1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-25 01:05:27 +03:00

Move mw loop() code into separate methods. Cleanup related code.

If a given feature or mode is off the next task is not processed in the
current loop but will be processed during the next loop iteration for
simplification, this allowed the cleanup of return values in other code.
This commit is contained in:
Dominic Clifton 2014-06-23 00:47:45 +01:00
parent 8d0509dbfb
commit 91bfdf05ca
7 changed files with 256 additions and 210 deletions

View file

@ -349,175 +349,227 @@ void updateInflightCalibrationState(void)
}
}
void loop(void)
void updateMagHold(void)
{
if (abs(rcCommand[YAW]) < 70 && f.MAG_MODE) {
int16_t dif = heading - magHold;
if (dif <= -180)
dif += 360;
if (dif >= +180)
dif -= 360;
dif *= -masterConfig.yaw_control_direction;
if (f.SMALL_ANGLE)
rcCommand[YAW] -= dif * currentProfile.pidProfile.P8[PIDMAG] / 30; // 18 deg
} else
magHold = heading;
}
typedef enum {
#ifdef MAG
UPDATE_COMPASS_TASK,
#endif
#ifdef BARO
UPDATE_BARO_TASK,
CALCULATE_ALTITUDE_TASK,
#endif
#ifdef SONAR
UPDATE_SONAR_TASK,
#endif
UPDATE_GPS_TASK
} periodicTasks;
#define PERIODIC_TASK_COUNT (UPDATE_GPS_TASK + 1)
void executePeriodicTasks(void)
{
static int periodicTaskIndex = 0;
switch (periodicTaskIndex++) {
#ifdef MAG
case UPDATE_COMPASS_TASK:
if (sensors(SENSOR_MAG)) {
updateCompass(&masterConfig.magZero);
}
break;
#endif
#ifdef BARO
case UPDATE_BARO_TASK:
if (sensors(SENSOR_BARO)) {
baroUpdate(currentTime);
}
break;
case CALCULATE_ALTITUDE_TASK:
if (sensors(SENSOR_BARO) && isBaroReady()) {
calculateEstimatedAltitude(currentTime);
}
break;
#endif
case UPDATE_GPS_TASK:
// if GPS feature is enabled, gpsThread() will be called at some intervals to check for stuck
// hardware, wrong baud rates, init GPS if needed, etc. Don't use SENSOR_GPS here as gpsThread() can and will
// change this based on available hardware
if (feature(FEATURE_GPS)) {
gpsThread();
}
break;
#ifdef SONAR
case UPDATE_SONAR_TASK:
if (sensors(SENSOR_SONAR)) {
Sonar_update();
}
break;
#endif
}
if (periodicTaskIndex >= PERIODIC_TASK_COUNT) {
periodicTaskIndex = 0;
}
}
void processRx(void)
{
int i;
static uint32_t loopTime;
uint32_t auxState = 0;
calculateRxChannelsAndUpdateFailsafe(currentTime);
// in 3D mode, we need to be able to disarm by switch at any time
if (feature(FEATURE_3D)) {
if (!rcOptions[BOXARM])
mwDisarm();
}
updateRSSI(currentTime);
if (feature(FEATURE_FAILSAFE)) {
if (currentTime > FAILSAFE_POWER_ON_DELAY_US && !failsafe->vTable->isEnabled()) {
failsafe->vTable->enable();
}
failsafe->vTable->updateState();
}
throttleStatus_e throttleStatus = calculateThrottleStatus(&masterConfig.rxConfig, masterConfig.flight3DConfig.deadband3d_throttle);
if (throttleStatus == THROTTLE_LOW) {
resetErrorAngle();
resetErrorGyro();
}
processRcStickPositions(&masterConfig.rxConfig, throttleStatus, currentProfile.activate, masterConfig.retarded_arm);
if (feature(FEATURE_INFLIGHT_ACC_CAL)) {
updateInflightCalibrationState();
}
// Check AUX switches
// auxState is a bitmask, 3 bits per channel. aux1 is first.
