1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-21 15:25:36 +03:00

The PID I value uses for AFCS pitch channel

This commit is contained in:
demvlad 2025-04-24 10:49:40 +03:00
parent cb401d1ed9
commit 84431502b4
3 changed files with 42 additions and 29 deletions

View file

@ -35,7 +35,7 @@ void afcsInit(const pidProfile_t *pidProfile)
pt1FilterInit(&pidRuntime.afcsPitchDampingLowpass, pt1FilterGain(pidProfile->afcs_pitch_damping_filter_freq * 0.01, pidRuntime.dT)); pt1FilterInit(&pidRuntime.afcsPitchDampingLowpass, pt1FilterGain(pidProfile->afcs_pitch_damping_filter_freq * 0.01, pidRuntime.dT));
pt1FilterInit(&pidRuntime.afcsYawDampingLowpass, pt1FilterGain(pidProfile->afcs_yaw_damping_filter_freq * 0.01f, pidRuntime.dT)); pt1FilterInit(&pidRuntime.afcsYawDampingLowpass, pt1FilterGain(pidProfile->afcs_yaw_damping_filter_freq * 0.01f, pidRuntime.dT));
pt1FilterInit(&pidRuntime.afcsLiftCoefLowpass, pt1FilterGain(pidProfile->afcs_aoa_limiter_filter_freq * 0.1f, pidRuntime.dT)); pt1FilterInit(&pidRuntime.afcsLiftCoefLowpass, pt1FilterGain(pidProfile->afcs_aoa_limiter_filter_freq * 0.1f, pidRuntime.dT));
pidRuntime.afcsElevatorAddition = 0.0f; pidRuntime.isReadyAFCS = false;
} }
static bool computeLiftCoefficient(const pidProfile_t *pidProfile, float accelZ, float *liftCoef) static bool computeLiftCoefficient(const pidProfile_t *pidProfile, float accelZ, float *liftCoef)
@ -83,18 +83,18 @@ static void updateAstaticAccelZController(const pidProfile_t *pidProfile, float
float accelDelta = accelZ - accelReq; float accelDelta = accelZ - accelReq;
float servoVelocity = accelDelta * (pidProfile->afcs_pitch_accel_i_gain * 0.1f); float servoVelocity = accelDelta * (pidProfile->afcs_pitch_accel_i_gain * 0.1f);
servoVelocity = constrainf(servoVelocity, -servoVelocityLimit, servoVelocityLimit); servoVelocity = constrainf(servoVelocity, -servoVelocityLimit, servoVelocityLimit);
pidRuntime.afcsElevatorAddition += servoVelocity * pidRuntime.dT; pidData[FD_PITCH].I += servoVelocity * pidRuntime.dT;
// limit integrator output // limit integrator output
float output = pidData[FD_PITCH].Sum + pidRuntime.afcsElevatorAddition; float output = pidData[FD_PITCH].Sum + pidData[FD_PITCH].I;
if ( output > 100.0f) { if ( output > 100.0f) {
pidRuntime.afcsElevatorAddition = 100.0f - pidData[FD_PITCH].Sum; pidData[FD_PITCH].I = 100.0f - pidData[FD_PITCH].Sum;
} else if (output < -100.0f) { } else if (output < -100.0f) {
pidRuntime.afcsElevatorAddition = -100.0f - pidData[FD_PITCH].Sum; pidData[FD_PITCH].I = -100.0f - pidData[FD_PITCH].Sum;
} }
DEBUG_SET(DEBUG_AFCS, 4, lrintf(accelReq * 10.0f)); DEBUG_SET(DEBUG_AFCS, 0, lrintf(accelReq * 10.0f));
DEBUG_SET(DEBUG_AFCS, 5, lrintf(accelDelta * 10.0f)); DEBUG_SET(DEBUG_AFCS, 1, lrintf(accelDelta * 10.0f));
} }
} }
@ -120,7 +120,7 @@ static bool updateAngleOfAttackLimiter(const pidProfile_t *pidProfile, float lif
isLimitAoA = true; isLimitAoA = true;
servoVelocity = liftCoefDiff * (pidProfile->afcs_aoa_limiter_gain * 0.1f); servoVelocity = liftCoefDiff * (pidProfile->afcs_aoa_limiter_gain * 0.1f);
servoVelocity = constrainf(servoVelocity, -servoVelocityLimit, servoVelocityLimit); servoVelocity = constrainf(servoVelocity, -servoVelocityLimit, servoVelocityLimit);
pidRuntime.afcsElevatorAddition += servoVelocity * pidRuntime.dT; pidData[FD_PITCH].I += servoVelocity * pidRuntime.dT;
} }
} else { } else {
liftCoefDiff = liftCoefF + limitLiftC; liftCoefDiff = liftCoefF + limitLiftC;
@ -128,10 +128,11 @@ static bool updateAngleOfAttackLimiter(const pidProfile_t *pidProfile, float lif
isLimitAoA = true; isLimitAoA = true;
servoVelocity = liftCoefDiff * (pidProfile->afcs_aoa_limiter_gain * 0.1f); servoVelocity = liftCoefDiff * (pidProfile->afcs_aoa_limiter_gain * 0.1f);
servoVelocity = constrainf(servoVelocity, -servoVelocityLimit, servoVelocityLimit); servoVelocity = constrainf(servoVelocity, -servoVelocityLimit, servoVelocityLimit);
pidRuntime.afcsElevatorAddition += servoVelocity * pidRuntime.dT; pidData[FD_PITCH].I += servoVelocity * pidRuntime.dT;
