 +214,161 @@ TEST(FlightImuTest, TestSmallAngle)
|
|||
EXPECT_FALSE(isUpright());
|
||||
}
|
||||
|
||||
testing::AssertionResult DoubleNearWrapPredFormat(const char* expr1, const char* expr2,
|
||||
const char* abs_error_expr, const char* wrap_expr, double val1,
|
||||
double val2, double abs_error, double wrap) {
|
||||
const double diff = remainder(val1 - val2, wrap);
|
||||
if (fabs(diff) <= abs_error) return testing::AssertionSuccess();
|
||||
|
||||
return testing::AssertionFailure()
|
||||
<< "The difference between " << expr1 << " and " << expr2 << " is "
|
||||
<< diff << " (wrapped to 0 .. " << wrap_expr << ")"
|
||||
<< ", which exceeds " << abs_error_expr << ", where\n"
|
||||
<< expr1 << " evaluates to " << val1 << ",\n"
|
||||
<< expr2 << " evaluates to " << val2 << ", and\n"
|
||||
<< abs_error_expr << " evaluates to " << abs_error << ".";
|
||||
}
|
||||
|
||||
#define EXPECT_NEAR_DEG(val1, val2, abs_error) \
|
||||
EXPECT_PRED_FORMAT4(DoubleNearWrapPredFormat, val1, val2, \
|
||||
abs_error, 360.0)
|
||||
|
||||
#define EXPECT_NEAR_RAD(val1, val2, abs_error) \
|
||||
EXPECT_PRED_FORMAT4(DoubleNearWrapPredFormat, val1, val2, \
|
||||
abs_error, 2 * M_PI)
|
||||
|
||||
|
||||
|
||||
class MahonyFixture : public ::testing::Test {
|
||||
protected:
|
||||
fpVector3_t gyro;
|
||||
bool useAcc;
|
||||
fpVector3_t acc;
|
||||
bool useMag;
|
||||
fpVector3_t magEF;
|
||||
float cogGain;
|
||||
float cogDeg;
|
||||
float dcmKp;
|
||||
float dt;
|
||||
void SetUp() override {
|
||||
vectorZero(&gyro);
|
||||
useAcc = false;
|
||||
vectorZero(&acc);
|
||||
cogGain = 0.0; // no cog
|
||||
cogDeg = 0.0;
|
||||
dcmKp = .25; // default dcm_kp
|
||||
dt = 1e-2; // 100Hz update
|
||||
|
||||
imuConfigure(0, 0);
|
||||
// level, poiting north
|
||||
setOrientationAA(0, {{1,0,0}}); // identity
|
||||
}
|
||||
virtual void setOrientationAA(float angleDeg, fpVector3_t axis) {
|
||||
quaternion_from_axis_angle(&q, DEGREES_TO_RADIANS(angleDeg), axis.x, axis.y, axis.z);
|
||||
imuComputeRotationMatrix();
|
||||
}
|
||||
|
||||
float wrap(float angle) {
|
||||
angle = fmod(angle, 360);
|
||||
if (angle < 0) angle += 360;
|
||||
return angle;
|
||||
}
|
||||
float angleDiffNorm(fpVector3_t *a, fpVector3_t* b, fpVector3_t weight = {{1,1,1}}) {
|
||||
fpVector3_t tmp;
|
||||
vectorScale(&tmp, b, -1);
|
||||
vectorAdd(&tmp, &tmp, a);
|
||||
for (int i = 0; i < 3; i++)
|
||||
tmp.v[i] *= weight.v[i];
|
||||
for (int i = 0; i < 3; i++)
|
||||
tmp.v[i] = std::remainder(tmp.v[i], 360.0);
|
||||
return vectorNorm(&tmp);
|
||||
}
|
||||
// run Mahony for some time
|
||||
// return time it took to get within 1deg from target
|
||||
float imuIntegrate(float runTime, fpVector3_t * target) {
|
||||
float alignTime = -1;
|
||||
for (float t = 0; t < runTime; t += dt) {
|
||||
// if (fmod(t, 1) < dt) printf("MagBF=%.2f %.2f %.2f\n", magBF.x, magBF.y, magBF.z);
|
||||
imuMahonyAHRSupdate(dt,
|
||||
gyro.x, gyro.y, gyro.z,
