1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-16 21:05:35 +03:00

fix build errors

This commit is contained in:
rav 2017-05-11 23:10:00 +02:00
parent d9909b91d3
commit 75089ea24c
5 changed files with 32 additions and 39 deletions

View file

@ -150,7 +150,7 @@ static const char * const featureNames[] = {
"SONAR", "TELEMETRY", "CURRENT_METER", "3D", "RX_PARALLEL_PWM", "SONAR", "TELEMETRY", "CURRENT_METER", "3D", "RX_PARALLEL_PWM",
"RX_MSP", "RSSI_ADC", "LED_STRIP", "DISPLAY", "OSD", "RX_MSP", "RSSI_ADC", "LED_STRIP", "DISPLAY", "OSD",
"UNUSED", "CHANNEL_FORWARDING", "TRANSPONDER", "AIRMODE", "UNUSED", "CHANNEL_FORWARDING", "TRANSPONDER", "AIRMODE",
"SDCARD", "VTX", "RX_SPI", "SOFTSPI", "ESC_SENSOR", "ANTI_GRAVITY", NULL "SDCARD", "VTX", "RX_SPI", "SOFTSPI", "ESC_SENSOR", "ANTI_GRAVITY", "DYNAMIC_FILTER", NULL
}; };
// sync this with rxFailsafeChannelMode_e // sync this with rxFailsafeChannelMode_e

View file

@ -204,7 +204,10 @@ static const char * const lookupTableDebug[DEBUG_COUNT] = {
"STACK", "STACK",
"ESC_SENSOR_RPM", "ESC_SENSOR_RPM",
"ESC_SENSOR_TMP", "ESC_SENSOR_TMP",
"ALTITUDE" "ALTITUDE",
"FFT",
"FFT_TIME",
"FFT_FREQ"
}; };
#ifdef OSD #ifdef OSD

