1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-21 15:25:36 +03:00

DMA support for SD-card write

This commit is contained in:
Nicholas Sherlock 2015-11-19 02:57:42 +13:00 committed by borisbstyle
parent 97ee6142a9
commit a35ccd28de
4 changed files with 167 additions and 856 deletions

View file

@ -23,817 +23,8 @@
#include "platform.h"
#include "drivers/gpio.h"
#include "drivers/sdcard.h"
#include "nvic.h"
void SD_Detect_LowLevel_DeInit(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
/* Configure SD_SPI_INSTANCE_DETECT_PIN pin: SD Card detect pin */
GPIO_InitStructure.GPIO_Pin = SD_DETECT_PIN;
GPIO_Init(SD_DETECT_GPIO_PORT, &GPIO_InitStructure);
}
void SD_Detect_LowLevel_Init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
/* Configure SD_SPI_INSTANCE_DETECT_PIN pin: SD Card detect pin */
GPIO_InitStructure.GPIO_Pin = SD_DETECT_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_Init(SD_DETECT_GPIO_PORT, &GPIO_InitStructure);
}
/**
* @brief DeInitializes the SD/SD communication.
* @param None
* @retval None
*/
void SD_DeInit(void)
{
//SD_LowLevel_DeInit();
}
/**
* @brief Initializes the SD/SD communication.
* @param None
* @retval The SD Response:
* - SD_RESPONSE_FAILURE: Sequence failed
* - SD_RESPONSE_NO_ERROR: Sequence succeed
*/
SD_Error SD_Init(void)
{
uint32_t i = 0;
/*!< Initialize SD_SPI_INSTANCE */
//SD_LowLevel_Init();
/*!< SD chip select high */
SD_CS_HIGH();
/*!< Send dummy byte 0xFF, 10 times with CS high */
/*!< Rise CS and MOSI for 80 clocks cycles */
for (i = 0; i <= 9; i++)
{
/*!< Send dummy byte 0xFF */
SD_WriteByte(SD_DUMMY_BYTE);
}
/*------------Put SD in SPI mode--------------*/
/*!< SD initialized and set to SPI mode properly */
return (SD_GoIdleState());
}
/**
* @brief Detect if SD card is correctly plugged in the memory slot.
* @param None
* @retval Return if SD is detected or not
*/
uint8_t SD_Detect(void)
{
/*!< Check GPIO to detect SD */
if (GPIO_ReadInputData(SD_DETECT_GPIO_PORT) & SD_DETECT_PIN)
{
#ifdef SD_DETECT_INVERTED
return SD_NOT_PRESENT;
#else
return SD_PRESENT;
#endif
} else {
#ifdef SD_DETECT_INVERTED
return SD_PRESENT;
#else
return SD_NOT_PRESENT;
#endif
}
}
/**
* @brief Returns information about specific card.
* @param cardinfo: pointer to a SD_CardInfo structure that contains all SD
* card information.
* @retval The SD Response:
* - SD_RESPONSE_FAILURE: Sequence failed
* - SD_RESPONSE_NO_ERROR: Sequence succeed
*/
SD_Error SD_GetCardInfo(SD_CardInfo *cardinfo)
{
SD_Error status = SD_RESPONSE_FAILURE;
SD_GetCSDRegister(&(cardinfo->SD_csd));
status = SD_GetCIDRegister(&(cardinfo->SD_cid));
cardinfo->CardCapacity = (cardinfo->SD_csd.DeviceSize + 1) ;
cardinfo->CardCapacity *= (1 << (cardinfo->SD_csd.DeviceSizeMul + 2));
cardinfo->CardBlockSize = 1 << (cardinfo->SD_csd.RdBlockLen);
cardinfo->CardCapacity *= cardinfo->CardBlockSize;
/*!< Returns the reponse */
return status;
}
/**
* @brief Reads a block of data from the SD.
* @param pBuffer: pointer to the buffer that receives the data read from the
* SD.
* @param ReadAddr: SD's internal address to read from.
* @param BlockSize: the SD card Data block size.
* @retval The SD Response:
* - SD_RESPONSE_FAILURE: Sequence failed
* - SD_RESPONSE_NO_ERROR: Sequence succeed
*/
SD_Error SD_ReadBlock(uint8_t* pBuffer, uint32_t ReadAddr, uint16_t BlockSize)
{
uint32_t i = 0;
SD_Error rvalue = SD_RESPONSE_FAILURE;
/*!< SD chip select low */
SD_CS_LOW();
/*!< Send CMD17 (SD_CMD_READ_SINGLE_BLOCK) to read one block */
SD_SendCmd(SD_CMD_READ_SINGLE_BLOCK, ReadAddr, 0xFF);
/*!< Check if the SD acknowledged the read block command: R1 response (0x00: no errors) */
if (!SD_GetResponse(SD_RESPONSE_NO_ERROR))
{
/*!< Now look for the data token to signify the start of the data */
if (!SD_GetResponse(SD_START_DATA_SINGLE_BLOCK_READ))
{
/*!< Read the SD block data : read NumByteToRead data */
for (i = 0; i < BlockSize; i++)
{
/*!< Save the received data */
*pBuffer = SD_ReadByte();
/*!< Point to the next location where the byte read will be saved */
pBuffer++;
}
/*!< Get CRC bytes (not really needed by us, but required by SD) */
SD_ReadByte();
SD_ReadByte();
/*!< Set response value to success */
rvalue = SD_RESPONSE_NO_ERROR;
}
}
/*!< SD chip select high */
SD_CS_HIGH();
/*!< Send dummy byte: 8 Clock pulses of delay */
SD_WriteByte(SD_DUMMY_BYTE);
/*!< Returns the reponse */
return rvalue;
}
/**
* @brief Reads multiple block of data from the SD.
