1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-16 21:05:35 +03:00

code reformatting

rename biquadFilterApplyDF2 back to biquadFilterApply
add new value for dynamic notch mode
fix COLIBRI_RACE/i2c_bst.c
This commit is contained in:
rav 2017-05-13 02:22:38 +02:00
parent cd5307188e
commit a2453d1980
12 changed files with 76 additions and 67 deletions

View file

@ -57,6 +57,8 @@
#define DYN_NOTCH_MIN_CUTOFF 120 // don't cut too deep into low frequencies
#define DYN_NOTCH_MAX_CUTOFF 200 // don't go above this cutoff (better filtering with "constant" delay at higher center frequencies)
#define BIQUAD_Q 1.0f / sqrtf(2.0f) // quality factor - butterworth
static uint16_t samplingFrequency; // gyro rate
static uint8_t fftBinCount;
static float fftResolution; // hz per bin
@ -84,13 +86,15 @@ static biquadFilter_t fftFreqFilter[3];
// Hanning window, see https://en.wikipedia.org/wiki/Window_function#Hann_.28Hanning.29_window
static float hanningWindow[FFT_WINDOW_SIZE];
void initHanning() {
void initHanning()
{
for (int i = 0; i < FFT_WINDOW_SIZE; i++) {
hanningWindow[i] = (0.5 - 0.5 * cosf(2 * M_PIf * i / (FFT_WINDOW_SIZE - 1)));
}
}
void initGyroData() {
void initGyroData()
{
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
for (int i = 0; i < FFT_WINDOW_SIZE; i++) {
gyroData[axis][i] = 0;
@ -98,11 +102,13 @@ void initGyroData() {
}
}
static inline int fftFreqToBin(int freq) {
static inline int fftFreqToBin(int freq)
{
return ((FFT_WINDOW_SIZE / 2 - 1) * freq) / (fftMaxFreq);
}
void gyroDataAnalyseInit(uint32_t targetLooptimeUs) {
void gyroDataAnalyseInit(uint32_t targetLooptimeUs)
{
// initialise even if FEATURE_DYNAMIC_FILTER not set, since it may be set later
samplingFrequency = 1000000 / targetLooptimeUs;
fftSamplingScale = samplingFrequency / FFT_SAMPLING_RATE;
@ -125,18 +131,21 @@ void gyroDataAnalyseInit(uint32_t targetLooptimeUs) {
}
// used in OSD
const gyroFftData_t *gyroFftData(int axis) {
const gyroFftData_t *gyroFftData(int axis)
{
return &fftResult[axis];
}
bool isDynamicFilterActive(void) {
bool isDynamicFilterActive(void)
{
return (IS_RC_MODE_ACTIVE(BOXDYNAMICFILTER) || feature(FEATURE_DYNAMIC_FILTER));
}
/*
* Collect gyro data, to be analysed in gyroDataAnalyseUpdate function
*/
void gyroDataAnalyse(const gyroDev_t *gyroDev, biquadFilter_t *notchFilterDyn) {
void gyroDataAnalyse(const gyroDev_t *gyroDev, biquadFilter_t *notchFilterDyn)
{
if (!isDynamicFilterActive()) {
return;
}
@ -154,7 +163,7 @@ void gyroDataAnalyse(const gyroDev_t *gyroDev, biquadFilter_t *notchFilterDyn) {
//calculate mean value of accumulated samples
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
float sample = fftAcc[axis] / fftSamplingScale;
sample = biquadFilterApplyDF2(&fftGyroFilter[axis], sample);
sample = biquadFilterApply(&fftGyroFilter[axis], sample);
gyroData[axis][fftIdx] = sample;
if (axis == 0)
DEBUG_SET(DEBUG_FFT, 2, lrintf(sample * gyroDev->scale));
@ -188,7 +197,8 @@ typedef enum {
/*
* Analyse last gyro data from the last FFT_WINDOW_SIZE milliseconds
*/
void gyroDataAnalyseUpdate(biquadFilter_t *notchFilterDyn) {
void gyroDataAnalyseUpdate(biquadFilter_t *notchFilterDyn)
{
static int axis = 0;
static int step = 0;
arm_cfft_instance_f32 * Sint = &(fftInstance.Sint);
@ -224,7 +234,7 @@ void gyroDataAnalyseUpdate(biquadFilter_t *notchFilterDyn) {
arm_bitreversal_32((uint32_t*) fftData, Sint->bitRevLength, Sint->pBitRevTable);
DEBUG_SET(DEBUG_FFT_TIME, 1, micros() - startTime);
step++;
//break;
// fall through
}
case STEP_STAGE_RFFT_F32:
{
@ -240,7 +250,7 @@ void gyroDataAnalyseUpdate(biquadFilter_t *notchFilterDyn) {
arm_cmplx_mag_f32(rfftData, fftData, fftBinCount);
DEBUG_SET(DEBUG_FFT_TIME, 2, micros() - startTime);
step++;
//break;
// fall through
}
case STEP_CALC_FREQUENCIES:
{
@ -268,7 +278,7 @@ void gyroDataAnalyseUpdate(biquadFilter_t *notchFilterDyn) {
// don't go below the minimal cutoff frequency + 10 and don't jump around too much
float centerFreq;
centerFreq = constrain(fftMeanIndex * fftResolution, DYN_NOTCH_MIN_CUTOFF + 10, fftMaxFreq);
centerFreq = biquadFilterApplyDF2(&fftFreqFilter[axis], centerFreq);
centerFreq = biquadFilterApply(&fftFreqFilter[axis], centerFreq);
centerFreq = constrain(centerFreq, DYN_NOTCH_MIN_CUTOFF + 10, fftMaxFreq);
fftResult[axis].centerFreq = centerFreq;
if (axis == 0) {
@ -291,6 +301,7 @@ void gyroDataAnalyseUpdate(biquadFilter_t *notchFilterDyn) {
axis = (axis + 1) % 3;
step++;
// fall through
}
case STEP_HANNING:
{