} }
} }
DEBUG_SET(DEBUG_AFCS, 7, lrintf(liftCoefDiff * 100.0f)); DEBUG_SET(DEBUG_AFCS, 3, lrintf(liftCoefF * 100.0f));
DEBUG_SET(DEBUG_AFCS, 4, lrintf(liftCoefDiff * 100.0f));
} }
return isLimitAoA; return isLimitAoA;
@ -155,16 +156,21 @@ static float rollToYawCrossLinkControl(const pidProfile_t *pidProfile, float rol
void FAST_CODE afcsUpdate(const pidProfile_t *pidProfile) void FAST_CODE afcsUpdate(const pidProfile_t *pidProfile)
{ {
for (int axis = FD_ROLL; axis <= FD_YAW; ++axis) { // Clear all PID values by first AFCS run
pidData[axis].P = 0; if (!pidRuntime.isReadyAFCS) {
pidData[axis].I = 0; for (int axis = FD_ROLL; axis <= FD_YAW; ++axis) {
pidData[axis].D = 0; pidData[axis].P = 0;
pidData[axis].F = 0; pidData[axis].I = 0;
pidData[axis].S = 0; pidData[axis].D = 0;
pidData[axis].Sum = 0; pidData[axis].F = 0;
pidData[axis].S = 0;
pidData[axis].Sum = 0;
}
pidRuntime.isReadyAFCS = true;
} }
// Pitch channel // Pitch channel
pidData[FD_PITCH].I /= 10.0f; //restore % last value
float pitchPilotCtrl = getSetpointRate(FD_PITCH) / getMaxRcRate(FD_PITCH) * pidProfile->afcs_stick_gain[FD_PITCH]; float pitchPilotCtrl = getSetpointRate(FD_PITCH) / getMaxRcRate(FD_PITCH) * pidProfile->afcs_stick_gain[FD_PITCH];
float gyroPitch = gyro.gyroADCf[FD_PITCH]; float gyroPitch = gyro.gyroADCf[FD_PITCH];
if (pidProfile->afcs_pitch_damping_filter_freq != 0) { if (pidProfile->afcs_pitch_damping_filter_freq != 0) {
@ -188,16 +194,15 @@ void FAST_CODE afcsUpdate(const pidProfile_t *pidProfile)
if (isLimitAoA == false) { if (isLimitAoA == false) {
updateAstaticAccelZController(pidProfile, pitchPilotCtrl, accelZ); updateAstaticAccelZController(pidProfile, pitchPilotCtrl, accelZ);
} }
pidData[FD_PITCH].Sum += pidRuntime.afcsElevatorAddition; pidData[FD_PITCH].Sum += pidData[FD_PITCH].I;
pidData[FD_PITCH].Sum = pidData[FD_PITCH].Sum / 100.0f * 500.0f; pidData[FD_PITCH].Sum = pidData[FD_PITCH].Sum / 100.0f * 500.0f;
// Save control components instead of PID to get logging without additional variables // Save control components instead of PID to get logging without additional variables
// Do not use I, because it needs init to zero after switch to other flight modes from current AFCS mode
pidData[FD_PITCH].F = 10.0f * pitchPilotCtrl; pidData[FD_PITCH].F = 10.0f * pitchPilotCtrl;
pidData[FD_PITCH].D = 10.0f * pitchDampingCtrl; pidData[FD_PITCH].D = 10.0f * pitchDampingCtrl;
pidData[FD_PITCH].P = 10.0f * pitchStabilityCtrl; pidData[FD_PITCH].S = 10.0f * pitchStabilityCtrl;
pidData[FD_PITCH].S = 10.0f * pidRuntime.afcsElevatorAddition; pidData[FD_PITCH].I *= 10.0f; // Store *10 value
// Roll channel // Roll channel
float rollPilotCtrl = getSetpointRate(FD_ROLL) / getMaxRcRate(FD_ROLL) * (pidProfile->afcs_stick_gain[FD_ROLL]); float rollPilotCtrl = getSetpointRate(FD_ROLL) / getMaxRcRate(FD_ROLL) * (pidProfile->afcs_stick_gain[FD_ROLL]);
@ -228,13 +233,11 @@ void FAST_CODE afcsUpdate(const pidProfile_t *pidProfile)
// Save control components instead of PID to get logging without additional variables // Save control components instead of PID to get logging without additional variables
pidData[FD_YAW].F = 10.0f * yawPilotCtrl; pidData[FD_YAW].F = 10.0f * yawPilotCtrl;
pidData[FD_YAW].D = 10.0f * yawDampingCtrl; pidData[FD_YAW].D = 10.0f * yawDampingCtrl;
pidData[FD_YAW].P = 10.0f * yawStabilityCtrl; pidData[FD_YAW].S = 10.0f * yawStabilityCtrl;
pidData[FD_YAW].S = 10.0f * rollToYawCrossControl; pidData[FD_YAW].P = 10.0f * rollToYawCrossControl;
DEBUG_SET(DEBUG_AFCS, 0, lrintf(pitchPilotCtrl * 10.0f)); DEBUG_SET(DEBUG_AFCS, 2, lrintf(liftCoef * 100.0f));
DEBUG_SET(DEBUG_AFCS, 1, lrintf(pitchDampingCtrl * 10.0f)); DEBUG_SET(DEBUG_AFCS, 5, lrintf(pidData[FD_PITCH].I));
DEBUG_SET(DEBUG_AFCS, 2, lrintf(pitchStabilityCtrl * 10.0f)); DEBUG_SET(DEBUG_AFCS, 6, lrintf(pidData[FD_YAW].P));
DEBUG_SET(DEBUG_AFCS, 3, lrintf(pidRuntime.afcsElevatorAddition * 10.0f));
DEBUG_SET(DEBUG_AFCS, 6, lrintf(liftCoef * 100.0f));
} }
#endif #endif