* @param pBuffer: pointer to the buffer that receives the data read from the
* SD.
* @param ReadAddr: SD's internal address to read from.
* @param BlockSize: the SD card Data block size.
* @param NumberOfBlocks: number of blocks to be read.
* @retval The SD Response:
* - SD_RESPONSE_FAILURE: Sequence failed
* - SD_RESPONSE_NO_ERROR: Sequence succeed
*/
SD_Error SD_ReadMultiBlocks(uint8_t* pBuffer, uint32_t ReadAddr, uint16_t BlockSize, uint32_t NumberOfBlocks)
{
uint32_t i = 0, Offset = 0;
SD_Error rvalue = SD_RESPONSE_FAILURE;
/*!< SD chip select low */
SD_CS_LOW();
/*!< Data transfer */
while (NumberOfBlocks--)
{
/*!< Send CMD17 (SD_CMD_READ_SINGLE_BLOCK) to read one block */
SD_SendCmd (SD_CMD_READ_SINGLE_BLOCK, ReadAddr + Offset, 0xFF);
/*!< Check if the SD acknowledged the read block command: R1 response (0x00: no errors) */
if (SD_GetResponse(SD_RESPONSE_NO_ERROR))
{
return SD_RESPONSE_FAILURE;
}
/*!< Now look for the data token to signify the start of the data */
if (!SD_GetResponse(SD_START_DATA_SINGLE_BLOCK_READ))
{
/*!< Read the SD block data : read NumByteToRead data */
for (i = 0; i < BlockSize; i++)
{
/*!< Read the pointed data */
*pBuffer = SD_ReadByte();
/*!< Point to the next location where the byte read will be saved */
pBuffer++;
}
/*!< Set next read address*/
Offset += 512;
/*!< get CRC bytes (not really needed by us, but required by SD) */
SD_ReadByte();
SD_ReadByte();
/*!< Set response value to success */
rvalue = SD_RESPONSE_NO_ERROR;
}
else
{
/*!< Set response value to failure */
rvalue = SD_RESPONSE_FAILURE;
}
}
/*!< SD chip select high */
SD_CS_HIGH();
/*!< Send dummy byte: 8 Clock pulses of delay */
SD_WriteByte(SD_DUMMY_BYTE);
/*!< Returns the reponse */
return rvalue;
}
/**
* @brief Writes a block on the SD
* @param pBuffer: pointer to the buffer containing the data to be written on
* the SD.
* @param WriteAddr: address to write on.
* @param BlockSize: the SD card Data block size.
* @retval The SD Response:
* - SD_RESPONSE_FAILURE: Sequence failed
* - SD_RESPONSE_NO_ERROR: Sequence succeed
*/
SD_Error SD_WriteBlock(uint8_t* pBuffer, uint32_t WriteAddr, uint16_t BlockSize)
{
uint32_t i = 0;
SD_Error rvalue = SD_RESPONSE_FAILURE;
/*!< SD chip select low */
SD_CS_LOW();
/*!< Send CMD24 (SD_CMD_WRITE_SINGLE_BLOCK) to write multiple block */
SD_SendCmd(SD_CMD_WRITE_SINGLE_BLOCK, WriteAddr, 0xFF);
/*!< Check if the SD acknowledged the write block command: R1 response (0x00: no errors) */
if (!SD_GetResponse(SD_RESPONSE_NO_ERROR))
{
/*!< Send a dummy byte */
SD_WriteByte(SD_DUMMY_BYTE);
/*!< Send the data token to signify the start of the data */
SD_WriteByte(0xFE);
/*!< Write the block data to SD : write count data by block */
for (i = 0; i < BlockSize; i++)
{
/*!< Send the pointed byte */
SD_WriteByte(*pBuffer);
/*!< Point to the next location where the byte read will be saved */
pBuffer++;
}
/*!< Put CRC bytes (not really needed by us, but required by SD) */
SD_ReadByte();
SD_ReadByte();
/*!< Read data response */
if (SD_GetDataResponse() == SD_DATA_OK)
{
rvalue = SD_RESPONSE_NO_ERROR;
}
}
/*!< SD chip select high */
SD_CS_HIGH();
/*!< Send dummy byte: 8 Clock pulses of delay */
SD_WriteByte(SD_DUMMY_BYTE);
/*!< Returns the reponse */
return rvalue;
}
/**
* @brief Writes many blocks on the SD
* @param pBuffer: pointer to the buffer containing the data to be written on
* the SD.
* @param WriteAddr: address to write on.
* @param BlockSize: the SD card Data block size.
* @param NumberOfBlocks: number of blocks to be written.
