mirror of
https://github.com/betaflight/betaflight.git
synced 2025-07-12 19:10:32 +03:00
PICO: Adding pico-sdk as sub module (#14400)
This commit is contained in:
parent
bb1aeb8dd7
commit
7969451f7c
4 changed files with 0 additions and 768 deletions
|
@ -1,287 +0,0 @@
|
|||
/*
|
||||
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
*/
|
||||
|
||||
/** \file platform.h
|
||||
* \defgroup pico_platform pico_platform
|
||||
*
|
||||
* \brief Macros and definitions (and functions when included by non assembly code) for the RP2 family device / architecture
|
||||
* to provide a common abstraction over low level compiler / platform specifics
|
||||
*
|
||||
* This header may be included by assembly code
|
||||
*/
|
||||
|
||||
#ifndef _PICO_PLATFORM_H
|
||||
#define _PICO_PLATFORM_H
|
||||
|
||||
#ifndef _PICO_H
|
||||
#error pico/platform.h should not be included directly; include pico.h instead
|
||||
#endif
|
||||
|
||||
#include "pico/platform/compiler.h"
|
||||
#include "pico/platform/sections.h"
|
||||
#include "pico/platform/panic.h"
|
||||
#include "hardware/regs/addressmap.h"
|
||||
#include "hardware/regs/sio.h"
|
||||
#ifdef __riscv
|
||||
#include "hardware/regs/rvcsr.h"
|
||||
#endif
|
||||
|
||||
// PICO_CONFIG: PICO_RP2350A, Whether the current board has an RP2350 in an A (30 GPIO) package, type=bool, default=Usually provided via board header, group=pico_platform
|
||||
#if 0 // make tooling checks happy
|
||||
#define PICO_RP2350A 0
|
||||
#endif
|
||||
|
||||
// PICO_CONFIG: PICO_RP2350_A2_SUPPORTED, Whether to include any specific software support for RP2350 A2 revision, type=bool, default=1, advanced=true, group=pico_platform
|
||||
#ifndef PICO_RP2350_A2_SUPPORTED
|
||||
#define PICO_RP2350_A2_SUPPORTED 1
|
||||
#endif
|
||||
|
||||
// PICO_CONFIG: PICO_STACK_SIZE, Minimum amount of stack space reserved in the linker script for each core. See also PICO_CORE1_STACK_SIZE, min=0x100, default=0x800, advanced=true, group=pico_platform
|
||||
#ifndef PICO_STACK_SIZE
|
||||
#define PICO_STACK_SIZE _u(0x800)
|
||||
#endif
|
||||
|
||||
// PICO_CONFIG: PICO_HEAP_SIZE, Minimum amount of heap space reserved by the linker script, min=0x100, default=0x800, advanced=true, group=pico_platform
|
||||
#ifndef PICO_HEAP_SIZE
|
||||
#define PICO_HEAP_SIZE _u(0x800)
|
||||
#endif
|
||||
|
||||
// PICO_CONFIG: PICO_NO_RAM_VECTOR_TABLE, Enable/disable the RAM vector table, type=bool, default=0, advanced=true, group=pico_platform
|
||||
#ifndef PICO_NO_RAM_VECTOR_TABLE
|
||||
#define PICO_NO_RAM_VECTOR_TABLE 0
|
||||
#endif
|
||||
|
||||
#ifndef PICO_RAM_VECTOR_TABLE_SIZE
|
||||
#define PICO_RAM_VECTOR_TABLE_SIZE (VTABLE_FIRST_IRQ + NUM_IRQS)
|
||||
#endif
|
||||
|
||||
// PICO_CONFIG: PICO_USE_STACK_GUARDS, Enable/disable stack guards, type=bool, default=0, advanced=true, group=pico_platform
|
||||
#ifndef PICO_USE_STACK_GUARDS
|
||||
#define PICO_USE_STACK_GUARDS 0
|
||||
#endif
|
||||
|
||||
// PICO_CONFIG: PICO_CLKDIV_ROUND_NEAREST, True if floating point clock divisors should be rounded to the nearest possible clock divisor by default rather than rounding down, type=bool, default=1, group=pico_platform
|
||||
#ifndef PICO_CLKDIV_ROUND_NEAREST
|
||||
#define PICO_CLKDIV_ROUND_NEAREST 1
|
||||
#endif
|
||||
|
||||
#ifndef __ASSEMBLER__
|
||||
|
||||
/*! \brief No-op function for the body of tight loops
|
||||
* \ingroup pico_platform
|
||||
*
|
||||
* No-op function intended to be called by any tight hardware polling loop. Using this ubiquitously
|
||||
* makes it much easier to find tight loops, but also in the future \#ifdef-ed support for lockup
|
||||
* debugging might be added
|
||||
*/
|
||||
static __force_inline void tight_loop_contents(void) {}
|
||||
|
||||
/*! \brief Helper method to busy-wait for at least the given number of cycles
|
||||
* \ingroup pico_platform
|
||||
*
|
||||
* This method is useful for introducing very short delays.
