1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-21 07:15:18 +03:00

Merge pull request #2474 from martinbudden/bf_gyro_analysis_hooks

Added hooks for gyro data analysis
This commit is contained in:
Martin Budden 2017-02-23 19:39:28 +00:00 committed by GitHub
commit 60f6dca7e0
11 changed files with 143 additions and 30 deletions

View file

@ -643,6 +643,7 @@ COMMON_SRC = \
sensors/boardalignment.c \ sensors/boardalignment.c \
sensors/compass.c \ sensors/compass.c \
sensors/gyro.c \ sensors/gyro.c \
sensors/gyroanalyse.c \
sensors/initialisation.c \ sensors/initialisation.c \
blackbox/blackbox.c \ blackbox/blackbox.c \
blackbox/blackbox_io.c \ blackbox/blackbox_io.c \
@ -748,6 +749,7 @@ SPEED_OPTIMISED_SRC := $(SPEED_OPTIMISED_SRC) \
sensors/acceleration.c \ sensors/acceleration.c \
sensors/boardalignment.c \ sensors/boardalignment.c \
sensors/gyro.c \ sensors/gyro.c \
sensors/gyroanalyse.c \
$(CMSIS_SRC) \ $(CMSIS_SRC) \
$(DEVICE_STDPERIPH_SRC) \ $(DEVICE_STDPERIPH_SRC) \
drivers/display_ug2864hsweg01.c \ drivers/display_ug2864hsweg01.c \
@ -873,6 +875,25 @@ else ifeq ($(TARGET),$(filter $(TARGET),$(F1_TARGETS)))
TARGET_SRC := $(STARTUP_SRC) $(STM32F10x_COMMON_SRC) $(TARGET_SRC) TARGET_SRC := $(STARTUP_SRC) $(STM32F10x_COMMON_SRC) $(TARGET_SRC)
endif endif
ifneq ($(filter GYROFFT,$(FEATURES)),)
DSPLIB := $(ROOT)/lib/main/DSP_Lib
DEVICE_FLAGS += -DARM_MATH_CM4 -DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -D__FPU_PRESENT=1 -DUNALIGNED_SUPPORT_DISABLE
INCLUDE_DIRS += $(DSPLIB)/Include
TARGET_SRC += $(DSPLIB)/Source/TransformFunctions/arm_rfft_fast_f32.c
TARGET_SRC += $(DSPLIB)/Source/TransformFunctions/arm_cfft_f32.c
TARGET_SRC += $(DSPLIB)/Source/TransformFunctions/arm_rfft_fast_init_f32.c
TARGET_SRC += $(DSPLIB)/Source/TransformFunctions/arm_cfft_radix8_f32.c
TARGET_SRC += $(DSPLIB)/Source/CommonTables/arm_common_tables.c
TARGET_SRC += $(DSPLIB)/Source/ComplexMathFunctions/arm_cmplx_mag_f32.c
TARGET_SRC += $(DSPLIB)/Source/StatisticsFunctions/arm_max_f32.c
TARGET_SRC += $(wildcard $(DSPLIB)/Source/*/*.S)
endif
ifneq ($(filter ONBOARDFLASH,$(FEATURES)),) ifneq ($(filter ONBOARDFLASH,$(FEATURES)),)
TARGET_SRC += \ TARGET_SRC += \
drivers/flash_m25p16.c \ drivers/flash_m25p16.c \

View file

@ -5211,8 +5211,11 @@ void arm_rfft_fast_f32(
/* acc += y[n-1] */ /* acc += y[n-1] */
acc += (q31_t) S->state[2] << 15; acc += (q31_t) S->state[2] << 15;
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpedantic"
/* saturate the output */ /* saturate the output */
out = (q15_t) (__SSAT((acc >> 15), 16)); out = (q15_t) (__SSAT((acc >> 15), 16));
#pragma GCC diagnostic push
/* Update state */ /* Update state */
S->state[1] = S->state[0]; S->state[1] = S->state[0];