* @retval The SD Response:
* - SD_RESPONSE_FAILURE: Sequence failed
* - SD_RESPONSE_NO_ERROR: Sequence succeed
*/
SD_Error SD_WriteMultiBlocks(uint8_t* pBuffer, uint32_t WriteAddr, uint16_t BlockSize, uint32_t NumberOfBlocks)
{
uint32_t i = 0, Offset = 0;
SD_Error rvalue = SD_RESPONSE_FAILURE;
/*!< SD chip select low */
SD_CS_LOW();
/*!< Data transfer */
while (NumberOfBlocks--)
{
/*!< Send CMD24 (SD_CMD_WRITE_SINGLE_BLOCK) to write blocks */
SD_SendCmd(SD_CMD_WRITE_SINGLE_BLOCK, WriteAddr + Offset, 0xFF);
/*!< Check if the SD acknowledged the write block command: R1 response (0x00: no errors) */
if (SD_GetResponse(SD_RESPONSE_NO_ERROR))
{
return SD_RESPONSE_FAILURE;
}
/*!< Send dummy byte */
SD_WriteByte(SD_DUMMY_BYTE);
/*!< Send the data token to signify the start of the data */
SD_WriteByte(SD_START_DATA_SINGLE_BLOCK_WRITE);
/*!< Write the block data to SD : write count data by block */
for (i = 0; i < BlockSize; i++)
{
/*!< Send the pointed byte */
SD_WriteByte(*pBuffer);
/*!< Point to the next location where the byte read will be saved */
pBuffer++;
}
/*!< Set next write address */
Offset += 512;
/*!< Put CRC bytes (not really needed by us, but required by SD) */
SD_ReadByte();
SD_ReadByte();
/*!< Read data response */
if (SD_GetDataResponse() == SD_DATA_OK)
{
/*!< Set response value to success */
rvalue = SD_RESPONSE_NO_ERROR;
}
else
{
/*!< Set response value to failure */
rvalue = SD_RESPONSE_FAILURE;
}
}
/*!< SD chip select high */
SD_CS_HIGH();
/*!< Send dummy byte: 8 Clock pulses of delay */
SD_WriteByte(SD_DUMMY_BYTE);
/*!< Returns the reponse */
return rvalue;
}
/**
* @brief Read the CSD card register.
* Reading the contents of the CSD register in SPI mode is a simple
* read-block transaction.
* @param SD_csd: pointer on an SCD register structure
* @retval The SD Response:
* - SD_RESPONSE_FAILURE: Sequence failed
* - SD_RESPONSE_NO_ERROR: Sequence succeed
*/
SD_Error SD_GetCSDRegister(SD_CSD* SD_csd)
{
uint32_t i = 0;
SD_Error rvalue = SD_RESPONSE_FAILURE;
uint8_t CSD_Tab[16];
/*!< SD chip select low */
SD_CS_LOW();
/*!< Send CMD9 (CSD register) or CMD10(CSD register) */
SD_SendCmd(SD_CMD_SEND_CSD, 0, 0xFF);
/*!< Wait for response in the R1 format (0x00 is no errors) */
if (!SD_GetResponse(SD_RESPONSE_NO_ERROR))
{
if (!SD_GetResponse(SD_START_DATA_SINGLE_BLOCK_READ))
{
for (i = 0; i < 16; i++)
{
/*!< Store CSD register value on CSD_Tab */
CSD_Tab[i] = SD_ReadByte();
}
}
/*!< Get CRC bytes (not really needed by us, but required by SD) */
SD_WriteByte(SD_DUMMY_BYTE);
SD_WriteByte(SD_DUMMY_BYTE);
/*!< Set response value to success */
rvalue = SD_RESPONSE_NO_ERROR;
}
/*!< SD chip select high */
SD_CS_HIGH();
/*!< Send dummy byte: 8 Clock pulses of delay */
SD_WriteByte(SD_DUMMY_BYTE);
/*!< Byte 0 */
SD_csd->CSDStruct = (CSD_Tab[0] & 0xC0) >> 6;
SD_csd->SysSpecVersion = (CSD_Tab[0] & 0x3C) >> 2;
SD_csd->Reserved1 = CSD_Tab[0] & 0x03;
/*!< Byte 1 */
SD_csd->TAAC = CSD_Tab[1];
/*!< Byte 2 */
SD_csd->NSAC = CSD_Tab[2];
/*!< Byte 3 */
SD_csd->MaxBusClkFrec = CSD_Tab[3];
/*!< Byte 4 */
SD_csd->CardComdClasses = CSD_Tab[4] << 4;
/*!< Byte 5 */
SD_csd->CardComdClasses |= (CSD_Tab[5] & 0xF0) >> 4;
SD_csd->RdBlockLen = CSD_Tab[5] & 0x0F;
/*!< Byte 6 */
SD_csd->PartBlockRead = (CSD_Tab[6] & 0x80) >> 7;
SD_csd->WrBlockMisalign = (CSD_Tab[6] & 0x40) >> 6;
SD_csd->RdBlockMisalign = (CSD_Tab[6] & 0x20) >> 5;
SD_csd->DSRImpl = (CSD_Tab[6] & 0x10) >> 4;
SD_csd->Reserved2 = 0; /*!< Reserved */
SD_csd->DeviceSize = (CSD_Tab[6] & 0x03) << 10;
/*!< Byte 7 */
SD_csd->DeviceSize |= (CSD_Tab[7]) << 2;
/*!< Byte 8 */
SD_csd->DeviceSize |= (CSD_Tab[8] & 0xC0) >> 6;
