1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-14 11:59:58 +03:00

AFCS code refactoring

This commit is contained in:
demvlad 2025-04-17 14:29:22 +03:00
parent 01728927d8
commit a0fc8fa6dd
2 changed files with 58 additions and 46 deletions

View file

@ -11,7 +11,7 @@ void afcsInit(const pidProfile_t *pidProfile)
{
pt1FilterInit(&pidRuntime.afcsPitchDampingLowpass, pt1FilterGain(pidProfile->afcs_pitch_damping_filter_freq * 0.01, pidRuntime.dT));
pt1FilterInit(&pidRuntime.afcsYawDampingLowpass, pt1FilterGain(pidProfile->afcs_yaw_damping_filter_freq * 0.01f, pidRuntime.dT));
pidRuntime.afcsPitchControlErrorSum = 0.0f;
pidRuntime.afcsElevatorAddition = 0.0f;
}
static float computeLiftCoefficient(const pidProfile_t *pidProfile, float speed, float accelZ)
@ -28,6 +28,54 @@ static float computeLiftCoefficient(const pidProfile_t *pidProfile, float speed,
return liftC;
}
static void updateAstaticAccelZController(const pidProfile_t *pidProfile, float pitchPilotCtrl, float accelZ)
{
if (pidProfile->afcs_pitch_accel_i_gain != 0) {
float accelReq = pitchPilotCtrl > 0.0f ? (0.1f * pidProfile->afcs_pitch_accel_max - 1.0f) * pitchPilotCtrl * 0.01f + 1.0f
: (0.1f * pidProfile->afcs_pitch_accel_min + 1.0f) * pitchPilotCtrl * 0.01f + 1.0f;
float accelDelta = accelReq - accelZ;
pidRuntime.afcsElevatorAddition += accelDelta * (pidProfile->afcs_pitch_accel_i_gain * 0.1f) * pidRuntime.dT;
float output = pidData[FD_PITCH].Sum + pidRuntime.afcsElevatorAddition;
if ( output > 100.0f) {
pidRuntime.afcsElevatorAddition = 100.0f - pidData[FD_PITCH].Sum;
} else if (output < -100.0f) {
pidRuntime.afcsElevatorAddition = -100.0f - pidData[FD_PITCH].Sum;
}
DEBUG_SET(DEBUG_AFCS, 1, lrintf(accelReq * 10.0f));
DEBUG_SET(DEBUG_AFCS, 2, lrintf(accelDelta * 10.0f));
}
}
// The angle of attack limiter. The aerodynamics lift force coefficient depends by angle of attack. Therefore it possible to use this coef instead of AoA value.
static bool updateAngleOfAttackLimiter(const pidProfile_t *pidProfile, float accelZ)
{
bool isLimitAoA = false;
if (gpsSol.numSat > 5 && pidProfile->afcs_aoa_limiter_gain != 0) {
float speed = 0.01f * gpsSol.speed3d;
float liftCoef = computeLiftCoefficient(pidProfile, speed, accelZ);
float limitLiftC = 0.1f * pidProfile->afcs_lift_c_limit;
float liftCoefDiff;
if (liftCoef > 0.5f) {
liftCoefDiff = limitLiftC - liftCoef;
if (liftCoefDiff < 0.0f) {
isLimitAoA = true;
pidRuntime.afcsElevatorAddition += liftCoefDiff * (pidProfile->afcs_aoa_limiter_gain * 0.1f) * pidRuntime.dT;
}
} else if (liftCoef < -0.5f) {
liftCoefDiff = -limitLiftC - liftCoef;
if (liftCoefDiff > 0.0f) {
isLimitAoA = true;
pidRuntime.afcsElevatorAddition += liftCoefDiff * (pidProfile->afcs_aoa_limiter_gain * 0.1f) * pidRuntime.dT;
}
}
DEBUG_SET(DEBUG_AFCS, 3, lrintf(liftCoef * 100.0f));
DEBUG_SET(DEBUG_AFCS, 4, lrintf(liftCoefDiff * 100.0f));
}
return isLimitAoA;
}
void FAST_CODE afcsUpdate(const pidProfile_t *pidProfile, timeUs_t currentTimeUs)
{
UNUSED(currentTimeUs);
@ -54,47 +102,12 @@ void FAST_CODE afcsUpdate(const pidProfile_t *pidProfile, timeUs_t currentTimeUs