View file

@ -41,6 +41,7 @@
#include "arm_math.h" #include "arm_math.h"
#include "arm_common_tables.h" #include "arm_common_tables.h"
#pragma GCC diagnostic ignored "-Woverflow"
/** /**
* @ingroup groupTransforms * @ingroup groupTransforms

View file

@ -50,7 +50,9 @@ typedef struct gyroDev_s {
sensorGyroUpdateFuncPtr update; sensorGyroUpdateFuncPtr update;
extiCallbackRec_t exti; extiCallbackRec_t exti;
float scale; // scalefactor float scale; // scalefactor
volatile int16_t gyroADCRaw[XYZ_AXIS_COUNT]; int16_t gyroADCRaw[XYZ_AXIS_COUNT];
int32_t gyroZero[XYZ_AXIS_COUNT];
int32_t gyroADC[XYZ_AXIS_COUNT]; // gyro data after calibration and alignment
uint8_t lpf; uint8_t lpf;
gyroRateKHz_e gyroRateKHz; gyroRateKHz_e gyroRateKHz;
uint8_t mpuDividerDrops; uint8_t mpuDividerDrops;

View file

@ -18,6 +18,8 @@
#pragma once #pragma once
#include <stdbool.h>
#include "io_types.h" #include "io_types.h"
// old EXTI interface, to be replaced // old EXTI interface, to be replaced

View file

@ -17,6 +17,9 @@
#pragma once #pragma once
#include <stdbool.h>
#include <stdint.h>
typedef enum { typedef enum {
ALIGN_DEFAULT = 0, // driver-provided alignment ALIGN_DEFAULT = 0, // driver-provided alignment
CW0_DEG = 1, CW0_DEG = 1,

View file

@ -72,6 +72,7 @@
#include "sensors/battery.h" #include "sensors/battery.h"
#include "sensors/compass.h" #include "sensors/compass.h"
#include "sensors/gyro.h" #include "sensors/gyro.h"
#include "sensors/gyroanalyse.h"
#include "sensors/sonar.h" #include "sensors/sonar.h"
#include "sensors/esc_sensor.h" #include "sensors/esc_sensor.h"
@ -308,6 +309,9 @@ void fcTasksInit(void)
setTaskEnabled(TASK_VTXCTRL, true); setTaskEnabled(TASK_VTXCTRL, true);
#endif #endif
#endif #endif
#ifdef USE_GYRO_DATA_ANALYSE
setTaskEnabled(TASK_GYRO_DATA_ANALYSE, true);
#endif
} }
cfTask_t cfTasks[TASK_COUNT] = { cfTask_t cfTasks[TASK_COUNT] = {
@ -409,7 +413,7 @@ cfTask_t cfTasks[TASK_COUNT] = {
[TASK_SONAR] = { [TASK_SONAR] = {
.taskName = "SONAR", .taskName = "SONAR",
.taskFunc = sonarUpdate, .taskFunc = sonarUpdate,
.desiredPeriod = TASK_PERIOD_MS(70), // 70ms required so that SONAR pulses do not interfer with each other .desiredPeriod = TASK_PERIOD_MS(70), // 70ms required so that SONAR pulses do not interfere with each other
.staticPriority = TASK_PRIORITY_LOW, .staticPriority = TASK_PRIORITY_LOW,
}, },
#endif #endif
@ -479,7 +483,7 @@ cfTask_t cfTasks[TASK_COUNT] = {
[TASK_ESC_SENSOR] = { [TASK_ESC_SENSOR] = {
.taskName = "ESC_SENSOR", .taskName = "ESC_SENSOR",
.taskFunc = escSensorProcess, .taskFunc = escSensorProcess,
.desiredPeriod = TASK_PERIOD_HZ(100), // 100 Hz every 10ms .desiredPeriod = TASK_PERIOD_HZ(100), // 100 Hz, 10ms
.staticPriority = TASK_PRIORITY_LOW, .staticPriority = TASK_PRIORITY_LOW,
}, },
#endif #endif
@ -506,8 +510,17 @@ cfTask_t cfTasks[TASK_COUNT] = {
[TASK_VTXCTRL] = { [TASK_VTXCTRL] = {
.taskName = "VTXCTRL", .taskName = "VTXCTRL",
.taskFunc = taskVtxControl, .taskFunc = taskVtxControl,
.desiredPeriod = TASK_PERIOD_HZ(5), // 5Hz @200msec .desiredPeriod = TASK_PERIOD_HZ(5), // 5 Hz, 200ms
.staticPriority = TASK_PRIORITY_IDLE, .staticPriority = TASK_PRIORITY_IDLE,
}, },
#endif #endif
#ifdef USE_GYRO_DATA_ANALYSE
[TASK_GYRO_DATA_ANALYSE] = {
.taskName = "GYROFFT",
.taskFunc = gyroDataAnalyseUpdate,
.desiredPeriod = TASK_PERIOD_HZ(100), // 100 Hz, 10ms
.staticPriority = TASK_PRIORITY_MEDIUM,
},
#endif
}; };