SD_csd->MaxRdCurrentVDDMin = (CSD_Tab[8] & 0x38) >> 3;
SD_csd->MaxRdCurrentVDDMax = (CSD_Tab[8] & 0x07);
/*!< Byte 9 */
SD_csd->MaxWrCurrentVDDMin = (CSD_Tab[9] & 0xE0) >> 5;
SD_csd->MaxWrCurrentVDDMax = (CSD_Tab[9] & 0x1C) >> 2;
SD_csd->DeviceSizeMul = (CSD_Tab[9] & 0x03) << 1;
/*!< Byte 10 */
SD_csd->DeviceSizeMul |= (CSD_Tab[10] & 0x80) >> 7;
SD_csd->EraseGrSize = (CSD_Tab[10] & 0x40) >> 6;
SD_csd->EraseGrMul = (CSD_Tab[10] & 0x3F) << 1;
/*!< Byte 11 */
SD_csd->EraseGrMul |= (CSD_Tab[11] & 0x80) >> 7;
SD_csd->WrProtectGrSize = (CSD_Tab[11] & 0x7F);
/*!< Byte 12 */
SD_csd->WrProtectGrEnable = (CSD_Tab[12] & 0x80) >> 7;
SD_csd->ManDeflECC = (CSD_Tab[12] & 0x60) >> 5;
SD_csd->WrSpeedFact = (CSD_Tab[12] & 0x1C) >> 2;
SD_csd->MaxWrBlockLen = (CSD_Tab[12] & 0x03) << 2;
/*!< Byte 13 */
SD_csd->MaxWrBlockLen |= (CSD_Tab[13] & 0xC0) >> 6;
SD_csd->WriteBlockPaPartial = (CSD_Tab[13] & 0x20) >> 5;
SD_csd->Reserved3 = 0;
SD_csd->ContentProtectAppli = (CSD_Tab[13] & 0x01);
/*!< Byte 14 */
SD_csd->FileFormatGrouop = (CSD_Tab[14] & 0x80) >> 7;
SD_csd->CopyFlag = (CSD_Tab[14] & 0x40) >> 6;
SD_csd->PermWrProtect = (CSD_Tab[14] & 0x20) >> 5;
SD_csd->TempWrProtect = (CSD_Tab[14] & 0x10) >> 4;
SD_csd->FileFormat = (CSD_Tab[14] & 0x0C) >> 2;
SD_csd->ECC = (CSD_Tab[14] & 0x03);
/*!< Byte 15 */
SD_csd->CSD_CRC = (CSD_Tab[15] & 0xFE) >> 1;
SD_csd->Reserved4 = 1;
/*!< Return the reponse */
return rvalue;
}
/**
* @brief Read the CID card register.
* Reading the contents of the CID register in SPI mode is a simple
* read-block transaction.
* @param SD_cid: pointer on an CID register structure
* @retval The SD Response:
* - SD_RESPONSE_FAILURE: Sequence failed
* - SD_RESPONSE_NO_ERROR: Sequence succeed
*/
SD_Error SD_GetCIDRegister(SD_CID* SD_cid)
{
uint32_t i = 0;
SD_Error rvalue = SD_RESPONSE_FAILURE;
uint8_t CID_Tab[16];
/*!< SD chip select low */
SD_CS_LOW();
/*!< Send CMD10 (CID register) */
SD_SendCmd(SD_CMD_SEND_CID, 0, 0xFF);
/*!< Wait for response in the R1 format (0x00 is no errors) */
if (!SD_GetResponse(SD_RESPONSE_NO_ERROR))
{
if (!SD_GetResponse(SD_START_DATA_SINGLE_BLOCK_READ))
{
/*!< Store CID register value on CID_Tab */
for (i = 0; i < 16; i++)
{
CID_Tab[i] = SD_ReadByte();
}
}
/*!< Get CRC bytes (not really needed by us, but required by SD) */
SD_WriteByte(SD_DUMMY_BYTE);
SD_WriteByte(SD_DUMMY_BYTE);
/*!< Set response value to success */
rvalue = SD_RESPONSE_NO_ERROR;
}
/*!< SD chip select high */
SD_CS_HIGH();
/*!< Send dummy byte: 8 Clock pulses of delay */
SD_WriteByte(SD_DUMMY_BYTE);
/*!< Byte 0 */
SD_cid->ManufacturerID = CID_Tab[0];
/*!< Byte 1 */
SD_cid->OEM_AppliID = CID_Tab[1] << 8;
/*!< Byte 2 */
SD_cid->OEM_AppliID |= CID_Tab[2];
/*!< Byte 3 */
SD_cid->ProdName1 = CID_Tab[3] << 24;
/*!< Byte 4 */
SD_cid->ProdName1 |= CID_Tab[4] << 16;
/*!< Byte 5 */
SD_cid->ProdName1 |= CID_Tab[5] << 8;
/*!< Byte 6 */
SD_cid->ProdName1 |= CID_Tab[6];
/*!< Byte 7 */
SD_cid->ProdName2 = CID_Tab[7];
/*!< Byte 8 */
SD_cid->ProdRev = CID_Tab[8];
/*!< Byte 9 */
SD_cid->ProdSN = CID_Tab[9] << 24;
/*!< Byte 10 */
SD_cid->ProdSN |= CID_Tab[10] << 16;
/*!< Byte 11 */
SD_cid->ProdSN |= CID_Tab[11] << 8;
/*!< Byte 12 */
SD_cid->ProdSN |= CID_Tab[12];
/*!< Byte 13 */
SD_cid->Reserved1 |= (CID_Tab[13] & 0xF0) >> 4;
SD_cid->ManufactDate = (CID_Tab[13] & 0x0F) << 8;
/*!< Byte 14 */
SD_cid->ManufactDate |= CID_Tab[14];
/*!< Byte 15 */
SD_cid->CID_CRC = (CID_Tab[15] & 0xFE) >> 1;
SD_cid->Reserved2 = 1;
/*!< Return the reponse */
return rvalue;
}
/**
* @brief Send 5 bytes command to the SD card.
* @param Cmd: The user expected command to send to SD card.
* @param Arg: The command argument.
* @param Crc: The CRC.