|
||||
*
|
||||
* This method busy-waits in a tight loop for the given number of system clock cycles. The total wait time is only accurate to within 2 cycles,
|
||||
* and this method uses a loop counter rather than a hardware timer, so the method will always take longer than expected if an
|
||||
* interrupt is handled on the calling core during the busy-wait; you can of course disable interrupts to prevent this.
|
||||
*
|
||||
* You can use \ref clock_get_hz(clk_sys) to determine the number of clock cycles per second if you want to convert an actual
|
||||
* time duration to a number of cycles.
|
||||
*
|
||||
* \param minimum_cycles the minimum number of system clock cycles to delay for
|
||||
*/
|
||||
static inline void busy_wait_at_least_cycles(uint32_t minimum_cycles) {
|
||||
pico_default_asm_volatile (
|
||||
#ifdef __riscv
|
||||
// Note the range is halved on RISC-V due to signed comparison (no carry flag)
|
||||
".option push\n"
|
||||
".option norvc\n" // force 32 bit addi, so branch prediction guaranteed
|
||||
".p2align 2\n"
|
||||
"1: \n"
|
||||
"addi %0, %0, -2 \n"
|
||||
"bgez %0, 1b\n"
|
||||
".option pop"
|
||||
#else
|
||||
"1: subs %0, #3\n"
|
||||
"bcs 1b\n"
|
||||
#endif
|
||||
: "+r" (minimum_cycles) : : "cc", "memory"
|
||||
);
|
||||
}
|
||||
|
||||
// PICO_CONFIG: PICO_NO_FPGA_CHECK, Remove the FPGA platform check for small code size reduction, type=bool, default=1, advanced=true, group=pico_runtime
|
||||
#ifndef PICO_NO_FPGA_CHECK
|
||||
#define PICO_NO_FPGA_CHECK 1
|
||||
#endif
|
||||
|
||||
// PICO_CONFIG: PICO_NO_SIM_CHECK, Remove the SIM platform check for small code size reduction, type=bool, default=1, advanced=true, group=pico_runtime
|
||||
#ifndef PICO_NO_SIM_CHECK
|
||||
#define PICO_NO_SIM_CHECK 1
|
||||
#endif
|
||||
|
||||
#if PICO_NO_FPGA_CHECK
|
||||
static inline bool running_on_fpga(void) {return false;}
|
||||
#else
|
||||
bool running_on_fpga(void);
|
||||
#endif
|
||||
#if PICO_NO_SIM_CHECK
|
||||
static inline bool running_in_sim(void) {return false;}
|
||||
#else
|
||||
bool running_in_sim(void);
|
||||
#endif
|
||||
|
||||
/*! \brief Execute a breakpoint instruction
|
||||
* \ingroup pico_platform
|
||||
*/
|
||||
static __force_inline void __breakpoint(void) {
|
||||
#ifdef __riscv
|
||||
__asm ("ebreak");
|
||||
#else
|
||||
pico_default_asm_volatile ("bkpt #0" : : : "memory");
|
||||
#endif
|
||||
}
|
||||
|
||||
/*! \brief Get the current core number
|
||||
* \ingroup pico_platform
|
||||
*
|
||||
* \return The core number the call was made from
|
||||
*/
|
||||
__force_inline static uint get_core_num(void) {
|
||||
return (*(uint32_t *) (SIO_BASE + SIO_CPUID_OFFSET));
|
||||
}
|
||||
|
||||
/*! \brief Get the current exception level on this core
|
||||
* \ingroup pico_platform
|
||||
*
|
||||
* On Cortex-M this is the exception number defined in the architecture
|
||||
* reference, which is equal to VTABLE_FIRST_IRQ + irq num if inside an
|
||||
* interrupt handler. (VTABLE_FIRST_IRQ is defined in platform_defs.h).