View file

@ -105,6 +105,9 @@ typedef enum {
#ifdef VTX_CONTROL #ifdef VTX_CONTROL
TASK_VTXCTRL, TASK_VTXCTRL,
#endif #endif
#ifdef USE_GYRO_DATA_ANALYSE
TASK_GYRO_DATA_ANALYSE,
#endif
/* Count of real tasks */ /* Count of real tasks */
TASK_COUNT, TASK_COUNT,

View file

@ -62,6 +62,7 @@
#include "sensors/boardalignment.h" #include "sensors/boardalignment.h"
#include "sensors/gyro.h" #include "sensors/gyro.h"
#include "sensors/gyroanalyse.h"
#include "sensors/sensors.h" #include "sensors/sensors.h"
#ifdef USE_HARDWARE_REVISION_DETECTION #ifdef USE_HARDWARE_REVISION_DETECTION
@ -73,9 +74,6 @@ gyro_t gyro;
STATIC_UNIT_TESTED gyroDev_t gyroDev0; STATIC_UNIT_TESTED gyroDev_t gyroDev0;
static int16_t gyroTemperature0; static int16_t gyroTemperature0;
static int32_t gyroADC[XYZ_AXIS_COUNT];
STATIC_UNIT_TESTED int32_t gyroZero[XYZ_AXIS_COUNT] = { 0, 0, 0 };
static uint16_t calibratingG = 0; static uint16_t calibratingG = 0;
static filterApplyFnPtr softLpfFilterApplyFn; static filterApplyFnPtr softLpfFilterApplyFn;
@ -371,6 +369,9 @@ void gyroInitFilters(void)
biquadFilterInit(notchFilter2[axis], gyroConfig()->gyro_soft_notch_hz_2, gyro.targetLooptime, gyroSoftNotchQ2, FILTER_NOTCH); biquadFilterInit(notchFilter2[axis], gyroConfig()->gyro_soft_notch_hz_2, gyro.targetLooptime, gyroSoftNotchQ2, FILTER_NOTCH);
} }
} }
#ifdef USE_GYRO_DATA_ANALYSE
gyroDataAnalyseInit();
#endif
} }
bool isGyroCalibrationComplete(void) bool isGyroCalibrationComplete(void)
@ -398,7 +399,7 @@ void gyroSetCalibrationCycles(void)
calibratingG = gyroCalculateCalibratingCycles(); calibratingG = gyroCalculateCalibratingCycles();
} }
STATIC_UNIT_TESTED void performGyroCalibration(uint8_t gyroMovementCalibrationThreshold) STATIC_UNIT_TESTED void performGyroCalibration(gyroDev_t *gyroDev, uint8_t gyroMovementCalibrationThreshold)
{ {
static int32_t g[3]; static int32_t g[3];
static stdev_t var[3]; static stdev_t var[3];
@ -412,15 +413,15 @@ STATIC_UNIT_TESTED void performGyroCalibration(uint8_t gyroMovementCalibrationTh
} }
// Sum up CALIBRATING_GYRO_CYCLES readings // Sum up CALIBRATING_GYRO_CYCLES readings
g[axis] += gyroADC[axis]; g[axis] += gyroDev->gyroADC[axis];
devPush(&var[axis], gyroADC[axis]); devPush(&var[axis], gyroDev->gyroADC[axis]);
// Reset global variables to prevent other code from using un-calibrated data // Reset global variables to prevent other code from using un-calibrated data
gyroADC[axis] = 0; gyroDev->gyroADC[axis] = 0;
gyroZero[axis] = 0; gyroDev->gyroZero[axis] = 0;
if (isOnFinalGyroCalibrationCycle()) { if (isOnFinalGyroCalibrationCycle()) {