View file

@ -96,15 +96,14 @@ typedef struct gyroSensor_s {
biquadFilter_t notchFilter1[XYZ_AXIS_COUNT]; biquadFilter_t notchFilter1[XYZ_AXIS_COUNT];
filterApplyFnPtr notchFilter2ApplyFn; filterApplyFnPtr notchFilter2ApplyFn;
biquadFilter_t notchFilter2[XYZ_AXIS_COUNT]; biquadFilter_t notchFilter2[XYZ_AXIS_COUNT];
filterApplyFnPtr notchFilterDynApplyFn;
biquadFilter_t notchFilterDyn[XYZ_AXIS_COUNT];
} gyroSensor_t; } gyroSensor_t;
static gyroSensor_t gyroSensor0; static gyroSensor_t gyroSensor0;
static void gyroInitSensorFilters(gyroSensor_t *gyroSensor); static void gyroInitSensorFilters(gyroSensor_t *gyroSensor);
static filterApplyFnPtr notchFilterDynApplyFn;
biquadFilter_t *notchFilterDyn[3];
#define DEBUG_GYRO_CALIBRATION 3 #define DEBUG_GYRO_CALIBRATION 3
#ifdef STM32F10X #ifdef STM32F10X
@ -410,7 +409,6 @@ void gyroInitFilterNotch1(gyroSensor_t *gyroSensor, uint16_t notchHz, uint16_t n
void gyroInitFilterNotch2(gyroSensor_t *gyroSensor, uint16_t notchHz, uint16_t notchCutoffHz) void gyroInitFilterNotch2(gyroSensor_t *gyroSensor, uint16_t notchHz, uint16_t notchCutoffHz)
{ {
gyroSensor->notchFilter2ApplyFn = nullFilterApply; gyroSensor->notchFilter2ApplyFn = nullFilterApply;
const uint32_t gyroFrequencyNyquist = (1.0f / (gyro.targetLooptime * 0.000001f)) / 2; // No rounding needed const uint32_t gyroFrequencyNyquist = (1.0f / (gyro.targetLooptime * 0.000001f)) / 2; // No rounding needed
if (notchHz && notchHz <= gyroFrequencyNyquist) { if (notchHz && notchHz <= gyroFrequencyNyquist) {
@ -422,30 +420,26 @@ void gyroInitFilterNotch2(gyroSensor_t *gyroSensor, uint16_t notchHz, uint16_t n
} }
} }
void gyroInitFilterDynamicNotch(gyroSensor_t *gyroSensor)
{
gyroSensor->notchFilterDynApplyFn = (filterApplyFnPtr)biquadFilterApply; // must be this function, not DF2
const float notchQ = filterGetNotchQ(400, 390); //just any init value
for (int axis = 0; axis < 3; axis++) {
biquadFilterInit(&gyroSensor->notchFilterDyn[axis], 400, gyro.targetLooptime, notchQ, FILTER_NOTCH);
}
}
static void gyroInitSensorFilters(gyroSensor_t *gyroSensor) static void gyroInitSensorFilters(gyroSensor_t *gyroSensor)
{ {
gyroInitFilterLpf(gyroSensor, gyroConfig()->gyro_soft_lpf_hz); gyroInitFilterLpf(gyroSensor, gyroConfig()->gyro_soft_lpf_hz);
gyroInitFilterNotch1(gyroSensor, gyroConfig()->gyro_soft_notch_hz_1, gyroConfig()->gyro_soft_notch_cutoff_1); gyroInitFilterNotch1(gyroSensor, gyroConfig()->gyro_soft_notch_hz_1, gyroConfig()->gyro_soft_notch_cutoff_1);
gyroInitFilterNotch2(gyroSensor, gyroConfig()->gyro_soft_notch_hz_2, gyroConfig()->gyro_soft_notch_cutoff_2); gyroInitFilterNotch2(gyroSensor, gyroConfig()->gyro_soft_notch_hz_2, gyroConfig()->gyro_soft_notch_cutoff_2);
} gyroInitFilterDynamicNotch(gyroSensor);
void gyroInitFilterDynamicNotch()
{
static biquadFilter_t gyroFilterNotch[XYZ_AXIS_COUNT];
notchFilterDynApplyFn = (filterApplyFnPtr)biquadFilterApply; //must be this function, do not change
const float notchQ = filterGetNotchQ(400, 390); //just any init value
for (int axis = 0; axis < 3; axis++) {
notchFilterDyn[axis] = &gyroFilterNotch[axis];
biquadFilterInit(notchFilterDyn[axis], 400, gyro.targetLooptime, notchQ, FILTER_NOTCH);
}
} }
void gyroInitFilters(void) void gyroInitFilters(void)
{ {
gyroInitSensorFilters(&gyroSensor0); gyroInitSensorFilters(&gyroSensor0);
gyroInitFilterDynamicNotch();
} }
bool isGyroSensorCalibrationComplete(const gyroSensor_t *gyroSensor) bool isGyroSensorCalibrationComplete(const gyroSensor_t *gyroSensor)
@ -545,6 +539,10 @@ void gyroUpdateSensor(gyroSensor_t *gyroSensor)
return; return;
} }
#ifdef USE_GYRO_DATA_ANALYSE
gyroDataAnalyse(&gyroSensor->gyroDev, gyroSensor->notchFilterDyn);
#endif
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) { for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
// scale gyro output to degrees per second // scale gyro output to degrees per second
float gyroADCf = (float)gyroSensor->gyroDev.gyroADC[axis] * gyroSensor->gyroDev.scale; float gyroADCf = (float)gyroSensor->gyroDev.gyroADC[axis] * gyroSensor->gyroDev.scale;
@ -555,7 +553,7 @@ void gyroUpdateSensor(gyroSensor_t *gyroSensor)
DEBUG_SET(DEBUG_FFT, 0, lrintf(gyroADCf)); // store raw data DEBUG_SET(DEBUG_FFT, 0, lrintf(gyroADCf)); // store raw data
if (isDynamicFilterActive()) if (isDynamicFilterActive())
gyroADCf = notchFilterDynApplyFn(notchFilterDyn[axis], gyroADCf); gyroADCf = gyroSensor->notchFilterDynApplyFn(&gyroSensor->notchFilterDyn[axis], gyroADCf);
if (axis == 0) if (axis == 0)
DEBUG_SET(DEBUG_FFT, 1, lrintf(gyroADCf)); // store data after dynamic notch DEBUG_SET(DEBUG_FFT, 1, lrintf(gyroADCf)); // store data after dynamic notch
@ -572,10 +570,6 @@ void gyroUpdateSensor(gyroSensor_t *gyroSensor)
gyro.gyroADCf[axis] = gyroADCf; gyro.gyroADCf[axis] = gyroADCf;
} }
#ifdef USE_GYRO_DATA_ANALYSE
gyroDataAnalyse(&gyroSensor->gyroDev, &gyro);
#endif
} }
void gyroUpdate(void) void gyroUpdate(void)

