1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-24 08:45:36 +03:00

Merge pull request #543 from sherlockflight/master

Save around 300 bytes of flash by improving Blackbox field name storage
This commit is contained in:
Dominic Clifton 2015-02-26 21:06:24 +00:00
commit 88bc3c3f5d
8 changed files with 260 additions and 65 deletions

View file

@ -199,6 +199,7 @@ COMMON_SRC = build_config.c \
common/maths.c \
common/printf.c \
common/typeconversion.c \
common/encoding.c \
main.c \
mw.c \
flight/altitudehold.c \

View file

@ -26,6 +26,7 @@
#include "common/maths.h"
#include "common/axis.h"
#include "common/color.h"
#include "common/encoding.h"
#include "drivers/gpio.h"
#include "drivers/sensor.h"
@ -79,6 +80,7 @@
#include "blackbox_io.h"
#define BLACKBOX_I_INTERVAL 32
#define BLACKBOX_SHUTDOWN_TIMEOUT_MILLIS 200
#define ARRAY_LENGTH(x) (sizeof((x))/sizeof((x)[0]))
@ -132,11 +134,17 @@ static const char* const blackboxGPSHHeaderNames[] = {
/* All field definition structs should look like this (but with longer arrs): */
typedef struct blackboxFieldDefinition_t {
const char *name;
// If the field name has a number to be included in square brackets [1] afterwards, set it here, or -1 for no brackets:
int8_t fieldNameIndex;
// Each member of this array will be the value to print for this field for the given header index
uint8_t arr[1];
} blackboxFieldDefinition_t;
typedef struct blackboxMainFieldDefinition_t {
const char *name;
int8_t fieldNameIndex;
uint8_t isSigned;
uint8_t Ipredict;
uint8_t Iencode;
@ -147,6 +155,8 @@ typedef struct blackboxMainFieldDefinition_t {
typedef struct blackboxGPSFieldDefinition_t {
const char *name;
int8_t fieldNameIndex;
uint8_t isSigned;
uint8_t predict;
uint8_t encode;
@ -161,73 +171,76 @@ typedef struct blackboxGPSFieldDefinition_t {
*/
static const blackboxMainFieldDefinition_t blackboxMainFields[] = {
/* loopIteration doesn't appear in P frames since it always increments */
{"loopIteration", UNSIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(UNSIGNED_VB), .Ppredict = PREDICT(INC), .Pencode = FLIGHT_LOG_FIELD_ENCODING_NULL, CONDITION(ALWAYS)},
{"loopIteration",-1, UNSIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(UNSIGNED_VB), .Ppredict = PREDICT(INC), .Pencode = FLIGHT_LOG_FIELD_ENCODING_NULL, CONDITION(ALWAYS)},
/* Time advances pretty steadily so the P-frame prediction is a straight line */
{"time", UNSIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(UNSIGNED_VB), .Ppredict = PREDICT(STRAIGHT_LINE), .Pencode = ENCODING(SIGNED_VB), CONDITION(ALWAYS)},
{"axisP[0]", SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(SIGNED_VB), CONDITION(ALWAYS)},
{"axisP[1]", SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(SIGNED_VB), CONDITION(ALWAYS)},
{"axisP[2]", SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(SIGNED_VB), CONDITION(ALWAYS)},
{"time", -1, UNSIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(UNSIGNED_VB), .Ppredict = PREDICT(STRAIGHT_LINE), .Pencode = ENCODING(SIGNED_VB), CONDITION(ALWAYS)},
{"axisP", 0, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(SIGNED_VB), CONDITION(ALWAYS)},
{"axisP", 1, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(SIGNED_VB), CONDITION(ALWAYS)},
{"axisP", 2, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(SIGNED_VB), CONDITION(ALWAYS)},
/* I terms get special packed encoding in P frames: */
{"axisI[0]", SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG2_3S32), CONDITION(ALWAYS)},
{"axisI[1]", SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG2_3S32), CONDITION(ALWAYS)},
{"axisI[2]", SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG2_3S32), CONDITION(ALWAYS)},
{"axisD[0]", SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(SIGNED_VB), CONDITION(NONZERO_PID_D_0)},
{"axisD[1]", SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(SIGNED_VB), CONDITION(NONZERO_PID_D_1)},
{"axisD[2]", SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(SIGNED_VB), CONDITION(NONZERO_PID_D_2)},
{"axisI", 0, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG2_3S32), CONDITION(ALWAYS)},
{"axisI", 1, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG2_3S32), CONDITION(ALWAYS)},
{"axisI", 2, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG2_3S32), CONDITION(ALWAYS)},
{"axisD", 0, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(SIGNED_VB), CONDITION(NONZERO_PID_D_0)},