* @retval None
*/
void SD_SendCmd(uint8_t Cmd, uint32_t Arg, uint8_t Crc)
{
uint32_t i = 0x00;
uint8_t Frame[6];
Frame[0] = (Cmd | 0x40); /*!< Construct byte 1 */
Frame[1] = (uint8_t)(Arg >> 24); /*!< Construct byte 2 */
Frame[2] = (uint8_t)(Arg >> 16); /*!< Construct byte 3 */
Frame[3] = (uint8_t)(Arg >> 8); /*!< Construct byte 4 */
Frame[4] = (uint8_t)(Arg); /*!< Construct byte 5 */
Frame[5] = (Crc); /*!< Construct CRC: byte 6 */
for (i = 0; i < 6; i++)
{
SD_WriteByte(Frame[i]); /*!< Send the Cmd bytes */
}
}
/**
* @brief Get SD card data response.
* @param None
* @retval The SD status: Read data response xxx0<status>1
* - status 010: Data accepted
* - status 101: Data rejected due to a crc error
* - status 110: Data rejected due to a Write error.
* - status 111: Data rejected due to other error.
*/
uint8_t SD_GetDataResponse(void)
{
uint32_t i = 0;
uint8_t response, rvalue;
while (i <= 64)
{
/*!< Read response */
response = SD_ReadByte();
/*!< Mask unused bits */
response &= 0x1F;
switch (response)
{
case SD_DATA_OK:
{
rvalue = SD_DATA_OK;
break;
}
case SD_DATA_CRC_ERROR:
return SD_DATA_CRC_ERROR;
case SD_DATA_WRITE_ERROR:
return SD_DATA_WRITE_ERROR;
default:
{
rvalue = SD_DATA_OTHER_ERROR;
break;
}
}
/*!< Exit loop in case of data ok */
if (rvalue == SD_DATA_OK)
break;
/*!< Increment loop counter */
i++;
}
/*!< Wait null data */
while (SD_ReadByte() == 0);
/*!< Return response */
return response;
}
/**
* @brief Returns the SD response.
* @param None
* @retval The SD Response:
* - SD_RESPONSE_FAILURE: Sequence failed
* - SD_RESPONSE_NO_ERROR: Sequence succeed
*/
SD_Error SD_GetResponse(uint8_t Response)
{
uint32_t Count = 0xFFF;
/* Check if response is got or a timeout is happen */
while ((SD_ReadByte() != Response) && Count)
{
Count--;
}
if (Count == 0)
{
/* After time out */
return SD_RESPONSE_FAILURE;
}
else
{
/* Right response got */
return SD_RESPONSE_NO_ERROR;
}
}
/**
* @brief Returns the SD status.
* @param None
* @retval The SD status.
*/
uint16_t SD_GetStatus(void)
{
uint16_t Status = 0;
/*!< SD chip select low */
SD_CS_LOW();
/*!< Send CMD13 (SD_SEND_STATUS) to get SD status */
SD_SendCmd(SD_CMD_SEND_STATUS, 0, 0xFF);
Status = SD_ReadByte();
Status |= (uint16_t)(SD_ReadByte() << 8);
/*!< SD chip select high */
SD_CS_HIGH();
/*!< Send dummy byte 0xFF */
SD_WriteByte(SD_DUMMY_BYTE);
return Status;
}
/**
* @brief Put SD in Idle state.
* @param None
* @retval The SD Response:
* - SD_RESPONSE_FAILURE: Sequence failed
* - SD_RESPONSE_NO_ERROR: Sequence succeed
*/
SD_Error SD_GoIdleState(void)
{
/*!< SD chip select low */
SD_CS_LOW();
/*!< Send CMD0 (SD_CMD_GO_IDLE_STATE) to put SD in SPI mode */
SD_SendCmd(SD_CMD_GO_IDLE_STATE, 0, 0x95);
/*!< Wait for In Idle State Response (R1 Format) equal to 0x01 */
if (SD_GetResponse(SD_IN_IDLE_STATE))
{
/*!< No Idle State Response: return response failue */
return SD_RESPONSE_FAILURE;
}
// SD_SendCmd(SD_CMD_SEND_IF_COND, 0, 0x65);
// /*!< Wait for In Idle State Response (R1 Format) equal to 0x01 */
// if (SD_GetResponse(SD_IN_IDLE_STATE))
// {
// /*!< No Idle State Response: return response failue */
// return SD_RESPONSE_FAILURE;
// }
/*----------Activates the card initialization process-----------*/
do
{
/*!< SD chip select high */
SD_CS_HIGH();
/*!< Send Dummy byte 0xFF */
SD_WriteByte(SD_DUMMY_BYTE);
/*!< SD chip select low */
SD_CS_LOW();
/*!< Send CMD1 (Activates the card process) until response equal to 0x0 */
SD_SendCmd(SD_CMD_SEND_OP_COND, 0, 0xFF);
/*!< Wait for no error Response (R1 Format) equal to 0x00 */
}
while (SD_GetResponse(SD_RESPONSE_NO_ERROR));
/*!< SD chip select high */
SD_CS_HIGH();
/*!< Send dummy byte 0xFF */
SD_WriteByte(SD_DUMMY_BYTE);
return SD_RESPONSE_NO_ERROR;
}
/**
* @brief Write a byte on the SD.
* @param Data: byte to send.
* @retval None
*/
uint8_t SD_WriteByte(uint8_t Data)
{
/*!< Wait until the transmit buffer is empty */
while(SPI_I2S_GetFlagStatus(SD_SPI_INSTANCE, SPI_I2S_FLAG_TXE) == RESET)
{
}
/*!< Send the byte */
SPI_SendData8(SD_SPI_INSTANCE, Data);
/*!< Wait to receive a byte*/
while(SPI_I2S_GetFlagStatus(SD_SPI_INSTANCE, SPI_I2S_FLAG_RXNE) == RESET)
{
}
/*!< Return the byte read from the SPI bus */
return SPI_ReceiveData8(SD_SPI_INSTANCE);
}
/**
* @brief Read a byte from the SD.