View file

@ -53,7 +53,7 @@
#define FFT_SAMPLING_RATE 1000 // allows analysis up to 500Hz which is more than motors create #define FFT_SAMPLING_RATE 1000 // allows analysis up to 500Hz which is more than motors create
#define FFT_BPF_HZ 200 // use a bandpass on gyro data to ignore extreme low and extreme high frequencies #define FFT_BPF_HZ 200 // use a bandpass on gyro data to ignore extreme low and extreme high frequencies
#define DYN_NOTCH_WIDTH 100 // just an orientation and start value #define DYN_NOTCH_WIDTH 100 // just an orientation and start value
#define DYN_NOTCH_CHANGERATE 40 // lower cut does not improve the performance much, higher cut makes it worse... #define DYN_NOTCH_CHANGERATE 60 // lower cut does not improve the performance much, higher cut makes it worse...
#define DYN_NOTCH_MIN_CUTOFF 120 // don't cut too deep into low frequencies #define DYN_NOTCH_MIN_CUTOFF 120 // don't cut too deep into low frequencies
#define DYN_NOTCH_MAX_CUTOFF 200 // don't go above this cutoff (better filtering with "constant" delay at higher center frequencies) #define DYN_NOTCH_MAX_CUTOFF 200 // don't go above this cutoff (better filtering with "constant" delay at higher center frequencies)
@ -118,7 +118,7 @@ void gyroDataAnalyseInit(uint32_t targetLooptimeUs) {
// at 4khz gyro loop rate this means 4khz / 4 / 3 = 333Hz => update every 3ms // at 4khz gyro loop rate this means 4khz / 4 / 3 = 333Hz => update every 3ms
float looptime = targetLooptimeUs * 4 * 3; float looptime = targetLooptimeUs * 4 * 3;
for (int axis = 0; axis < 3; ++axis) { for (int axis = 0; axis < 3; ++axis) {
fftResult[axis].centerFreq = 200; fftResult[axis].centerFreq = 200; // any init value
biquadFilterInitLPF(&fftFreqFilter[axis], DYN_NOTCH_CHANGERATE, looptime); biquadFilterInitLPF(&fftFreqFilter[axis], DYN_NOTCH_CHANGERATE, looptime);
biquadFilterInit(&fftGyroFilter[axis], FFT_BPF_HZ, 1000000 / FFT_SAMPLING_RATE, BIQUAD_Q, FILTER_BPF); biquadFilterInit(&fftGyroFilter[axis], FFT_BPF_HZ, 1000000 / FFT_SAMPLING_RATE, BIQUAD_Q, FILTER_BPF);
} }
@ -136,15 +136,14 @@ bool isDynamicFilterActive(void) {
/* /*
* Collect gyro data, to be analysed in gyroDataAnalyseUpdate function * Collect gyro data, to be analysed in gyroDataAnalyseUpdate function
*/ */
void gyroDataAnalyse(const gyroDev_t *gyroDev, const gyro_t *gyro) { void gyroDataAnalyse(const gyroDev_t *gyroDev, biquadFilter_t *notchFilterDyn) {
if (!isDynamicFilterActive()) { if (!isDynamicFilterActive()) {
return; return;
} }
UNUSED(gyro);
// if gyro sampling is > 1kHz, accumulate multiple samples // if gyro sampling is > 1kHz, accumulate multiple samples
for (int axis = 0; axis < 3; ++axis) { for (int axis = 0; axis < 3; ++axis) {
fftAcc[axis] += gyroDev->gyroADC[axis] * gyroDev->scale; fftAcc[axis] += gyroDev->gyroADC[axis];
} }
fftAccCount++; fftAccCount++;