{"axisD", 1, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(SIGNED_VB), CONDITION(NONZERO_PID_D_1)},
{"axisD", 2, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(SIGNED_VB), CONDITION(NONZERO_PID_D_2)},
/* rcCommands are encoded together as a group in P-frames: */
{"rcCommand[0]", SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_4S16), CONDITION(ALWAYS)},
{"rcCommand[1]", SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_4S16), CONDITION(ALWAYS)},
{"rcCommand[2]", SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_4S16), CONDITION(ALWAYS)},
{"rcCommand", 0, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_4S16), CONDITION(ALWAYS)},
{"rcCommand", 1, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_4S16), CONDITION(ALWAYS)},
{"rcCommand", 2, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_4S16), CONDITION(ALWAYS)},
/* Throttle is always in the range [minthrottle..maxthrottle]: */
{"rcCommand[3]", UNSIGNED, .Ipredict = PREDICT(MINTHROTTLE), .Iencode = ENCODING(UNSIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_4S16), CONDITION(ALWAYS)},
{"rcCommand", 3, UNSIGNED, .Ipredict = PREDICT(MINTHROTTLE), .Iencode = ENCODING(UNSIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_4S16), CONDITION(ALWAYS)},
{"vbatLatest", -1, UNSIGNED, .Ipredict = PREDICT(VBATREF), .Iencode = ENCODING(NEG_14BIT), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_8SVB), FLIGHT_LOG_FIELD_CONDITION_VBAT},
{"amperageLatest",-1, UNSIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(UNSIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_8SVB), FLIGHT_LOG_FIELD_CONDITION_AMPERAGE},
{"vbatLatest", UNSIGNED, .Ipredict = PREDICT(VBATREF), .Iencode = ENCODING(NEG_14BIT), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_8SVB), FLIGHT_LOG_FIELD_CONDITION_VBAT},
{"amperageLatest",UNSIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(UNSIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_8SVB), FLIGHT_LOG_FIELD_CONDITION_AMPERAGE},
#ifdef MAG
{"magADC[0]", SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_8SVB), FLIGHT_LOG_FIELD_CONDITION_MAG},
{"magADC[1]", SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_8SVB), FLIGHT_LOG_FIELD_CONDITION_MAG},
{"magADC[2]", SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_8SVB), FLIGHT_LOG_FIELD_CONDITION_MAG},
{"magADC", 0, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_8SVB), FLIGHT_LOG_FIELD_CONDITION_MAG},
{"magADC", 1, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_8SVB), FLIGHT_LOG_FIELD_CONDITION_MAG},
{"magADC", 2, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_8SVB), FLIGHT_LOG_FIELD_CONDITION_MAG},
#endif
#ifdef BARO
{"BaroAlt", SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_8SVB), FLIGHT_LOG_FIELD_CONDITION_BARO},
{"BaroAlt", -1, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(TAG8_8SVB), FLIGHT_LOG_FIELD_CONDITION_BARO},
#endif
/* Gyros and accelerometers base their P-predictions on the average of the previous 2 frames to reduce noise impact */
{"gyroData[0]", SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(ALWAYS)},
{"gyroData[1]", SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(ALWAYS)},
{"gyroData[2]", SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(ALWAYS)},
{"accSmooth[0]", SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(ALWAYS)},
{"accSmooth[1]", SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(ALWAYS)},
{"accSmooth[2]", SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(ALWAYS)},
{"gyroData", 0, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(ALWAYS)},
{"gyroData", 1, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(ALWAYS)},
{"gyroData", 2, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(ALWAYS)},
{"accSmooth", 0, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(ALWAYS)},
{"accSmooth", 1, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(ALWAYS)},
{"accSmooth", 2, SIGNED, .Ipredict = PREDICT(0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(ALWAYS)},
/* Motors only rarely drops under minthrottle (when stick falls below mincommand), so predict minthrottle for it and use *unsigned* encoding (which is large for negative numbers but more compact for positive ones): */
{"motor[0]", UNSIGNED, .Ipredict = PREDICT(MINTHROTTLE), .Iencode = ENCODING(UNSIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(AT_LEAST_MOTORS_1)},
{"motor", 0, UNSIGNED, .Ipredict = PREDICT(MINTHROTTLE), .Iencode = ENCODING(UNSIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(AT_LEAST_MOTORS_1)},