pidData[FD_PITCH].Sum = pitchPilotCtrl + pitchDampingCtrl + pitchStabilityCtrl;
pidData[FD_PITCH].Sum = constrainf(pidData[FD_PITCH].Sum, -100.0f, 100.0f);
bool isLimitAoA = false;
if (gpsSol.numSat > 5 && pidProfile->afcs_aoa_limiter_gain != 0) {
float speed = 0.01f * gpsSol.speed3d;
float liftCoef = computeLiftCoefficient(pidProfile, speed, accelZ);
float limitLiftC = 0.1f * pidProfile->afcs_lift_c_limit;
float delta;
if (liftCoef > 0.5f) {
delta = limitLiftC - liftCoef;
if (delta < 0.0f) {
isLimitAoA = true;
pidRuntime.afcsPitchControlErrorSum += delta * (pidProfile->afcs_aoa_limiter_gain * 0.1f) * pidRuntime.dT;
bool isLimitAoA = updateAngleOfAttackLimiter(pidProfile, accelZ);
if (isLimitAoA == false) {
updateAstaticAccelZController(pidProfile, pitchPilotCtrl, accelZ);
}
} else if (liftCoef < -0.5f) {
delta = -limitLiftC - liftCoef;
if (delta > 0.0f) {
isLimitAoA = true;
pidRuntime.afcsPitchControlErrorSum += delta * (pidProfile->afcs_aoa_limiter_gain * 0.1f) * pidRuntime.dT;
}
}
}
if (isLimitAoA == false && pidProfile->afcs_pitch_accel_i_gain != 0) {
float accelReq = pitchPilotCtrl > 0.0f ? (0.1f * pidProfile->afcs_pitch_accel_max - 1.0f) * pitchPilotCtrl * 0.01f + 1.0f
: (0.1f * pidProfile->afcs_pitch_accel_min + 1.0f) * pitchPilotCtrl * 0.01f + 1.0f;
float accelDelta = accelReq - accelZ;
pidRuntime.afcsPitchControlErrorSum += accelDelta * (pidProfile->afcs_pitch_accel_i_gain * 0.1f) * pidRuntime.dT;
float output = pidData[FD_PITCH].Sum + pidRuntime.afcsPitchControlErrorSum;
if ( output > 100.0f) {
pidRuntime.afcsPitchControlErrorSum = 100.0f - pidData[FD_PITCH].Sum;
} else if (output < -100.0f) {
pidRuntime.afcsPitchControlErrorSum = -100.0f - pidData[FD_PITCH].Sum;
}
DEBUG_SET(DEBUG_AFCS, 3, lrintf(pidRuntime.afcsPitchControlErrorSum));
DEBUG_SET(DEBUG_AFCS, 4, lrintf(pidData[FD_PITCH].Sum));
DEBUG_SET(DEBUG_AFCS, 5, lrintf(accelReq * 10.0f));
DEBUG_SET(DEBUG_AFCS, 6, lrintf(accelZ * 10.0f));
DEBUG_SET(DEBUG_AFCS, 7, lrintf(accelDelta * 10.0f));
}
pidData[FD_PITCH].Sum += pidRuntime.afcsPitchControlErrorSum;
pidData[FD_PITCH].Sum += pidRuntime.afcsElevatorAddition;
DEBUG_SET(DEBUG_AFCS, 0, lrintf(pidRuntime.afcsElevatorAddition * 10.0f));
pidData[FD_PITCH].Sum = pidData[FD_PITCH].Sum / 100.0f * 500.0f;
@ -130,9 +143,8 @@ void FAST_CODE afcsUpdate(const pidProfile_t *pidProfile, timeUs_t currentTimeUs
pidData[FD_YAW].D = 10.0f * yawDampingCtrl;
pidData[FD_YAW].P = 10.0f * yawStabilityCtrl;
DEBUG_SET(DEBUG_AFCS, 0, lrintf(pitchPilotCtrl));
DEBUG_SET(DEBUG_AFCS, 1, lrintf(pitchDampingCtrl));
DEBUG_SET(DEBUG_AFCS, 2, lrintf(pitchStabilityCtrl));
DEBUG_SET(DEBUG_AFCS, 5, lrintf(pitchPilotCtrl * 10.0f));
DEBUG_SET(DEBUG_AFCS, 6, lrintf(pitchDampingCtrl * 10.0f));
DEBUG_SET(DEBUG_AFCS, 7, lrintf(pitchStabilityCtrl * 10.0f));
}
#endif

View file

@ -570,7 +570,7 @@ typedef struct pidRuntime_s {
#ifdef USE_AIRPLANE_FCS
pt1Filter_t afcsPitchDampingLowpass;
pt1Filter_t afcsYawDampingLowpass;
float afcsPitchControlErrorSum;
float afcsElevatorAddition;
#endif
} pidRuntime_t;