* @param None
* @retval The received byte.
*/
uint8_t SD_ReadByte(void)
{
uint8_t Data = 0;
/*!< Wait until the transmit buffer is empty */
while (SPI_I2S_GetFlagStatus(SD_SPI_INSTANCE, SPI_I2S_FLAG_TXE) == RESET)
{
}
/*!< Send the byte */
SPI_SendData8(SD_SPI_INSTANCE, SD_DUMMY_BYTE);
/*!< Wait until a data is received */
while (SPI_I2S_GetFlagStatus(SD_SPI_INSTANCE, SPI_I2S_FLAG_RXNE) == RESET)
{
}
/*!< Get the received data */
Data = SPI_ReceiveData8(SD_SPI_INSTANCE);
/*!< Return the shifted data */
return Data;
}
#include "drivers/bus_spi.h"
#include "drivers/system.h"
@ -852,12 +43,15 @@ uint8_t SD_ReadByte(void)
#define STATIC_ASSERT(condition, name ) \
typedef char assert_failed_ ## name [(condition) ? 1 : -1 ]
#define SDCARD_USE_DMA_FOR_TX
typedef enum {
SDCARD_STATE_NOT_PRESENT = 0,
SDCARD_STATE_INITIALIZATION,
SDCARD_STATE_INITIALIZATION_RECEIVE_CID,
SDCARD_STATE_READY,
SDCARD_STATE_READING,
SDCARD_STATE_SENDING_WRITE,
SDCARD_STATE_WRITING,
} sdcardState_e;
@ -1068,19 +262,8 @@ static sdcardReceiveBlockStatus_e sdcard_receiveDataBlock(uint8_t *buffer, int c
return SDCARD_RECEIVE_SUCCESS;
}
/**
* Write the buffer of `count` bytes to the SD card.
*
* Returns true if the card accepted the write (card will enter a busy state).
*/
static bool sdcard_sendDataBlock(uint8_t *buffer, int count)
static bool sdcard_sendDataBlockFinish()
{
// Card wants 8 dummy clock cycles after the command response to become ready
spiTransferByte(SDCARD_SPI_INSTANCE, 0xFF);
spiTransferByte(SDCARD_SPI_INSTANCE, SDCARD_SINGLE_BLOCK_WRITE_START_TOKEN);
spiTransfer(SDCARD_SPI_INSTANCE, NULL, buffer, count);
// Send a dummy CRC
spiTransferByte(SDCARD_SPI_INSTANCE, 0x00);
spiTransferByte(SDCARD_SPI_INSTANCE, 0x00);
@ -1102,6 +285,51 @@ static bool sdcard_sendDataBlock(uint8_t *buffer, int count)
return (dataResponseToken & 0x1F) == 0x05;
}
/**
* Write the buffer of `count` bytes to the SD card.
*
* Returns true if the write was begun (card will enter a busy state).
*/
static bool sdcard_sendDataBlock(uint8_t *buffer, int count)
{
spiTransferByte(SDCARD_SPI_INSTANCE, SDCARD_SINGLE_BLOCK_WRITE_START_TOKEN);
#ifdef SDCARD_USE_DMA_FOR_TX
// Queue the transmission of the sector payload
DMA_InitTypeDef DMA_InitStructure;
DMA_StructInit(&DMA_InitStructure);
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t) &SDCARD_SPI_INSTANCE->DR;
DMA_InitStructure.DMA_Priority = DMA_Priority_Low;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t) buffer;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
DMA_InitStructure.DMA_BufferSize = count;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST;
DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
DMA_DeInit(SDCARD_DMA_CHANNEL_TX);
DMA_Init(SDCARD_DMA_CHANNEL_TX, &DMA_InitStructure);
DMA_Cmd(SDCARD_DMA_CHANNEL_TX, ENABLE);
SPI_I2S_DMACmd(SDCARD_SPI_INSTANCE, SPI_I2S_DMAReq_Tx, ENABLE);
return true;
#else
// Send the sector payload now
spiTransfer(SDCARD_SPI_INSTANCE, NULL, buffer, count);
// And check the SD card's acknowledgement
return sdcard_sendDataBlockFinish();
#endif
}
static bool sdcard_receiveCID()
{
uint8_t cid[16];
@ -1297,12 +525,47 @@ void sdcard_poll()
}
}
break;
case SDCARD_STATE_SENDING_WRITE:
// Has the DMA write finished yet?
if (DMA_GetFlagStatus(SDCARD_DMA_CHANNEL_TX_COMPLETE_FLAG) == SET) {
DMA_ClearFlag(SDCARD_DMA_CHANNEL_TX_COMPLETE_FLAG);
DMA_Cmd(SDCARD_DMA_CHANNEL_TX, DISABLE);
// Drain anything left in the Rx FIFO (we didn't read it during the write)
while (SPI_I2S_GetFlagStatus(SDCARD_SPI_INSTANCE, SPI_I2S_FLAG_RXNE) == SET) {
SDCARD_SPI_INSTANCE->DR;
}
// Wait for the final bit to be transmitted
while (spiIsBusBusy(SDCARD_SPI_INSTANCE)) {
}
SPI_I2S_DMACmd(SDCARD_SPI_INSTANCE, SPI_I2S_DMAReq_Tx, DISABLE);
// Finish up by sending the CRC and checking the SD-card's acceptance/rejectance
if (sdcard_sendDataBlockFinish()) {
// The SD card is now busy committing that write to the card
sdcard.state = SDCARD_STATE_WRITING;
// Since we've transmitted the buffer we may as well go ahead and tell the caller their operation is complete
if (sdcard.pendingOperation.callback) {
sdcard.pendingOperation.callback(SDCARD_BLOCK_OPERATION_WRITE, sdcard.pendingOperation.blockIndex, sdcard.pendingOperation.buffer, sdcard.pendingOperation.callbackData);
}
} else {
// Our write was rejected! Bad CRC/address?
sdcard.state = SDCARD_STATE_READY;
if (sdcard.pendingOperation.callback) {
sdcard.pendingOperation.callback(SDCARD_BLOCK_OPERATION_WRITE, sdcard.pendingOperation.blockIndex, NULL, sdcard.pendingOperation.callbackData);
}
}
}
break;
case SDCARD_STATE_WRITING:
if (sdcard_waitForIdle(SDCARD_MAXIMUM_BYTE_DELAY_FOR_CMD_REPLY)) {
sdcard_deselect();
sdcard.state = SDCARD_STATE_READY;
}
break;
case SDCARD_STATE_READING:
switch (sdcard_receiveDataBlock(sdcard.pendingOperation.buffer, SDCARD_BLOCK_SIZE)) {
@ -1347,12 +610,12 @@ void sdcard_poll()
/**
* Write the 512-byte block from the given buffer into the block with the given index.
*
* Returns true if the write was successfully sent to the card, or false if the operation could
* Returns true if the write was successfully sent to the card for later commit, or false if the operation could
* not be started due to the card being busy (try again later), or because the write was invalid (bad address).
*
* The buffer is not copied anywhere, you must keep the pointer to the buffer valid until the operation completes!
*/
bool sdcard_writeBlock(uint32_t blockIndex, uint8_t *buffer)
bool sdcard_writeBlock(uint32_t blockIndex, uint8_t *buffer, sdcard_operationCompleteCallback_c callback, uint32_t callbackData)
{
if (sdcard.state != SDCARD_STATE_READY)
return false;
@ -1362,8 +625,29 @@ bool sdcard_writeBlock(uint32_t blockIndex, uint8_t *buffer)
// Standard size cards use byte addressing, high capacity cards use block addressing
uint8_t status = sdcard_sendCommand(SDCARD_COMMAND_WRITE_BLOCK, sdcard.highCapacity ? blockIndex : blockIndex * SDCARD_BLOCK_SIZE);
// Card wants 8 dummy clock cycles after the command response to become ready
spiTransferByte(SDCARD_SPI_INSTANCE, 0xFF);
#ifdef SDCARD_USE_DMA_FOR_TX
sdcard.pendingOperation.buffer = buffer;
sdcard.pendingOperation.blockIndex = blockIndex;
sdcard.pendingOperation.callback = callback;
sdcard.pendingOperation.callbackData = callbackData;
#endif
if (status == 0 && sdcard_sendDataBlock(buffer, SDCARD_BLOCK_SIZE)) {
#ifdef SDCARD_USE_DMA_FOR_TX
sdcard.state = SDCARD_STATE_SENDING_WRITE;
#else
/* The data has already been received by the SD card (buffer has been transmitted), we only have to wait for the
* card to commit it. Let the caller know it can free its buffer.
*/
sdcard.state = SDCARD_STATE_WRITING;
if (callback) {
callback(SDCARD_BLOCK_OPERATION_WRITE, blockIndex, buffer, callbackData);
}
#endif
// Leave the card selected while the write is in progress
return true;
@ -1413,4 +697,3 @@ bool sdcard_isReady() {
}
#endif
>>>>>>> 98133e5... Basic SDCard block read / write (minimal timeout/error handling)

View file

@ -243,13 +243,6 @@ typedef struct sdcard_metadata_t {
uint32_t numBlocks; /* Card capacity in 512-byte blocks*/
} sdcardMetadata_t;
typedef enum {
SDCARD_NO_OPERATION,
SDCARD_OPERATION_IN_PROGRESS,
SDCARD_OPERATION_SUCCESS,
SDCARD_OPERATION_ERROR,
} sdcardOperationStatus_e;
typedef enum {
SDCARD_BLOCK_OPERATION_READ,
SDCARD_BLOCK_OPERATION_WRITE,
@ -260,8 +253,8 @@ typedef void(*sdcard_operationCompleteCallback_c)(sdcardBlockOperation_e operati
bool sdcard_init();
bool sdcard_writeBlock(uint32_t blockIndex, uint8_t *buffer);
bool sdcard_readBlock(uint32_t blockIndex, uint8_t *buffer, sdcard_operationCompleteCallback_c callback, uint32_t callbackData);
bool sdcard_writeBlock(uint32_t blockIndex, uint8_t *buffer, sdcard_operationCompleteCallback_c callback, uint32_t callbackData);
void sdcard_poll();
bool sdcard_isReady();

View file

@ -80,8 +80,9 @@
typedef enum {
AFATFS_CACHE_STATE_EMPTY,
AFATFS_CACHE_STATE_READING,
AFATFS_CACHE_STATE_IN_SYNC,
AFATFS_CACHE_STATE_READING,
AFATFS_CACHE_STATE_WRITING,
AFATFS_CACHE_STATE_DIRTY
} afatfsCacheBlockState_e;
@ -354,7 +355,7 @@ typedef struct afatfs_t {
uint8_t cache[AFATFS_SECTOR_SIZE * AFATFS_NUM_CACHE_SECTORS];
afatfsCacheBlockDescriptor_t cacheDescriptor[AFATFS_NUM_CACHE_SECTORS];
uint32_t cacheTimer;
int cacheDirtyEntries; // The number of cache entries in the AFATFS_CACHE_STATE_DIRTY state
int cacheUnflushedEntries; // The number of cache entries in the AFATFS_CACHE_STATE_DIRTY or AFATFS_CACHE_STATE_WRITING states
afatfsFile_t openFiles[AFATFS_MAX_OPEN_FILES];
@ -508,7 +509,7 @@ static void afatfs_cacheSectorMarkDirty(uint8_t *memory)
if (descriptor && descriptor->state != AFATFS_CACHE_STATE_DIRTY) {
descriptor->state = AFATFS_CACHE_STATE_DIRTY;
afatfs.cacheDirtyEntries++;
afatfs.cacheUnflushedEntries++;
}
}
@ -521,23 +522,6 @@ static void afatfs_cacheSectorInit(afatfsCacheBlockDescriptor_t *descriptor, uin
descriptor->state = AFATFS_CACHE_STATE_EMPTY;
}
/**
* Attempt to flush the dirty cache entry with the given index to the SDcard. Returns true if the SDcard accepted
* the write, false if the card was busy.
*/
static bool afatfs_cacheFlushSector(int cacheIndex)
{
if (afatfs.cacheDescriptor[cacheIndex].state != AFATFS_CACHE_STATE_DIRTY)
return true; // Already flushed
if (sdcard_writeBlock(afatfs.cacheDescriptor[cacheIndex].sectorIndex, afatfs_cacheSectorGetMemory(cacheIndex))) {
afatfs.cacheDescriptor[cacheIndex].state = AFATFS_CACHE_STATE_IN_SYNC;
afatfs.cacheDirtyEntries--;
return true;
}
return false;
}
/**
* Called by the SD card driver when one of our read operations completes.
*/
@ -564,6 +548,52 @@ static void afatfs_sdcardReadComplete(sdcardBlockOperation_e operation, uint32_t
}
}
/**
* Called by the SD card driver when one of our write operations completes.
*/
static void afatfs_sdcardWriteComplete(sdcardBlockOperation_e operation, uint32_t sectorIndex, uint8_t *buffer, uint32_t callbackData)
{
(void) operation;
(void) callbackData;
for (int i = 0; i < AFATFS_NUM_CACHE_SECTORS; i++) {
/* Keep in mind that someone may have marked the sector as dirty after writing had already begun. In this case we must leave
* it marked as dirty because those modifications may have been made too late to make it to the disk!
*/
if (afatfs.cacheDescriptor[i].sectorIndex == sectorIndex
&& afatfs.cacheDescriptor[i].state == AFATFS_CACHE_STATE_WRITING
) {
if (buffer == NULL) {
// Write failed, remark the sector as dirty
afatfs.cacheDescriptor[i].state = AFATFS_CACHE_STATE_DIRTY;
} else {
afatfs_assert(afatfs_cacheSectorGetMemory(i) == buffer);
afatfs.cacheUnflushedEntries--;
afatfs.cacheDescriptor[i].state = AFATFS_CACHE_STATE_IN_SYNC;
}
break;
}
}
}
/**
* Attempt to flush the dirty cache entry with the given index to the SDcard. Returns true if the SDcard accepted
* the write, false if the card was busy.
*/
static bool afatfs_cacheFlushSector(int cacheIndex)
{
if (afatfs.cacheDescriptor[cacheIndex].state != AFATFS_CACHE_STATE_DIRTY)
return true; // Already flushed
if (sdcard_writeBlock(afatfs.cacheDescriptor[cacheIndex].sectorIndex, afatfs_cacheSectorGetMemory(cacheIndex), afatfs_sdcardWriteComplete, 0)) {
afatfs.cacheDescriptor[cacheIndex].state = AFATFS_CACHE_STATE_WRITING;
return true;
}
return false;
}
/**
* Find a sector in the cache which corresponds to the given physical sector index, or NULL if the sector isn't
* cached. Note that the cached sector could be in any state including completely empty.
@ -665,7 +695,7 @@ static int afatfs_allocateCacheSector(uint32_t sectorIndex)
*/
bool afatfs_flush()
{
if (afatfs.cacheDirtyEntries > 0) {
if (afatfs.cacheUnflushedEntries > 0) {
for (int i = 0; i < AFATFS_NUM_CACHE_SECTORS; i++) {
if (afatfs.cacheDescriptor[i].state == AFATFS_CACHE_STATE_DIRTY && !afatfs.cacheDescriptor[i].locked) {
afatfs_cacheFlushSector(i);
@ -762,10 +792,11 @@ static void afatfs_fileGetCursorClusterAndSector(afatfsFilePtr_t file, uint32_t
// Fall through
case AFATFS_CACHE_STATE_WRITING:
case AFATFS_CACHE_STATE_IN_SYNC:
if ((sectorFlags & AFATFS_CACHE_WRITE) != 0) {
afatfs.cacheDescriptor[cacheSectorIndex].state = AFATFS_CACHE_STATE_DIRTY;
afatfs.cacheDirtyEntries++;
afatfs.cacheUnflushedEntries++;
}
// Fall through

View file

@ -105,6 +105,10 @@
// Divide to under 25MHz for normal operation:
#define SDCARD_SPI_FULL_SPEED_CLOCK_DIVIDER 2
// Note, this is the same DMA channel as USART1_RX. Luckily we don't use DMA for USART Rx.
#define SDCARD_DMA_CHANNEL_TX DMA1_Channel5
#define SDCARD_DMA_CHANNEL_TX_COMPLETE_FLAG DMA1_FLAG_TC5
#define ACC
#define USE_ACC_LSM303DLHC