/* Subsequent motors base their I-frame values on the first one, P-frame values on the average of last two frames: */
{"motor[1]", UNSIGNED, .Ipredict = PREDICT(MOTOR_0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(AT_LEAST_MOTORS_2)},
{"motor[2]", UNSIGNED, .Ipredict = PREDICT(MOTOR_0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(AT_LEAST_MOTORS_3)},
{"motor[3]", UNSIGNED, .Ipredict = PREDICT(MOTOR_0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(AT_LEAST_MOTORS_4)},
{"motor[4]", UNSIGNED, .Ipredict = PREDICT(MOTOR_0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(AT_LEAST_MOTORS_5)},
{"motor[5]", UNSIGNED, .Ipredict = PREDICT(MOTOR_0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(AT_LEAST_MOTORS_6)},
{"motor[6]", UNSIGNED, .Ipredict = PREDICT(MOTOR_0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(AT_LEAST_MOTORS_7)},
{"motor[7]", UNSIGNED, .Ipredict = PREDICT(MOTOR_0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(AT_LEAST_MOTORS_8)},
{"servo[5]", UNSIGNED, .Ipredict = PREDICT(1500), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(SIGNED_VB), CONDITION(TRICOPTER)}
{"motor", 1, UNSIGNED, .Ipredict = PREDICT(MOTOR_0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(AT_LEAST_MOTORS_2)},
{"motor", 2, UNSIGNED, .Ipredict = PREDICT(MOTOR_0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(AT_LEAST_MOTORS_3)},
{"motor", 3, UNSIGNED, .Ipredict = PREDICT(MOTOR_0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(AT_LEAST_MOTORS_4)},
{"motor", 4, UNSIGNED, .Ipredict = PREDICT(MOTOR_0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(AT_LEAST_MOTORS_5)},
{"motor", 5, UNSIGNED, .Ipredict = PREDICT(MOTOR_0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(AT_LEAST_MOTORS_6)},
{"motor", 6, UNSIGNED, .Ipredict = PREDICT(MOTOR_0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(AT_LEAST_MOTORS_7)},
{"motor", 7, UNSIGNED, .Ipredict = PREDICT(MOTOR_0), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(AVERAGE_2), .Pencode = ENCODING(SIGNED_VB), CONDITION(AT_LEAST_MOTORS_8)},
/* Tricopter tail servo */
{"servo", 5, UNSIGNED, .Ipredict = PREDICT(1500), .Iencode = ENCODING(SIGNED_VB), .Ppredict = PREDICT(PREVIOUS), .Pencode = ENCODING(SIGNED_VB), CONDITION(TRICOPTER)}
};
#ifdef GPS
// GPS position/vel frame
static const blackboxGPSFieldDefinition_t blackboxGpsGFields[] = {
{"time", UNSIGNED, PREDICT(LAST_MAIN_FRAME_TIME), ENCODING(UNSIGNED_VB), CONDITION(NOT_LOGGING_EVERY_FRAME)},
{"GPS_numSat", UNSIGNED, PREDICT(0), ENCODING(UNSIGNED_VB), CONDITION(ALWAYS)},
{"GPS_coord[0]", SIGNED, PREDICT(HOME_COORD), ENCODING(SIGNED_VB), CONDITION(ALWAYS)},
{"GPS_coord[1]", SIGNED, PREDICT(HOME_COORD), ENCODING(SIGNED_VB), CONDITION(ALWAYS)},
{"GPS_altitude", UNSIGNED, PREDICT(0), ENCODING(UNSIGNED_VB), CONDITION(ALWAYS)},
{"GPS_speed", UNSIGNED, PREDICT(0), ENCODING(UNSIGNED_VB), CONDITION(ALWAYS)},
{"GPS_ground_course",UNSIGNED, PREDICT(0), ENCODING(UNSIGNED_VB), CONDITION(ALWAYS)}
{"time", -1, UNSIGNED, PREDICT(LAST_MAIN_FRAME_TIME), ENCODING(UNSIGNED_VB), CONDITION(NOT_LOGGING_EVERY_FRAME)},
{"GPS_numSat", -1, UNSIGNED, PREDICT(0), ENCODING(UNSIGNED_VB), CONDITION(ALWAYS)},
{"GPS_coord", 0, SIGNED, PREDICT(HOME_COORD), ENCODING(SIGNED_VB), CONDITION(ALWAYS)},
{"GPS_coord", 1, SIGNED, PREDICT(HOME_COORD), ENCODING(SIGNED_VB), CONDITION(ALWAYS)},
{"GPS_altitude", -1, UNSIGNED, PREDICT(0), ENCODING(UNSIGNED_VB), CONDITION(ALWAYS)},
{"GPS_speed", -1, UNSIGNED, PREDICT(0), ENCODING(UNSIGNED_VB), CONDITION(ALWAYS)},
{"GPS_ground_course", -1, UNSIGNED, PREDICT(0), ENCODING(UNSIGNED_VB), CONDITION(ALWAYS)}
};
// GPS home frame
static const blackboxGPSFieldDefinition_t blackboxGpsHFields[] = {
{"GPS_home[0]", SIGNED, PREDICT(0), ENCODING(SIGNED_VB), CONDITION(ALWAYS)},
{"GPS_home[1]", SIGNED, PREDICT(0), ENCODING(SIGNED_VB), CONDITION(ALWAYS)}
{"GPS_home", 0, SIGNED, PREDICT(0), ENCODING(SIGNED_VB), CONDITION(ALWAYS)},
{"GPS_home", 1, SIGNED, PREDICT(0), ENCODING(SIGNED_VB), CONDITION(ALWAYS)}
};
#endif
@ -284,6 +297,7 @@ static uint32_t blackboxPFrameIndex, blackboxIFrameIndex;
* to encode:
*/
static uint16_t vbatReference;
static gpsState_t gpsHistory;
// Keep a history of length 2, plus a buffer for MW to store the new values into
@ -604,6 +618,9 @@ static void validateBlackboxConfig()
masterConfig.blackbox_rate_num = 1;
masterConfig.blackbox_rate_denom = 1;