// lower 16 bits contain aux 1 to 4, upper 16 bits contain aux 5 to 8
//
// the three bits are as follows:
// bit 1 is SET when the stick is less than 1300
// bit 2 is SET when the stick is between 1300 and 1700
// bit 3 is SET when the stick is above 1700
// if the value is 1300 or 1700 NONE of the three bits are set.
for (i = 0; i < 4; i++) {
auxState |= (rcData[AUX1 + i] < 1300) << (3 * i) |
(1300 < rcData[AUX1 + i] && rcData[AUX1 + i] < 1700) << (3 * i + 1) |
(rcData[AUX1 + i] > 1700) << (3 * i + 2);
auxState |= ((rcData[AUX5 + i] < 1300) << (3 * i) |
(1300 < rcData[AUX5 + i] && rcData[AUX5 + i] < 1700) << (3 * i + 1) |
(rcData[AUX5 + i] > 1700) << (3 * i + 2)) << 16;
}
for (i = 0; i < CHECKBOX_ITEM_COUNT; i++)
rcOptions[i] = (auxState & currentProfile.activate[i]) > 0;
if ((rcOptions[BOXANGLE] || (feature(FEATURE_FAILSAFE) && failsafe->vTable->hasTimerElapsed())) && (sensors(SENSOR_ACC))) {
// bumpless transfer to Level mode
if (!f.ANGLE_MODE) {
resetErrorAngle();
f.ANGLE_MODE = 1;
}
} else {
f.ANGLE_MODE = 0; // failsafe support
}
if (rcOptions[BOXHORIZON]) {
f.ANGLE_MODE = 0;
if (!f.HORIZON_MODE) {
resetErrorAngle();
f.HORIZON_MODE = 1;
}
} else {
f.HORIZON_MODE = 0;
}
if (f.ANGLE_MODE || f.HORIZON_MODE) {
LED1_ON;
} else {
LED1_OFF;
}
#ifdef BARO
if (sensors(SENSOR_BARO)) {
updateAltHoldState();
}
#endif
#ifdef MAG
if (sensors(SENSOR_ACC) || sensors(SENSOR_MAG)) {
if (rcOptions[BOXMAG]) {
if (!f.MAG_MODE) {
f.MAG_MODE = 1;
magHold = heading;
}
} else {
f.MAG_MODE = 0;
}
if (rcOptions[BOXHEADFREE]) {
if (!f.HEADFREE_MODE) {
f.HEADFREE_MODE = 1;
}
} else {
f.HEADFREE_MODE = 0;
}
if (rcOptions[BOXHEADADJ]) {
headFreeModeHold = heading; // acquire new heading
}
}
#endif
if (sensors(SENSOR_GPS)) {
updateGpsWaypointsAndMode();
}
if (rcOptions[BOXPASSTHRU]) {
f.PASSTHRU_MODE = 1;
} else {
f.PASSTHRU_MODE = 0;
}
if (masterConfig.mixerConfiguration == MULTITYPE_FLYING_WING || masterConfig.mixerConfiguration == MULTITYPE_AIRPLANE) {
f.HEADFREE_MODE = 0;
}
}
void loop(void)
{
static uint32_t loopTime;
updateRx();
if (shouldProcessRx(currentTime)) {
calculateRxChannelsAndUpdateFailsafe(currentTime);
// in 3D mode, we need to be able to disarm by switch at any time
if (feature(FEATURE_3D)) {
if (!rcOptions[BOXARM])
mwDisarm();
}
updateRSSI(currentTime);
if (feature(FEATURE_FAILSAFE)) {
if (currentTime > FAILSAFE_POWER_ON_DELAY_US && !failsafe->vTable->isEnabled()) {
failsafe->vTable->enable();
}
failsafe->vTable->updateState();
}
throttleStatus_e throttleStatus = calculateThrottleStatus(&masterConfig.rxConfig, masterConfig.flight3DConfig.deadband3d_throttle);
if (throttleStatus == THROTTLE_LOW) {
resetErrorAngle();
resetErrorGyro();
}
processRcStickPositions(&masterConfig.rxConfig, throttleStatus, currentProfile.activate, masterConfig.retarded_arm);
if (feature(FEATURE_INFLIGHT_ACC_CAL)) {
updateInflightCalibrationState();
}
// Check AUX switches
// auxState is a bitmask, 3 bits per channel. aux1 is first.
// lower 16 bits contain aux 1 to 4, upper 16 bits contain aux 5 to 8
//
// the three bits are as follows:
// bit 1 is SET when the stick is less than 1300
// bit 2 is SET when the stick is between 1300 and 1700
// bit 3 is SET when the stick is above 1700
// if the value is 1300 or 1700 NONE of the three bits are set.