View file

@ -1269,6 +1269,16 @@ void FAST_CODE pidController(const pidProfile_t *pidProfile, timeUs_t currentTim
if (isAFCS) { if (isAFCS) {
afcsUpdate(pidProfile); afcsUpdate(pidProfile);
return; // The airplanes FCS do not need PID controller return; // The airplanes FCS do not need PID controller
} else if (pidRuntime.isReadyAFCS) { // Clear the all PID values after AFCS work
for (int axis = FD_ROLL; axis <= FD_YAW; ++axis) {
pidData[axis].P = 0;
pidData[axis].I = 0;
pidData[axis].D = 0;
pidData[axis].F = 0;
pidData[axis].S = 0;
pidData[axis].Sum = 0;
}
pidRuntime.isReadyAFCS = false;
} }
#endif #endif

View file

@ -574,10 +574,10 @@ typedef struct pidRuntime_s {
#endif // USE_CHIRP #endif // USE_CHIRP
#ifdef USE_AIRPLANE_FCS #ifdef USE_AIRPLANE_FCS
bool isReadyAFCS;
pt1Filter_t afcsPitchDampingLowpass; pt1Filter_t afcsPitchDampingLowpass;
pt1Filter_t afcsYawDampingLowpass; pt1Filter_t afcsYawDampingLowpass;
pt1Filter_t afcsLiftCoefLowpass; pt1Filter_t afcsLiftCoefLowpass;
float afcsElevatorAddition;
#endif #endif
} pidRuntime_t; } pidRuntime_t;