|
||||
*
|
||||
* On Hazard3, this function returns VTABLE_FIRST_IRQ + irq num if inside of
|
||||
* an external IRQ handler (or a fault from such a handler), and 0 otherwise,
|
||||
* generally aligning with the Cortex-M values.
|
||||
*
|
||||
* \return the exception number if the CPU is handling an exception, or 0 otherwise
|
||||
*/
|
||||
static __force_inline uint __get_current_exception(void) {
|
||||
#ifdef __riscv
|
||||
uint32_t meicontext;
|
||||
pico_default_asm_volatile (
|
||||
"csrr %0, %1\n"
|
||||
: "=r" (meicontext) : "i" (RVCSR_MEICONTEXT_OFFSET)
|
||||
);
|
||||
if (meicontext & RVCSR_MEICONTEXT_NOIRQ_BITS) {
|
||||
return 0;
|
||||
} else {
|
||||
return VTABLE_FIRST_IRQ + (
|
||||
(meicontext & RVCSR_MEICONTEXT_IRQ_BITS) >> RVCSR_MEICONTEXT_IRQ_LSB
|
||||
);
|
||||
}
|
||||
#else
|
||||
uint exception;
|
||||
pico_default_asm_volatile (
|
||||
"mrs %0, ipsr\n"
|
||||
"uxtb %0, %0\n"
|
||||
: "=l" (exception)
|
||||
);
|
||||
return exception;
|
||||
#endif
|
||||
}
|
||||
|
||||
/*! \brief Return true if executing in the NonSecure state (Arm-only)
|
||||
* \ingroup pico_platform
|
||||
*
|
||||
* \return True if currently executing in the NonSecure state on an Arm processor
|
||||
*/
|
||||
__force_inline static bool pico_processor_state_is_nonsecure(void) {
|
||||
#ifndef __riscv
|
||||
// todo add a define to disable NS checking at all?
|
||||
// IDAU-Exempt addresses return S=1 when tested in the Secure state,
|
||||
// whereas executing a tt in the NonSecure state will always return S=0.
|
||||
uint32_t tt;
|
||||
pico_default_asm_volatile (
|
||||
"movs %0, #0\n"
|
||||
"tt %0, %0\n"
|
||||
: "=r" (tt) : : "cc"
|
||||
);
|
||||
return !(tt & (1u << 22));
|
||||
#else
|
||||
// NonSecure is an Arm concept, there is nothing meaningful to return
|
||||
// here. Note it's not possible in general to detect whether you are
|
||||
// executing in U-mode as, for example, M-mode is classically
|
||||
// virtualisable in U-mode.
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
#define host_safe_hw_ptr(x) ((uintptr_t)(x))
|
||||
#define native_safe_hw_ptr(x) host_safe_hw_ptr(x)
|
||||
|
||||
/*! \brief Returns the RP2350 chip revision number
|
||||
* \ingroup pico_platform
|
||||
* @return the RP2350 chip revision number (1 for B0/B1, 2 for B2)
|
||||
*/
|
||||
uint8_t rp2350_chip_version(void);
|
||||
|
||||
/*! \brief Returns the RP2040 chip revision number for compatibility
|
||||
* \ingroup pico_platform
|
||||
* @return 2 RP2040 errata fixed in B2 are fixed in RP2350
|
||||
*/
|
||||
static inline uint8_t rp2040_chip_version(void) {
|
||||
return 2;
|
||||
}
|
||||
|
||||
/*! \brief Returns the RP2040 rom version number
|
||||
* \ingroup pico_platform
|
||||
* @return the RP2040 rom version number (1 for RP2040-B0, 2 for RP2040-B1, 3 for RP2040-B2)
|
||||
*/
|
||||
static inline uint8_t rp2040_rom_version(void) {
|
||||
GCC_Pragma("GCC diagnostic push")
|
||||
GCC_Pragma("GCC diagnostic ignored \"-Warray-bounds\"")
|
||||
return *(uint8_t*)0x13;
|
||||
GCC_Pragma("GCC diagnostic pop")
|
||||
}
|
||||
|
||||
/*! \brief Multiply two integers using an assembly `MUL` instruction
|
||||
* \ingroup pico_platform
|
||||
*
|
||||
* This multiplies a by b using multiply instruction using the ARM mul instruction regardless of values (the compiler
|
||||
* might otherwise choose to perform shifts/adds), i.e. this is a 1 cycle operation.