|
||||
useAcc, acc.x, acc.y, acc.z,
|
||||
useMag, // no mag now
|
||||
cogGain, DEGREES_TO_RADIANS(cogDeg), // use Cog, param direction
|
||||
dcmKp);
|
||||
imuUpdateEulerAngles();
|
||||
// if (fmod(t, 1) < dt) printf("%3.1fs - %3.1f %3.1f %3.1f\n", t, attitude.values.roll / 10.0f, attitude.values.pitch / 10.0f, attitude.values.yaw / 10.0f);
|
||||
// remember how long it took
|
||||
if (alignTime < 0) {
|
||||
fpVector3_t rpy = {{attitude.values.roll / 10.0f, attitude.values.pitch / 10.0f, attitude.values.yaw / 10.0f}};
|
||||
float error = angleDiffNorm(&rpy, target);
|
||||
if (error < 1)
|
||||
alignTime = t;
|
||||
}
|
||||
}
|
||||
return alignTime;
|
||||
}
|
||||
};
|
||||
|
||||
class YawTest: public MahonyFixture, public testing::WithParamInterface<float> {
|
||||
};
|
||||
|
||||
TEST_P(YawTest, TestCogAlign)
|
||||
{
|
||||
cogGain = 1.0;
|
||||
cogDeg = GetParam();
|
||||
const float rollDeg = 30; // 30deg pitch forward
|
||||
setOrientationAA(rollDeg, {{0, 1, 0}});
|
||||
fpVector3_t expect = {{0, rollDeg, wrap(cogDeg)}};
|
||||
// integrate IMU. about 25s is enough in worst case
|
||||
float alignTime = imuIntegrate(80, &expect);
|
||||
|
||||
imuUpdateEulerAngles();
|
||||
// quad stays level
|
||||
EXPECT_NEAR_DEG(attitude.values.roll / 10.0, expect.x, .1);
|
||||
EXPECT_NEAR_DEG(attitude.values.pitch / 10.0, expect.y, .1);
|
||||
// yaw is close to CoG direction
|
||||
EXPECT_NEAR_DEG(attitude.values.yaw / 10.0, expect.z, 1); // error < 1 deg
|
||||
if (alignTime >= 0) {
|
||||
printf("[ ] Aligned to %.f deg in %.2fs\n", cogDeg, alignTime);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_P(YawTest, TestMagAlign)
|
||||
{
|
||||
float initialAngle = GetParam();
|
||||
|
||||
// level, rotate to param heading
|
||||
quaternion_from_axis_angle(&q, -DEGREES_TO_RADIANS(initialAngle), 0, 0, 1);
|
||||
imuComputeRotationMatrix();
|
||||
|
||||
fpVector3_t expect = {{0, 0, 0}}; // expect zero yaw
|
||||
|
||||
fpVector3_t magBF = {{1, 0, .5}}; // use arbitrary Z component, point north
|
||||
|
||||
for (int i = 0; i < 3; i++)
|
||||
mag.magADC[i] = magBF.v[i];
|
||||
|
||||
useMag = true;
|
||||
// integrate IMU. about 25s is enough in worst case
|
||||
float alignTime = imuIntegrate(30, &expect);
|
||||
|
||||
imuUpdateEulerAngles();
|
||||
// quad stays level
|
||||
EXPECT_NEAR_DEG(attitude.values.roll / 10.0, expect.x, .1);
|
||||
EXPECT_NEAR_DEG(attitude.values.pitch / 10.0, expect.y, .1);
|
||||
// yaw is close to north (0 deg)
|
||||
EXPECT_NEAR_DEG(attitude.values.yaw / 10.0, expect.z, 1.0); // error < 1 deg
|
||||
if (alignTime >= 0) {
|
||||
printf("[ ] Aligned from %.f deg in %.2fs\n", initialAngle, alignTime);
|
||||
}
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
TestAngles, YawTest,
|
||||
::testing::Values(
|
||||
0, 45, -45, 90, 180, 270, 720+45
|
||||
));
|
||||
|
||||
// STUBS
|
||||
|
||||
extern "C" {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue