1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-16 04:45:24 +03:00

DTERM_CUT

This code cuts D by a specified percentage durning normal flight.

It lets D smoothly rise up to normal during rapid gyro moves like flips and rolls, and increase during prop wash events.

D should now be tuned to values the 'normal' 30-45 range.

If D is 40, a dterm_cut_percentage of 65 will cut D to 14 in normal flight, but the quad will still get full 40 of D to control bounce-back after flips and about 25 of D during strong prop wash.

The dterm_cut_percentage can be adjusted via the OSD, from the D filtering page.
Adding d_cut results in cooler motors, lower amounts of noise in motor traces and faster reactions to quick stick inputs.

Too high a dterm_cut_percentage may bring out P oscillation from lack of D.  Values of 70% are generally OK.

Input is gyro differential (delta).  Frequencies above 40hz (above propwash) are attenuated with a configurable (dterm_cut_range_hz) biquad filter.  Lower values for range can be used if the quad is very noisy or gets low frequency D resonant oscillation.  Up to 50 or 60hz may suit clean quads where prop wash control is the main priority.  Too high a range value results in D being boosted from noise in normal flight.

The boost signal is 'integrated, smoothed and delayed' with a 7hz PT1 'dterm_cut_lowpass_hz' filter.  The default of 7Hz gives about the right amount of smoothing and delay.  Higher numbers cause the boost to come on faster, with less delay. Lower values delay the boost effect and cause it to last longer.

The dterm_cut_gain amount controls the strength of the boost effect by amplifying the input to the boosting effect.  If the quad is flow gently, a higher gain value may be needed to gain full boost.

Logging with set debug_mode = D_CUT allows recording of realtime D values on roll and pitch into debug 2 and 3.  The reatime D value should reach its set maximum during rapid turns, ideally at about the time D itself peaks.  If it fails to reach the maximum, gain should be increased.

The D_Cut feature is not enabled on LUXV2RACE, OMNIBUS, SPRACINGF3NEO because there isn't enough flash space.
This commit is contained in:
ctzsnooze 2019-01-12 21:09:03 -07:00
parent 8e54c6711c
commit 7e3e5649e1
10 changed files with 94 additions and 5 deletions