|
||||
*
|
||||
* \param a the first operand
|
||||
* \param b the second operand
|
||||
* \return a * b
|
||||
*/
|
||||
__force_inline static int32_t __mul_instruction(int32_t a, int32_t b) {
|
||||
#ifdef __riscv
|
||||
__asm ("mul %0, %0, %1" : "+r" (a) : "r" (b) : );
|
||||
#else
|
||||
pico_default_asm ("muls %0, %1" : "+l" (a) : "l" (b) : "cc");
|
||||
#endif
|
||||
return a;
|
||||
}
|
||||
|
||||
/*! \brief multiply two integer values using the fastest method possible
|
||||
* \ingroup pico_platform
|
||||
*
|
||||
* Efficiently multiplies value a by possibly constant value b.
|
||||
*
|
||||
* If b is known to be constant and not zero or a power of 2, then a mul instruction is used rather than gcc's default
|
||||
* which is often a slow combination of shifts and adds. If b is a power of 2 then a single shift is of course preferable
|
||||
* and will be used
|
||||
*
|
||||
* \param a the first operand
|
||||
* \param b the second operand
|
||||
* \return a * b
|
||||
*/
|
||||
#define __fast_mul(a, b) __builtin_choose_expr(__builtin_constant_p(b) && !__builtin_constant_p(a), \
|
||||
(__builtin_popcount(b) >= 2 ? __mul_instruction(a,b) : (a)*(b)), \
|
||||
(a)*(b))
|
||||
|
||||
#endif // __ASSEMBLER__
|
||||
|
||||
#endif
|
||||
|
|
@ -1,19 +0,0 @@
|
|||
/*
|
||||
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
*/
|
||||
|
||||
// ---------------------------------------
|
||||
// THIS FILE IS AUTOGENERATED; DO NOT EDIT
|
||||
// ---------------------------------------
|
||||
|
||||
#ifndef _PICO_VERSION_H
|
||||
#define _PICO_VERSION_H
|
||||
|
||||
#define PICO_SDK_VERSION_MAJOR 2
|
||||
#define PICO_SDK_VERSION_MINOR 1
|
||||
#define PICO_SDK_VERSION_REVISION 0
|
||||
#define PICO_SDK_VERSION_STRING "2.1.0"
|
||||
|
||||
#endif
|
|
@ -1,276 +0,0 @@
|
|||
/*
|
||||
* This file is part of Betaflight.
|
||||
*
|
||||
* Betaflight is free software. You can redistribute this software
|
||||
* and/or modify this software under the terms of the GNU General
|
||||
* Public License as published by the Free Software Foundation,
|
||||
* either version 3 of the License, or (at your option) any later
|
||||
* version.
|
||||
*
|
||||
* Betaflight is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
||||
*
|
||||
* See the GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public
|
||||
* License along with this software.
|
||||
*
|
||||
* If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include "platform.h"
|
||||
|
||||
#include "tusb_config.h"
|
||||
#include "tusb.h"
|
||||
#include "usb_cdc.h"
|
||||
|
||||
#include "pico/binary_info.h"
|
||||
#include "pico/time.h"
|
||||
#include "pico/mutex.h"
|
||||
#include "pico/critical_section.h"
|
||||
#include "hardware/irq.h"
|
||||
|
||||
#ifndef CDC_USB_TASK_INTERVAL_US
|
||||
#define CDC_USB_TASK_INTERVAL_US 1000
|
||||
#endif
|
||||
|
||||
#ifndef CDC_USB_WRITE_TIMEOUT_US
|
||||
#define CDC_USB_WRITE_TIMEOUT_US 1000
|
||||
#endif
|
||||
|
||||
#ifndef CDC_DEADLOCK_TIMEOUT_MS
|
||||
#define CDC_DEADLOCK_TIMEOUT_MS 1000
|
||||
#endif
|
||||
|
||||
#ifndef CDC_USB_BAUD_RATE
|
||||
#define CDC_USD_BAUD_RATE 115200
|
||||
#endif
|
||||
|
||||
static bool configured = false;
|
||||
static mutex_t cdc_usb_mutex;
|
||||
|
||||
// if this crit_sec is initialized, we are not in periodic timer mode, and must make sure
|
||||
// we don't either create multiple one shot timers, or miss creating one. this crit_sec
|
||||
// is used to protect the one_shot_timer_pending flag
|
||||
static critical_section_t one_shot_timer_crit_sec;
|
||||
static volatile bool one_shot_timer_pending;
|
||||
static uint8_t low_priority_irq_num;
|
||||
|
||||
static int64_t timer_task(alarm_id_t id, void *user_data)
|
||||
{
|
||||
UNUSED(id);
|
||||
UNUSED(user_data);
|
||||
|
||||
int64_t repeat_time;
|
||||
if (critical_section_is_initialized(&one_shot_timer_crit_sec)) {
|
||||
critical_section_enter_blocking(&one_shot_timer_crit_sec);
|
||||
one_shot_timer_pending = false;
|
||||
critical_section_exit(&one_shot_timer_crit_sec);
|
||||
repeat_time = 0; // don't repeat
|
||||
} else {
|
||||
repeat_time = CDC_USB_TASK_INTERVAL_US;
|
||||
}
|
||||
if (irq_is_enabled(low_priority_irq_num)) {
|
||||
irq_set_pending(low_priority_irq_num);
|
||||
return repeat_time;
|
||||
} else {
|
||||
return 0; // don't repeat
|
||||
}
|
||||
}
|
||||
|
||||
static void low_priority_worker_irq(void)
|
||||
{
|
||||
if (mutex_try_enter(&cdc_usb_mutex, NULL)) {
|
||||
tud_task();
|
||||
mutex_exit(&cdc_usb_mutex);
|
||||
} else {
|
||||
// if the mutex is already owned, then we are in non IRQ code in this file.