@ -158,7 +157,7 @@ void gyroDataAnalyse(const gyroDev_t *gyroDev, const gyro_t *gyro) {
sample = biquadFilterApplyDF2(&fftGyroFilter[axis], sample); sample = biquadFilterApplyDF2(&fftGyroFilter[axis], sample);
gyroData[axis][fftIdx] = sample; gyroData[axis][fftIdx] = sample;
if (axis == 0) if (axis == 0)
DEBUG_SET(DEBUG_FFT, 2, lrintf(sample)); DEBUG_SET(DEBUG_FFT, 2, lrintf(sample * gyroDev->scale));
fftAcc[axis] = 0; fftAcc[axis] = 0;
} }
@ -166,7 +165,7 @@ void gyroDataAnalyse(const gyroDev_t *gyroDev, const gyro_t *gyro) {
} }
// calculate FFT and update filters // calculate FFT and update filters
gyroDataAnalyseUpdate(); gyroDataAnalyseUpdate(notchFilterDyn);
} }
void stage_rfft_f32(arm_rfft_fast_instance_f32 * S, float32_t * p, float32_t * pOut); void stage_rfft_f32(arm_rfft_fast_instance_f32 * S, float32_t * p, float32_t * pOut);
@ -189,7 +188,7 @@ typedef enum {
/* /*
* Analyse last gyro data from the last FFT_WINDOW_SIZE milliseconds * Analyse last gyro data from the last FFT_WINDOW_SIZE milliseconds
*/ */
void gyroDataAnalyseUpdate() { void gyroDataAnalyseUpdate(biquadFilter_t *notchFilterDyn) {
static int axis = 0; static int axis = 0;
static int step = 0; static int step = 0;
arm_cfft_instance_f32 * Sint = &(fftInstance.Sint); arm_cfft_instance_f32 * Sint = &(fftInstance.Sint);
@ -295,7 +294,7 @@ void gyroDataAnalyseUpdate() {
// calculate new filter coefficients // calculate new filter coefficients
float cutoffFreq = constrain(fftResult[axis].centerFreq - DYN_NOTCH_WIDTH, DYN_NOTCH_MIN_CUTOFF, DYN_NOTCH_MAX_CUTOFF); float cutoffFreq = constrain(fftResult[axis].centerFreq - DYN_NOTCH_WIDTH, DYN_NOTCH_MIN_CUTOFF, DYN_NOTCH_MAX_CUTOFF);
float notchQ = filterGetNotchQApprox(fftResult[axis].centerFreq, cutoffFreq); float notchQ = filterGetNotchQApprox(fftResult[axis].centerFreq, cutoffFreq);
biquadFilterUpdate(notchFilterDyn[axis], fftResult[axis].centerFreq, gyro.targetLooptime, notchQ, FILTER_NOTCH); biquadFilterUpdate(&notchFilterDyn[axis], fftResult[axis].centerFreq, gyro.targetLooptime, notchQ, FILTER_NOTCH);
DEBUG_SET(DEBUG_FFT_TIME, 1, micros() - startTime); DEBUG_SET(DEBUG_FFT_TIME, 1, micros() - startTime);
axis = (axis + 1) % 3; axis = (axis + 1) % 3;

View file

@ -30,9 +30,6 @@ typedef struct gyroFftData_s {
void gyroDataAnalyseInit(uint32_t targetLooptime); void gyroDataAnalyseInit(uint32_t targetLooptime);
const gyroFftData_t *gyroFftData(int axis); const gyroFftData_t *gyroFftData(int axis);
struct gyroDev_s; struct gyroDev_s;
struct gyro_s; void gyroDataAnalyse(const struct gyroDev_s *gyroDev, biquadFilter_t *notchFilterDyn);
void gyroDataAnalyse(const struct gyroDev_s *gyroDev, const struct gyro_s *gyro); void gyroDataAnalyseUpdate(biquadFilter_t *notchFilterDyn);
void gyroDataAnalyseUpdate();
bool isDynamicFilterActive(); bool isDynamicFilterActive();
extern biquadFilter_t *notchFilterDyn[3];