} else {
/* Reduce the fraction the user entered as much as possible (makes the recorded/skipped frame pattern repeat
* itself more frequently)
*/
div = gcd(masterConfig.blackbox_rate_num, masterConfig.blackbox_rate_denom);
masterConfig.blackbox_rate_num /= div;
@ -615,6 +632,9 @@ static void validateBlackboxConfig()
}
}
/**
* Start Blackbox logging if it is not already running. Intended to be called upon arming.
*/
void startBlackbox(void)
{
if (blackboxState == BLACKBOX_STATE_STOPPED) {
@ -820,6 +840,15 @@ static bool sendFieldDefinition(const char * const *headerNames, unsigned int he
// The first header is a field name
if (xmitState.headerIndex == 0) {
charsWritten += blackboxPrint(def->name);
// Do we need to print an index in brackets after the name?
if (def->fieldNameIndex != -1) {
blackboxWrite('[');
// Assume the field index is a single digit:
blackboxWrite(def->fieldNameIndex + '0');
blackboxWrite(']');
charsWritten += 3;
}
} else {
//The other headers are integers
if (def->arr[xmitState.headerIndex - 1] >= 10) {
@ -850,11 +879,6 @@ static bool sendFieldDefinition(const char * const *headerNames, unsigned int he
*/
static bool blackboxWriteSysinfo()
{
union floatConvert_t {
float f;
uint32_t u;
} floatConvert;
if (xmitState.headerIndex == 0) {
xmitState.u.serialBudget = 0;
xmitState.headerIndex = 1;
@ -873,26 +897,24 @@ static bool blackboxWriteSysinfo()
//Shouldn't ever get here
break;
case 1:
blackboxPrintf("H Firmware type:Cleanflight\n");
xmitState.u.serialBudget -= strlen("H Firmware type:Cleanflight\n");
xmitState.u.serialBudget -= blackboxPrint("H Firmware type:Cleanflight\n");
break;
case 2:
blackboxPrintf("H Firmware revision:%s\n", shortGitRevision);
/* Don't need to be super exact about the budget so don't mind the fact that we're including the length of
* the placeholder "%s"
*/
xmitState.u.serialBudget -= strlen("H Firmware revision:%s\n") + strlen(shortGitRevision);
xmitState.u.serialBudget -= strlen("H Firmware revision:\n") + strlen(shortGitRevision);
break;
case 3:
blackboxPrintf("H Firmware date:%s %s\n", buildDate, buildTime);
xmitState.u.serialBudget -= strlen("H Firmware date:%s %s\n") + strlen(buildDate) + strlen(buildTime);
xmitState.u.serialBudget -= strlen("H Firmware date: \n") + strlen(buildDate) + strlen(buildTime);
break;
case 4:
blackboxPrintf("H P interval:%d/%d\n", masterConfig.blackbox_rate_num, masterConfig.blackbox_rate_denom);
/* Don't need to be super exact about the budget so don't mind the fact that we're using the length of
* the placeholder "%d" instead of the actual integer size.
*/
xmitState.u.serialBudget -= strlen("H P interval:%d/%d\n");
break;
case 5:
@ -911,10 +933,9 @@ static bool blackboxWriteSysinfo()
xmitState.u.serialBudget -= strlen("H maxthrottle:%d\n");
break;
case 8:
floatConvert.f = gyro.scale;
blackboxPrintf("H gyro.scale:0x%x\n", floatConvert.u);
blackboxPrintf("H gyro.scale:0x%x\n", castFloatBytesToInt(gyro.scale));
xmitState.u.serialBudget -= strlen("H gyro.scale:0x%x\n") + 6;
xmitState.u.serialBudget -= strlen("H gyro.scale:0x\n") + 6;
break;
case 9:
blackboxPrintf("H acc_1G:%u\n", acc_1G);
@ -1014,6 +1035,9 @@ static void blackboxPlaySyncBeep()
blackboxLogEvent(FLIGHT_LOG_EVENT_SYNC_BEEP, (flightLogEventData_t *) &eventData);
}
/**
* Call each flight loop iteration to perform blackbox logging.
*/
void handleBlackbox(void)
{
int i;
@ -1086,6 +1110,9 @@ void handleBlackbox(void)
loadBlackboxState();
writeIntraframe();
} else {
/* Adding a magic shift of "masterConfig.blackbox_rate_num - 1" in here creates a better spread of
* recorded / skipped frames when the I frame's position is considered:
*/
if ((blackboxPFrameIndex + masterConfig.blackbox_rate_num - 1) % masterConfig.blackbox_rate_denom < masterConfig.blackbox_rate_num) {
loadBlackboxState();
writeInterframe();
@ -1130,7 +1157,7 @@ void handleBlackbox(void)
*
* Don't wait longer than it could possibly take if something funky happens.
*/
if (millis() > xmitState.u.startTime + 200 || blackboxDeviceFlush()) {
if (millis() > xmitState.u.startTime + BLACKBOX_SHUTDOWN_TIMEOUT_MILLIS || blackboxDeviceFlush()) {
blackboxDeviceClose();
blackboxSetState(BLACKBOX_STATE_STOPPED);
}
@ -1150,6 +1177,9 @@ static bool canUseBlackboxWithCurrentConfiguration(void)
return feature(FEATURE_BLACKBOX);
}
/**
* Call during system startup to initialize the blackbox.
*/
void initBlackbox(void)
{
if (canUseBlackboxWithCurrentConfiguration()) {