|
||||
//
|
||||
// it would seem simplest to just let that code call tud_task() at the end, however this
|
||||
// code might run during the call to tud_task() and we might miss a necessary tud_task() call
|
||||
//
|
||||
// if we are using a periodic timer (crit_sec is not initialized in this case),
|
||||
// then we are happy just to wait until the next tick, however when we are not using a periodic timer,
|
||||
// we must kick off a one-shot timer to make sure the tud_task() DOES run (this method
|
||||
// will be called again as a result, and will try the mutex_try_enter again, and if that fails
|
||||
// create another one shot timer again, and so on).
|
||||
if (critical_section_is_initialized(&one_shot_timer_crit_sec)) {
|
||||
bool need_timer;
|
||||
critical_section_enter_blocking(&one_shot_timer_crit_sec);
|
||||
need_timer = !one_shot_timer_pending;
|
||||
one_shot_timer_pending = true;
|
||||
critical_section_exit(&one_shot_timer_crit_sec);
|
||||
if (need_timer) {
|
||||
add_alarm_in_us(CDC_USB_TASK_INTERVAL_US, timer_task, NULL, true);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void usb_irq(void)
|
||||
{
|
||||
irq_set_pending(low_priority_irq_num);
|
||||
}
|
||||
|
||||
int cdc_usb_write(const uint8_t *buf, unsigned length)
|
||||
{
|
||||
static uint64_t last_avail_time;
|
||||
int written = 0;
|
||||
|
||||
if (!mutex_try_enter_block_until(&cdc_usb_mutex, make_timeout_time_ms(CDC_DEADLOCK_TIMEOUT_MS))) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (cdc_usb_connected()) {
|
||||
for (unsigned i = 0; i < length;) {
|
||||
unsigned n = length - i;
|
||||
uint32_t avail = tud_cdc_write_available();
|
||||
if (n > avail) n = avail;
|
||||
if (n) {
|
||||
uint32_t n2 = tud_cdc_write(buf + i, n);
|
||||
tud_task();
|
||||
tud_cdc_write_flush();
|
||||
i += n2;
|
||||
written = i;
|
||||
last_avail_time = time_us_64();
|
||||
} else {
|
||||
tud_task();
|
||||
tud_cdc_write_flush();
|
||||
if (!cdc_usb_connected() || (!tud_cdc_write_available() && time_us_64() > last_avail_time + CDC_USB_WRITE_TIMEOUT_US)) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// reset our timeout
|
||||
last_avail_time = 0;
|
||||
}
|
||||
mutex_exit(&cdc_usb_mutex);
|
||||
return written;
|
||||
}
|
||||
|
||||
void cdc_usb_write_flush(void)
|
||||
{
|
||||
if (!mutex_try_enter_block_until(&cdc_usb_mutex, make_timeout_time_ms(CDC_DEADLOCK_TIMEOUT_MS))) {
|
||||
return;
|
||||
}
|
||||
do {
|
||||
tud_task();
|
||||
} while (tud_cdc_write_flush());
|
||||
mutex_exit(&cdc_usb_mutex);
|
||||
}
|
||||
|
||||
int cdc_usb_read(uint8_t *buf, unsigned length)
|
||||
{
|
||||
// note we perform this check outside the lock, to try and prevent possible deadlock conditions
|
||||
// with printf in IRQs (which we will escape through timeouts elsewhere, but that would be less graceful).