float dev = devStandardDeviation(&var[axis]); const float dev = devStandardDeviation(&var[axis]);
DEBUG_SET(DEBUG_GYRO, DEBUG_GYRO_CALIBRATION, lrintf(dev)); DEBUG_SET(DEBUG_GYRO, DEBUG_GYRO_CALIBRATION, lrintf(dev));
@ -429,7 +430,7 @@ STATIC_UNIT_TESTED void performGyroCalibration(uint8_t gyroMovementCalibrationTh
gyroSetCalibrationCycles(); gyroSetCalibrationCycles();
return; return;
} }
gyroZero[axis] = (g[axis] + (gyroCalculateCalibratingCycles() / 2)) / gyroCalculateCalibratingCycles(); gyroDev->gyroZero[axis] = (g[axis] + (gyroCalculateCalibratingCycles() / 2)) / gyroCalculateCalibratingCycles();
} }
} }
@ -452,16 +453,16 @@ static bool gyroUpdateISR(gyroDev_t* gyroDev)
#endif #endif
gyroDev->dataReady = false; gyroDev->dataReady = false;
// move gyro data into 32-bit variables to avoid overflows in calculations // move gyro data into 32-bit variables to avoid overflows in calculations
gyroADC[X] = gyroDev->gyroADCRaw[X]; gyroDev->gyroADC[X] = gyroDev->gyroADCRaw[X];
gyroADC[Y] = gyroDev->gyroADCRaw[Y]; gyroDev->gyroADC[Y] = gyroDev->gyroADCRaw[Y];
gyroADC[Z] = gyroDev->gyroADCRaw[Z]; gyroDev->gyroADC[Z] = gyroDev->gyroADCRaw[Z];
alignSensors(gyroADC, gyroDev->gyroAlign); alignSensors(gyroDev->gyroADC, gyroDev->gyroAlign);
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) { for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
gyroADC[axis] -= gyroZero[axis]; gyroDev->gyroADC[axis] -= gyroDev->gyroZero[axis];
// scale gyro output to degrees per second // scale gyro output to degrees per second
float gyroADCf = (float)gyroADC[axis] * gyroDev->scale; float gyroADCf = (float)gyroDev->gyroADC[axis] * gyroDev->scale;
gyroADCf = softLpfFilterApplyFn(softLpfFilter[axis], gyroADCf); gyroADCf = softLpfFilterApplyFn(softLpfFilter[axis], gyroADCf);
gyroADCf = notchFilter1ApplyFn(notchFilter1[axis], gyroADCf); gyroADCf = notchFilter1ApplyFn(notchFilter1[axis], gyroADCf);
gyroADCf = notchFilter2ApplyFn(notchFilter2[axis], gyroADCf); gyroADCf = notchFilter2ApplyFn(notchFilter2[axis], gyroADCf);
@ -483,11 +484,11 @@ void gyroUpdate(void)
} }
gyroDev0.dataReady = false; gyroDev0.dataReady = false;
// move gyro data into 32-bit variables to avoid overflows in calculations // move gyro data into 32-bit variables to avoid overflows in calculations
gyroADC[X] = gyroDev0.gyroADCRaw[X]; gyroDev0.gyroADC[X] = gyroDev0.gyroADCRaw[X];
gyroADC[Y] = gyroDev0.gyroADCRaw[Y]; gyroDev0.gyroADC[Y] = gyroDev0.gyroADCRaw[Y];
gyroADC[Z] = gyroDev0.gyroADCRaw[Z]; gyroDev0.gyroADC[Z] = gyroDev0.gyroADCRaw[Z];