View file

@ -90,6 +90,9 @@ PG_REGISTER_WITH_RESET_TEMPLATE(pidConfig_t, pidConfig, PG_PID_CONFIG, 2);
#else
#define PID_PROCESS_DENOM_DEFAULT 2
#endif
#if defined(USE_D_CUT)
#define D_CUT_GAIN_FACTOR 0.00005f
#endif
#ifdef USE_RUNAWAY_TAKEOFF
PG_RESET_TEMPLATE(pidConfig_t, pidConfig,
@ -115,14 +118,14 @@ PG_RESET_TEMPLATE(pidConfig_t, pidConfig,
#define LAUNCH_CONTROL_YAW_ITERM_LIMIT 50 // yaw iterm windup limit when launch mode is "FULL" (all axes)
PG_REGISTER_ARRAY_WITH_RESET_FN(pidProfile_t, MAX_PROFILE_COUNT, pidProfiles, PG_PID_PROFILE, 7);
PG_REGISTER_ARRAY_WITH_RESET_FN(pidProfile_t, MAX_PROFILE_COUNT, pidProfiles, PG_PID_PROFILE, 8);
void resetPidProfile(pidProfile_t *pidProfile)
{
RESET_CONFIG(pidProfile_t, pidProfile,
.pid = {
[PID_ROLL] = { 46, 65, 30, 60 },
[PID_PITCH] = { 50, 75, 32, 60 },
[PID_ROLL] = { 46, 65, 40, 60 },
[PID_PITCH] = { 50, 75, 44, 60 },
[PID_YAW] = { 45, 100, 0, 100 },
[PID_LEVEL] = { 50, 50, 75, 0 },
[PID_MAG] = { 40, 0, 0, 0 },
@ -183,6 +186,10 @@ void resetPidProfile(pidProfile_t *pidProfile)
.use_integrated_yaw = false,
.integrated_yaw_relax = 200,
.thrustLinearization = 0,
.dterm_cut_percent = 65,
.dterm_cut_gain = 15,
.dterm_cut_range_hz = 40,
.dterm_cut_lowpass_hz = 7,
);
#ifdef USE_DYN_LPF
pidProfile->dterm_lowpass_hz = 150;
@ -238,12 +245,14 @@ static FAST_RAM_ZERO_INIT filterApplyFnPtr dtermLowpass2ApplyFn;
static FAST_RAM_ZERO_INIT dtermLowpass_t dtermLowpass2[XYZ_AXIS_COUNT];
static FAST_RAM_ZERO_INIT filterApplyFnPtr ptermYawLowpassApplyFn;
static FAST_RAM_ZERO_INIT pt1Filter_t ptermYawLowpass;
#if defined(USE_ITERM_RELAX)
static FAST_RAM_ZERO_INIT pt1Filter_t windupLpf[XYZ_AXIS_COUNT];
static FAST_RAM_ZERO_INIT uint8_t itermRelax;
static FAST_RAM_ZERO_INIT uint8_t itermRelaxType;
static FAST_RAM_ZERO_INIT uint8_t itermRelaxCutoff;
#endif
#if defined(USE_ABSOLUTE_CONTROL)
STATIC_UNIT_TESTED FAST_RAM_ZERO_INIT float axisError[XYZ_AXIS_COUNT];
static FAST_RAM_ZERO_INIT float acGain;
@ -253,6 +262,12 @@ static FAST_RAM_ZERO_INIT float acCutoff;
static FAST_RAM_ZERO_INIT pt1Filter_t acLpf[XYZ_AXIS_COUNT];
#endif
#if defined(USE_D_CUT)
static FAST_RAM_ZERO_INIT filterApplyFnPtr dtermCutRangeApplyFn;
static FAST_RAM_ZERO_INIT biquadFilter_t dtermCutRange[XYZ_AXIS_COUNT];
static FAST_RAM_ZERO_INIT filterApplyFnPtr dtermCutLowpassApplyFn;
static FAST_RAM_ZERO_INIT pt1Filter_t dtermCutLowpass[XYZ_AXIS_COUNT];
#endif
#ifdef USE_RC_SMOOTHING_FILTER
static FAST_RAM_ZERO_INIT pt1Filter_t setpointDerivativePt1[XYZ_AXIS_COUNT];
@ -373,6 +388,19 @@ void pidInitFilters(const pidProfile_t *pidProfile)
}
}
#endif
#if defined(USE_D_CUT)
if (pidProfile->dterm_cut_percent == 0) {
dtermCutRangeApplyFn = nullFilterApply;
dtermCutLowpassApplyFn = nullFilterApply;
} else {
dtermCutRangeApplyFn = (filterApplyFnPtr)biquadFilterApply;
dtermCutLowpassApplyFn = (filterApplyFnPtr)pt1FilterApply;
for (int axis = FD_ROLL; axis <= FD_YAW; axis++) {
biquadFilterInitLPF(&dtermCutRange[axis], pidProfile->dterm_cut_range_hz, targetPidLooptime);
pt1FilterInit(&dtermCutLowpass[axis], pt1FilterGain(pidProfile->dterm_cut_lowpass_hz, dT));
}
}
#endif
pt1FilterInit(&antiGravityThrottleLpf, pt1FilterGain(ANTI_GRAVITY_THROTTLE_FILTER_CUTOFF, dT));
}
@ -495,6 +523,15 @@ static FAST_RAM_ZERO_INIT uint16_t dynLpfMin;
static FAST_RAM_ZERO_INIT uint16_t dynLpfMax;
#endif
#ifdef USE_D_CUT
static FAST_RAM_ZERO_INIT float dtermCutPercent;
static FAST_RAM_ZERO_INIT float dtermCutPercentInv;
static FAST_RAM_ZERO_INIT float dtermCutGain;
static FAST_RAM_ZERO_INIT float dtermCutRangeHz;
static FAST_RAM_ZERO_INIT float dtermCutLowpassHz;
#endif
static FAST_RAM_ZERO_INIT float dtermCutFactor;
void pidInitConfig(const pidProfile_t *pidProfile)
{
if (pidProfile->feedForwardTransition == 0) {
@ -613,6 +650,15 @@ void pidInitConfig(const pidProfile_t *pidProfile)
thrustLinearizationB = (1.0f - thrustLinearization) / (2.0f * thrustLinearization);
}
#endif
#if defined(USE_D_CUT)
dtermCutPercent = pidProfile->dterm_cut_percent / 100.0f;
dtermCutPercentInv = 1.0f - dtermCutPercent;
dtermCutRangeHz = pidProfile->dterm_cut_range_hz;
dtermCutLowpassHz = pidProfile->dterm_cut_lowpass_hz;
dtermCutGain = pidProfile->dterm_cut_gain * dtermCutPercent * D_CUT_GAIN_FACTOR / dtermCutLowpassHz;
// lowpass included inversely in gain since stronger lowpass decreases peak effect
#endif
dtermCutFactor = 1.0f;
}
void pidInit(const pidProfile_t *pidProfile)
@ -1240,8 +1286,23 @@ void FAST_CODE pidController(const pidProfile_t *pidProfile, const rollAndPitchT
if (cmpTimeUs(currentTimeUs, levelModeStartTimeUs) > CRASH_RECOVERY_DETECTION_DELAY_US) {
detectAndSetCrashRecovery(pidProfile->crash_recovery, axis, currentTimeUs, delta, errorRate);
}
#if defined(USE_D_CUT)
if (dtermCutPercent){
dtermCutFactor = dtermCutRangeApplyFn((filter_t *) &dtermCutRange[axis], delta);
dtermCutFactor = fabsf(dtermCutFactor) * dtermCutGain;
dtermCutFactor = dtermCutLowpassApplyFn((filter_t *) &dtermCutLowpass[axis], dtermCutFactor);
dtermCutFactor = MIN(dtermCutFactor, 1.0f);
dtermCutFactor = dtermCutPercentInv + (dtermCutFactor * dtermCutPercent);
}
if (axis == FD_ROLL) {
DEBUG_SET(DEBUG_D_CUT, 2, lrintf(pidCoefficient[axis].Kd * dtermCutFactor * 10.0f / DTERM_SCALE));
} else if (axis == FD_PITCH) {
DEBUG_SET(DEBUG_D_CUT, 3, lrintf(pidCoefficient[axis].Kd * dtermCutFactor * 10.0f / DTERM_SCALE));
}
#endif
pidData[axis].D = pidCoefficient[axis].Kd * delta * tpaFactor * dtermCutFactor;
pidData[axis].D = pidCoefficient[axis].Kd * delta * tpaFactor;
} else {
pidData[axis].D = 0;
}