|
||||
//
|
||||
// these are just checks of state, so we can call them while not holding the lock.
|
||||
// they may be wrong, but only if we are in the middle of a tud_task call, in which case at worst
|
||||
// we will mistakenly think we have data available when we do not (we will check again), or
|
||||
// tud_task will complete running and we will check the right values the next time.
|
||||
//
|
||||
int rc = PICO_ERROR_NO_DATA;
|
||||
if (cdc_usb_connected() && tud_cdc_available()) {
|
||||
if (!mutex_try_enter_block_until(&cdc_usb_mutex, make_timeout_time_ms(CDC_DEADLOCK_TIMEOUT_MS))) {
|
||||
return PICO_ERROR_NO_DATA; // would deadlock otherwise
|
||||
}
|
||||
if (cdc_usb_connected() && tud_cdc_available()) {
|
||||
uint32_t count = tud_cdc_read(buf, length);
|
||||
rc = count ? (int)count : PICO_ERROR_NO_DATA;
|
||||
} else {
|
||||
// because our mutex use may starve out the background task, run tud_task here (we own the mutex)
|
||||
tud_task();
|
||||
}
|
||||
mutex_exit(&cdc_usb_mutex);
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
bool cdc_usb_init(void)
|
||||
{
|
||||
if (get_core_num() != alarm_pool_core_num(alarm_pool_get_default())) {
|
||||
// included an assertion here rather than just returning false, as this is likely
|
||||
// a coding bug, rather than anything else.
|
||||
assert(false);
|
||||
return false;
|
||||
}
|
||||
|
||||
// initialize TinyUSB, as user hasn't explicitly linked it
|
||||
tusb_init();
|
||||
|
||||
if (!mutex_is_initialized(&cdc_usb_mutex)) {
|
||||
mutex_init(&cdc_usb_mutex);
|
||||
}
|
||||
bool rc = true;
|
||||
low_priority_irq_num = (uint8_t)user_irq_claim_unused(true);
|
||||
|
||||
irq_set_exclusive_handler(low_priority_irq_num, low_priority_worker_irq);
|
||||
irq_set_enabled(low_priority_irq_num, true);
|
||||
|
||||
if (irq_has_shared_handler(USBCTRL_IRQ)) {
|
||||
critical_section_init_with_lock_num(&one_shot_timer_crit_sec, spin_lock_claim_unused(true));
|
||||
// we can use a shared handler to notice when there may be work to do
|
||||
irq_add_shared_handler(USBCTRL_IRQ, usb_irq, PICO_SHARED_IRQ_HANDLER_LOWEST_ORDER_PRIORITY);
|
||||
} else {
|
||||
// we use initialization state of the one_shot_timer_critsec as a flag
|
||||
memset(&one_shot_timer_crit_sec, 0, sizeof(one_shot_timer_crit_sec));
|
||||
rc = add_alarm_in_us(CDC_USB_TASK_INTERVAL_US, timer_task, NULL, true) >= 0;
|
||||
}
|
||||
|
||||
configured = rc;
|
||||
return rc;
|
||||
}
|
||||
|
||||
bool cdc_usb_deinit(void)
|
||||
{
|
||||
if (get_core_num() != alarm_pool_core_num(alarm_pool_get_default())) {
|
||||
// included an assertion here rather than just returning false, as this is likely
|
||||
// a coding bug, rather than anything else.
|
||||
assert(false);
|
||||
return false;
|
||||
}
|
||||
|
||||
assert(tud_inited()); // we expect the caller to have initialized when calling sdio_usb_init
|
||||
|
||||
if (irq_has_shared_handler(USBCTRL_IRQ)) {
|
||||
spin_lock_unclaim(spin_lock_get_num(one_shot_timer_crit_sec.spin_lock));
|
||||
critical_section_deinit(&one_shot_timer_crit_sec);
|
||||
// we can use a shared handler to notice when there may be work to do
|
||||
irq_remove_handler(USBCTRL_IRQ, usb_irq);
|
||||
} else {
|
||||
// timer is disabled by disabling the irq
|
||||
}
|
||||
|
||||
irq_set_enabled(low_priority_irq_num, false);
|
||||
user_irq_unclaim(low_priority_irq_num);
|
||||
|
||||
configured = false;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool cdc_usb_configured(void)
|
||||
{
|
||||
return configured;
|
||||
}
|
||||
|
||||
bool cdc_usb_connected(void)
|
||||
{
|
||||
return tud_cdc_connected();
|
||||
}
|
||||
|
||||
bool cdc_usb_bytes_available(void)
|
||||
{
|
||||
return tud_cdc_available();
|
||||
}
|
||||
|
||||
uint32_t cdc_usb_baud_rate(void)
|
||||
{
|
||||
return CDC_USD_BAUD_RATE;
|
||||
}
|
||||
|
||||
uint32_t cdc_usb_tx_bytes_free(void)
|
||||
{
|
||||
return tud_cdc_write_available();
|
||||
}
|
|
@ -1,186 +0,0 @@
|
|||
/*
|
||||
* This file is part of Betaflight.