for (i = 0; i < 4; i++) {
auxState |= (rcData[AUX1 + i] < 1300) << (3 * i) |
(1300 < rcData[AUX1 + i] && rcData[AUX1 + i] < 1700) << (3 * i + 1) |
(rcData[AUX1 + i] > 1700) << (3 * i + 2);
auxState |= ((rcData[AUX5 + i] < 1300) << (3 * i) |
(1300 < rcData[AUX5 + i] && rcData[AUX5 + i] < 1700) << (3 * i + 1) |
(rcData[AUX5 + i] > 1700) << (3 * i + 2)) << 16;
}
for (i = 0; i < CHECKBOX_ITEM_COUNT; i++)
rcOptions[i] = (auxState & currentProfile.activate[i]) > 0;
if ((rcOptions[BOXANGLE] || (feature(FEATURE_FAILSAFE) && failsafe->vTable->hasTimerElapsed())) && (sensors(SENSOR_ACC))) {
// bumpless transfer to Level mode
if (!f.ANGLE_MODE) {
resetErrorAngle();
f.ANGLE_MODE = 1;
}
} else {
f.ANGLE_MODE = 0; // failsafe support
}
if (rcOptions[BOXHORIZON]) {
f.ANGLE_MODE = 0;
if (!f.HORIZON_MODE) {
resetErrorAngle();
f.HORIZON_MODE = 1;
}
} else {
f.HORIZON_MODE = 0;
}
if (f.ANGLE_MODE || f.HORIZON_MODE) {
LED1_ON;
} else {
LED1_OFF;
}
#ifdef BARO
if (sensors(SENSOR_BARO)) {
updateAltHoldState();
}
#endif
#ifdef MAG
if (sensors(SENSOR_ACC) || sensors(SENSOR_MAG)) {
if (rcOptions[BOXMAG]) {
if (!f.MAG_MODE) {
f.MAG_MODE = 1;
magHold = heading;
}
} else {
f.MAG_MODE = 0;
}
if (rcOptions[BOXHEADFREE]) {
if (!f.HEADFREE_MODE) {
f.HEADFREE_MODE = 1;
}
} else {
f.HEADFREE_MODE = 0;
}
if (rcOptions[BOXHEADADJ]) {
headFreeModeHold = heading; // acquire new heading
}
}
#endif
if (sensors(SENSOR_GPS)) {
updateGpsWaypointsAndMode();
}
if (rcOptions[BOXPASSTHRU]) {
f.PASSTHRU_MODE = 1;
} else {
f.PASSTHRU_MODE = 0;
}
if (masterConfig.mixerConfiguration == MULTITYPE_FLYING_WING || masterConfig.mixerConfiguration == MULTITYPE_AIRPLANE) {
f.HEADFREE_MODE = 0;
}
} else { // not in rc loop
static int taskOrder = 0; // never call all function in the same loop, to avoid high delay spikes
switch (taskOrder) {
case 0:
taskOrder++;
#ifdef MAG
if (sensors(SENSOR_MAG) && compassGetADC(&masterConfig.magZero))
break;
#endif
case 1:
taskOrder++;
#ifdef BARO
if (sensors(SENSOR_BARO) && baroUpdate(currentTime) != BAROMETER_ACTION_NOT_READY)
break;
#endif
case 2:
taskOrder++;
#ifdef BARO
if (sensors(SENSOR_BARO) && getEstimatedAltitude())
break;
#endif
case 3:
// if GPS feature is enabled, gpsThread() will be called at some intervals to check for stuck
// hardware, wrong baud rates, init GPS if needed, etc. Don't use SENSOR_GPS here as gpsThread() can and will
// change this based on available hardware
taskOrder++;
if (feature(FEATURE_GPS)) {
gpsThread();
break;
}
case 4:
taskOrder = 0;
#ifdef SONAR
if (sensors(SENSOR_SONAR)) {
Sonar_update();
}
#endif
}
processRx();
} else {
// not in rc loop
executePeriodicTasks();
}
currentTime = micros();
@ -537,17 +589,7 @@ void loop(void)
#ifdef MAG
if (sensors(SENSOR_MAG)) {
if (abs(rcCommand[YAW]) < 70 && f.MAG_MODE) {
int16_t dif = heading - magHold;
if (dif <= -180)
dif += 360;
if (dif >= +180)
dif -= 360;
dif *= -masterConfig.yaw_control_direction;
if (f.SMALL_ANGLE)
rcCommand[YAW] -= dif * currentProfile.pidProfile.P8[PIDMAG] / 30; // 18 deg
} else
magHold = heading;
updateMagHold();
}
#endif
@ -570,7 +612,12 @@ void loop(void)
}
// PID - note this is function pointer set by setPIDController()
pid_controller(&currentProfile.pidProfile, &currentProfile.controlRateConfig, masterConfig.max_angle_inclination, &currentProfile.accelerometerTrims);
pid_controller(
&currentProfile.pidProfile,
&currentProfile.controlRateConfig,
masterConfig.max_angle_inclination,
&currentProfile.accelerometerTrims
);
mixTable();
writeServos();