View file

@ -4,12 +4,13 @@
#include "blackbox_io.h"
#include "platform.h"
#include "version.h"
#include "build_config.h"
#include "common/maths.h"
#include "common/axis.h"
#include "common/color.h"
#include "common/encoding.h"
#include "drivers/gpio.h"
#include "drivers/sensor.h"
@ -150,7 +151,7 @@ void blackboxWriteUnsignedVB(uint32_t value)
void blackboxWriteSignedVB(int32_t value)
{
//ZigZag encode to make the value always positive
blackboxWriteUnsignedVB((uint32_t)((value << 1) ^ (value >> 31)));
blackboxWriteUnsignedVB(zigzagEncode(value));
}
void blackboxWriteS16(int16_t value)
@ -497,6 +498,11 @@ void blackboxDeviceClose(void)
mspAllocateSerialPorts(&masterConfig.serialConfig);
}
break;
#ifdef USE_FLASHFS
case BLACKBOX_DEVICE_FLASH:
// No-op since the flash doesn't have a "close" and there's nobody else to hand control of it to.
break;
#endif
}
}

View file

@ -20,7 +20,7 @@
#include <stdint.h>
#include <stdbool.h>
#include "target.h"
#include "platform.h"
typedef enum BlackboxDevice {
BLACKBOX_DEVICE_SERIAL = 0,