|
||||
*
|
||||
* Betaflight is free software. You can redistribute this software
|
||||
* and/or modify this software under the terms of the GNU General
|
||||
* Public License as published by the Free Software Foundation,
|
||||
* either version 3 of the License, or (at your option) any later
|
||||
* version.
|
||||
*
|
||||
* Betaflight is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
||||
*
|
||||
* See the GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public
|
||||
* License along with this software.
|
||||
*
|
||||
* If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/*
|
||||
* This file is based on a file originally part of the
|
||||
* MicroPython project, http://micropython.org/
|
||||
*
|
||||
* The MIT License (MIT)
|
||||
*
|
||||
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
|
||||
* Copyright (c) 2019 Damien P. George
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
* THE SOFTWARE.
|
||||
*/
|
||||
|
||||
#include "tusb.h"
|
||||
#include "pico/unique_id.h"
|
||||
#include "common/utils.h"
|
||||
|
||||
#ifndef USBD_VID
|
||||
// Raspberry Pi
|
||||
#define USBD_VID (0x2E8A)
|
||||
#endif
|
||||
|
||||
#ifndef USBD_PID
|
||||
#if PICO_RP2040
|
||||
// Raspberry Pi Pico SDK CDC for RP2040
|
||||
#define USBD_PID (0x000a)
|
||||
#else
|
||||
// Raspberry Pi Pico SDK CDC
|
||||
#define USBD_PID (0x0009)
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef USBD_MANUFACTURER
|
||||
#define USBD_MANUFACTURER "Betaflight Pico"
|
||||
#endif
|
||||
|
||||
#ifndef USBD_PRODUCT
|
||||
#define USBD_PRODUCT "Pico"
|
||||
#endif
|
||||
|
||||
#define TUD_RPI_RESET_DESC_LEN 9
|
||||
#define USBD_DESC_LEN (TUD_CONFIG_DESC_LEN + TUD_CDC_DESC_LEN + TUD_RPI_RESET_DESC_LEN)
|
||||
|
||||
#define USBD_CONFIGURATION_DESCRIPTOR_ATTRIBUTE 0
|
||||
#define USBD_MAX_POWER_MA 250
|
||||
|
||||
#define USBD_ITF_CDC 0 // needs 2 interfaces
|
||||
#define USBD_ITF_MAX 2
|
||||
|
||||
#define USBD_CDC_EP_CMD 0x81
|
||||
#define USBD_CDC_EP_OUT 0x02
|
||||
#define USBD_CDC_EP_IN 0x82
|
||||
#define USBD_CDC_CMD_MAX_SIZE 8
|
||||
#define USBD_CDC_IN_OUT_MAX_SIZE 64
|
||||
|
||||
#define USBD_STR_0 0x00
|
||||
#define USBD_STR_MANUF 0x01
|
||||
#define USBD_STR_PRODUCT 0x02
|
||||
#define USBD_STR_SERIAL 0x03
|
||||
#define USBD_STR_CDC 0x04
|
||||
#define USBD_STR_RPI_RESET 0x05
|
||||
|
||||
// Note: descriptors returned from callbacks must exist long enough for transfer to complete
|
||||
|
||||
static const tusb_desc_device_t usbd_desc_device = {
|
||||
.bLength = sizeof(tusb_desc_device_t),
|
||||
.bDescriptorType = TUSB_DESC_DEVICE,
|
||||
.bcdUSB = 0x0200,
|
||||
.bDeviceClass = TUSB_CLASS_MISC,
|
||||
.bDeviceSubClass = MISC_SUBCLASS_COMMON,
|
||||
.bDeviceProtocol = MISC_PROTOCOL_IAD,
|
||||