alignSensors(gyroADC, gyroDev0.gyroAlign); alignSensors(gyroDev0.gyroADC, gyroDev0.gyroAlign);
const bool calibrationComplete = isGyroCalibrationComplete(); const bool calibrationComplete = isGyroCalibrationComplete();
if (calibrationComplete) { if (calibrationComplete) {
@ -502,13 +503,13 @@ void gyroUpdate(void)
debug[3] = (uint16_t)(micros() & 0xffff); debug[3] = (uint16_t)(micros() & 0xffff);
#endif #endif
} else { } else {
performGyroCalibration(gyroConfig()->gyroMovementCalibrationThreshold); performGyroCalibration(&gyroDev0, gyroConfig()->gyroMovementCalibrationThreshold);
} }
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) { for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
gyroADC[axis] -= gyroZero[axis]; gyroDev0.gyroADC[axis] -= gyroDev0.gyroZero[axis];
// scale gyro output to degrees per second // scale gyro output to degrees per second
float gyroADCf = (float)gyroADC[axis] * gyroDev0.scale; float gyroADCf = (float)gyroDev0.gyroADC[axis] * gyroDev0.scale;
// Apply LPF // Apply LPF
DEBUG_SET(DEBUG_GYRO, axis, lrintf(gyroADCf)); DEBUG_SET(DEBUG_GYRO, axis, lrintf(gyroADCf));
@ -522,10 +523,13 @@ void gyroUpdate(void)
} }
if (!calibrationComplete) { if (!calibrationComplete) {
gyroADC[X] = lrintf(gyro.gyroADCf[X] / gyroDev0.scale); gyroDev0.gyroADC[X] = lrintf(gyro.gyroADCf[X] / gyroDev0.scale);
gyroADC[Y] = lrintf(gyro.gyroADCf[Y] / gyroDev0.scale); gyroDev0.gyroADC[Y] = lrintf(gyro.gyroADCf[Y] / gyroDev0.scale);
gyroADC[Z] = lrintf(gyro.gyroADCf[Z] / gyroDev0.scale); gyroDev0.gyroADC[Z] = lrintf(gyro.gyroADCf[Z] / gyroDev0.scale);
} }
#ifdef USE_GYRO_DATA_ANALYSE
gyroDataAnalyse(&gyroDev0, &gyro);
#endif
} }
void gyroReadTemperature(void) void gyroReadTemperature(void)

View file

@ -0,0 +1,35 @@
#include <stdint.h>
#include "platform.h"
#ifdef USE_GYRO_DATA_ANALYSE
#include "arm_math.h"
#include "build/debug.h"
#include "common/maths.h"
#include "common/time.h"
#include "common/utils.h"
#include "drivers/accgyro.h"
#include "sensors/gyro.h"
#include "sensors/gyroanalyse.h"
void gyroDataAnalyseInit(void)
{
}
void gyroDataAnalyse(const gyroDev_t *gyroDev, const gyro_t *gyro)
{
UNUSED(gyroDev);
UNUSED(gyro);
}
void gyroDataAnalyseUpdate(timeUs_t currentTimeUs)
{
UNUSED(currentTimeUs);
}
#endif // USE_GYRO_DATA_ANALYSE

View file

@ -0,0 +1,26 @@
/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "common/time.h"
void gyroDataAnalyseInit(void);
struct gyroDev_s;
struct gyro_s;
void gyroDataAnalyse(const struct gyroDev_s *gyroDev, const struct gyro_s *gyro);
void gyroDataAnalyseUpdate(timeUs_t currentTimeUs);