View file

@ -0,0 +1,31 @@
#include "encoding.h"
/**
* Cast the in-memory representation of the given float directly to an int.
*
* This is useful for printing the hex representation of a float number (which is considerably cheaper
* than a full decimal float formatter, in both code size and output length).
*/
uint32_t castFloatBytesToInt(float f)
{
union floatConvert_t {
float f;
uint32_t u;
} floatConvert;
floatConvert.f = f;
return floatConvert.u;
}
/**
* ZigZag encoding maps all values of a signed integer into those of an unsigned integer in such
* a way that numbers of small absolute value correspond to small integers in the result.
*
* (Compared to just casting a signed to an unsigned which creates huge resulting numbers for
* small negative integers).
*/
uint32_t zigzagEncode(int32_t value)
{
return (uint32_t)((value << 1) ^ (value >> 31));
}

View file

@ -0,0 +1,23 @@
/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <stdint.h>
uint32_t castFloatBytesToInt(float f);
uint32_t zigzagEncode(int32_t value);

View file

@ -53,6 +53,7 @@ TESTS = \
rc_controls_unittest \
ledstrip_unittest \
ws2811_unittest \
encoding_unittest \
lowpass_unittest
# All Google Test headers. Usually you shouldn't change this
@ -130,6 +131,25 @@ battery_unittest : \
$(OBJECT_DIR)/gtest_main.a
$(CXX) $(CXX_FLAGS) -lpthread $^ -o $(OBJECT_DIR)/$@
$(OBJECT_DIR)/common/encoding.o : $(USER_DIR)/common/encoding.c $(USER_DIR)/common/encoding.h $(GTEST_HEADERS)
@mkdir -p $(dir $@)
$(CC) $(C_FLAGS) $(TEST_CFLAGS) -c $(USER_DIR)/common/encoding.c -o $@
$(OBJECT_DIR)/encoding_unittest.o : \
$(TEST_DIR)/encoding_unittest.cc \
$(USER_DIR)/common/encoding.h \
$(GTEST_HEADERS)
@mkdir -p $(dir $@)
$(CXX) $(CXX_FLAGS) $(TEST_CFLAGS) -c $(TEST_DIR)/encoding_unittest.cc -o $@
encoding_unittest : \
$(OBJECT_DIR)/common/encoding.o \
$(OBJECT_DIR)/encoding_unittest.o \
$(OBJECT_DIR)/gtest_main.a
$(CXX) $(CXX_FLAGS) -lpthread $^ -o $(OBJECT_DIR)/$@
$(OBJECT_DIR)/flight/imu.o : \
$(USER_DIR)/flight/imu.c \

View file

@ -0,0 +1,84 @@
/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
extern "C" {
#include "common/encoding.h"
}
#include "unittest_macros.h"
#include "gtest/gtest.h"
typedef struct zigzagEncodingExpectation_t {
int32_t input;
uint32_t expected;
} zigzagEncodingExpectation_t;
typedef struct floatToIntEncodingExpectation_t {
float input;
uint32_t expected;
} floatToIntEncodingExpectation_t;
TEST(EncodingTest, ZigzagEncodingTest)
{
// given
zigzagEncodingExpectation_t expectations[] = {
{ 0, 0},
{-1, 1},
{ 1, 2},
{-2, 3},
{ 2, 4},
{ 2147483646, 4294967292},
{-2147483647, 4294967293},
{ 2147483647, 4294967294},
{-2147483648, 4294967295},
};
int expectationCount = sizeof(expectations) / sizeof(expectations[0]);
// expect
for (int i = 0; i < expectationCount; i++) {
zigzagEncodingExpectation_t *expectation = &expectations[i];
EXPECT_EQ(expectation->expected, zigzagEncode(expectation->input));
}
}
TEST(EncodingTest, FloatToIntEncodingTest)
{
// given
floatToIntEncodingExpectation_t expectations[] = {
{0.0, 0x00000000},
{2.0, 0x40000000}, // Exponent should be in the top bits
{4.5, 0x40900000}
};
int expectationCount = sizeof(expectations) / sizeof(expectations[0]);
// expect
for (int i = 0; i < expectationCount; i++) {
floatToIntEncodingExpectation_t *expectation = &expectations[i];
EXPECT_EQ(expectation->expected, castFloatBytesToInt(expectation->input));
}
}
// STUBS
extern "C" {
}