.bMaxPacketSize0 = CFG_TUD_ENDPOINT0_SIZE,
|
||||
.idVendor = USBD_VID,
|
||||
.idProduct = USBD_PID,
|
||||
.bcdDevice = 0x0100,
|
||||
.iManufacturer = USBD_STR_MANUF,
|
||||
.iProduct = USBD_STR_PRODUCT,
|
||||
.iSerialNumber = USBD_STR_SERIAL,
|
||||
.bNumConfigurations = 1,
|
||||
};
|
||||
|
||||
#define TUD_RPI_RESET_DESCRIPTOR(_itfnum, _stridx) \
|
||||
/* Interface */\
|
||||
9, TUSB_DESC_INTERFACE, _itfnum, 0, 0, TUSB_CLASS_VENDOR_SPECIFIC, RESET_INTERFACE_SUBCLASS, RESET_INTERFACE_PROTOCOL, _stridx,
|
||||
|
||||
static const uint8_t usbd_desc_cfg[USBD_DESC_LEN] = {
|
||||
TUD_CONFIG_DESCRIPTOR(1, USBD_ITF_MAX, USBD_STR_0, USBD_DESC_LEN,
|
||||
USBD_CONFIGURATION_DESCRIPTOR_ATTRIBUTE, USBD_MAX_POWER_MA),
|
||||
|
||||
TUD_CDC_DESCRIPTOR(USBD_ITF_CDC, USBD_STR_CDC, USBD_CDC_EP_CMD,
|
||||
USBD_CDC_CMD_MAX_SIZE, USBD_CDC_EP_OUT, USBD_CDC_EP_IN, USBD_CDC_IN_OUT_MAX_SIZE),
|
||||
};
|
||||
|
||||
static char usbd_serial_str[PICO_UNIQUE_BOARD_ID_SIZE_BYTES * 2 + 1];
|
||||
|
||||
static const char *const usbd_desc_str[] = {
|
||||
[USBD_STR_MANUF] = USBD_MANUFACTURER,
|
||||
[USBD_STR_PRODUCT] = USBD_PRODUCT,
|
||||
[USBD_STR_SERIAL] = usbd_serial_str,
|
||||
[USBD_STR_CDC] = "Board CDC",
|
||||
};
|
||||
|
||||
const uint8_t *tud_descriptor_device_cb(void)
|
||||
{
|
||||
return (const uint8_t *)&usbd_desc_device;
|
||||
}
|
||||
|
||||
const uint8_t *tud_descriptor_configuration_cb(uint8_t index)
|
||||
{
|
||||
UNUSED(index);
|
||||
return usbd_desc_cfg;
|
||||
}
|
||||
|
||||
const uint16_t *tud_descriptor_string_cb(uint8_t index, uint16_t langid)
|
||||
{
|
||||
UNUSED(langid);
|
||||
|
||||
#ifndef USBD_DESC_STR_MAX
|
||||
#define USBD_DESC_STR_MAX (20)
|
||||
#elif USBD_DESC_STR_MAX > 127
|
||||
#error USBD_DESC_STR_MAX too high (max is 127).
|
||||
#elif USBD_DESC_STR_MAX < 17
|
||||
#error USBD_DESC_STR_MAX too low (min is 17).
|
||||
#endif
|
||||
static uint16_t desc_str[USBD_DESC_STR_MAX];
|
||||
|
||||
// Assign the SN using the unique flash id
|
||||
if (!usbd_serial_str[0]) {
|
||||
pico_get_unique_board_id_string(usbd_serial_str, sizeof(usbd_serial_str));
|
||||
}
|
||||
|
||||
unsigned len;
|
||||
if (index == 0) {
|
||||
desc_str[1] = 0x0409; // supported language is English
|
||||
len = 1;
|
||||
} else {
|
||||
if (index >= ARRAYLEN(usbd_desc_str)) {
|
||||
return NULL;
|
||||
}
|
||||
const char *str = usbd_desc_str[index];
|
||||
for (len = 0; len < USBD_DESC_STR_MAX - 1 && str[len]; ++len) {
|
||||
desc_str[1 + len] = str[len];
|
||||
}
|
||||
}
|
||||
|
||||
// first byte is length (including header), second byte is string type
|
||||
desc_str[0] = (uint16_t)((TUSB_DESC_STRING << 8) | (2 * len + 2));
|
||||
|
||||
return desc_str;
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue