1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-16 04:45:24 +03:00

Update D_CUT to D_MIN, add setpoint

Directly and easily set the minimum value for D on pitch and roll.
- Boost back to the primary D setting is generated from gyro or setpoint inputs.
- Setpoint input is stick derived, faster by 10ms approx, and does not respond to propwash.
- Gyro input is motor derived and slower, but responds to propwash
- timing value sets balance between gyro (100) and setpoint (0) boost factors
- gain value sets overall sensitivity
- default D mins are 20 roll 22 pitch
- default D is 35, 38; if undefined then normal 30, 32 values
TUNING
- D value to flip overshoot control
- D_min to noise, lower values mean cooler motors but perhaps more propwash.
- Advance, higher values bring the boost in earlier, and stronger overall, useful for very high flip rates, but dampen stick responsiveness slightly.
- Gain value adjust against logs, checking maximal boost with flips and some rise with propwash, should be edging to get up from the min value in normal flight.
This commit is contained in:
ctzsnooze 2019-02-10 01:41:28 +11:00
parent 4f7fa25b06
commit b70d34f9db
7 changed files with 105 additions and 90 deletions

View file

@ -92,8 +92,11 @@ PG_REGISTER_WITH_RESET_TEMPLATE(pidConfig_t, pidConfig, PG_PID_CONFIG, 2);
#else
#define PID_PROCESS_DENOM_DEFAULT 2
#endif
#if defined(USE_D_CUT)
#define D_CUT_GAIN_FACTOR 0.00005f
#if defined(USE_D_MIN)
#define D_MIN_GAIN_FACTOR 0.00005f
#define D_MIN_SETPOINT_GAIN_FACTOR 0.00005f
#define D_MIN_RANGE_HZ 80 // Biquad lowpass input cutoff to peak D around propwash frequencies
#define D_MIN_LOWPASS_HZ 10 // PT1 lowpass cutoff to smooth the boost effect
#endif
#ifdef USE_RUNAWAY_TAKEOFF
@ -126,8 +129,8 @@ void resetPidProfile(pidProfile_t *pidProfile)
{
RESET_CONFIG(pidProfile_t, pidProfile,
.pid = {
[PID_ROLL] = { 46, 65, 40, 60 },
[PID_PITCH] = { 50, 75, 44, 60 },
[PID_ROLL] = { 46, 65, 35, 60 },
[PID_PITCH] = { 50, 75, 38, 60 },
[PID_YAW] = { 45, 100, 0, 100 },
[PID_LEVEL] = { 50, 50, 75, 0 },
[PID_MAG] = { 40, 0, 0, 0 },
@ -188,10 +191,11 @@ void resetPidProfile(pidProfile_t *pidProfile)
.use_integrated_yaw = false,
.integrated_yaw_relax = 200,
.thrustLinearization = 0,
.dterm_cut_percent = 65,
.dterm_cut_gain = 15,
.dterm_cut_range_hz = 40,
.dterm_cut_lowpass_hz = 7,
.d_min_roll = 20,
.d_min_pitch = 22,
.d_min_yaw = 0,
.d_min_gain = 20,
.d_min_advance = 20,
.motor_output_limit = 100,
.auto_profile_cell_count = AUTO_PROFILE_CELL_COUNT_STAY,
);
@ -201,7 +205,7 @@ void resetPidProfile(pidProfile_t *pidProfile)
pidProfile->dterm_filter_type = FILTER_BIQUAD;
pidProfile->dterm_filter2_type = FILTER_BIQUAD;
#endif
#ifndef USE_D_CUT
#ifndef USE_D_MIN
pidProfile->pid[PID_ROLL].D = 30;
pidProfile->pid[PID_PITCH].D = 32;
#endif
@ -272,11 +276,10 @@ static FAST_RAM_ZERO_INIT float acCutoff;
static FAST_RAM_ZERO_INIT pt1Filter_t acLpf[XYZ_AXIS_COUNT];
#endif
#if defined(USE_D_CUT)
static FAST_RAM_ZERO_INIT filterApplyFnPtr dtermCutRangeApplyFn;
static FAST_RAM_ZERO_INIT biquadFilter_t dtermCutRange[XYZ_AXIS_COUNT];
static FAST_RAM_ZERO_INIT filterApplyFnPtr dtermCutLowpassApplyFn;
static FAST_RAM_ZERO_INIT pt1Filter_t dtermCutLowpass[XYZ_AXIS_COUNT];
#if defined(USE_D_MIN)
static FAST_RAM_ZERO_INIT uint8_t dMin[XYZ_AXIS_COUNT];
static FAST_RAM_ZERO_INIT biquadFilter_t dMinRange[XYZ_AXIS_COUNT];
static FAST_RAM_ZERO_INIT pt1Filter_t dMinLowpass[XYZ_AXIS_COUNT];
#endif
#ifdef USE_RC_SMOOTHING_FILTER
@ -404,18 +407,19 @@ void pidInitFilters(const pidProfile_t *pidProfile)
}
}
#endif
#if defined(USE_D_CUT)
if (pidProfile->dterm_cut_percent == 0) {
dtermCutRangeApplyFn = nullFilterApply;
dtermCutLowpassApplyFn = nullFilterApply;
} else {
dtermCutRangeApplyFn = (filterApplyFnPtr)biquadFilterApply;
dtermCutLowpassApplyFn = (filterApplyFnPtr)pt1FilterApply;
for (int axis = FD_ROLL; axis <= FD_YAW; axis++) {
biquadFilterInitLPF(&dtermCutRange[axis], pidProfile->dterm_cut_range_hz, targetPidLooptime);
pt1FilterInit(&dtermCutLowpass[axis], pt1FilterGain(pidProfile->dterm_cut_lowpass_hz, dT));
}
}
#if defined(USE_D_MIN)
dMin[FD_ROLL] = pidProfile->d_min_roll;
dMin[FD_PITCH] = pidProfile->d_min_pitch;
dMin[FD_YAW] = pidProfile->d_min_yaw;
// Initialize the filters for all axis even if the dMin[axis] value is 0
// Otherwise if the pidProfile->d_min_xxx parameters are ever added to
// in-flight adjustments and transition from 0 to > 0 in flight the feature
// won't work because the filter wasn't initialized.
for (int axis = FD_ROLL; axis <= FD_YAW; axis++) {
biquadFilterInitLPF(&dMinRange[axis], D_MIN_RANGE_HZ, targetPidLooptime);
pt1FilterInit(&dMinLowpass[axis], pt1FilterGain(D_MIN_LOWPASS_HZ, dT));
}
#endif
pt1FilterInit(&antiGravityThrottleLpf, pt1FilterGain(ANTI_GRAVITY_THROTTLE_FILTER_CUTOFF, dT));
@ -539,14 +543,11 @@ static FAST_RAM_ZERO_INIT uint16_t dynLpfMin;
static FAST_RAM_ZERO_INIT uint16_t dynLpfMax;
#endif
#ifdef USE_D_CUT
static FAST_RAM_ZERO_INIT float dtermCutPercent;
static FAST_RAM_ZERO_INIT float dtermCutPercentInv;
static FAST_RAM_ZERO_INIT float dtermCutGain;
static FAST_RAM_ZERO_INIT float dtermCutRangeHz;
static FAST_RAM_ZERO_INIT float dtermCutLowpassHz;
#ifdef USE_D_MIN
static FAST_RAM_ZERO_INIT float dMinPercent[XYZ_AXIS_COUNT];
static FAST_RAM_ZERO_INIT float dMinGyroGain;
static FAST_RAM_ZERO_INIT float dMinSetpointGain;
#endif
static FAST_RAM_ZERO_INIT float dtermCutFactor;
void pidInitConfig(const pidProfile_t *pidProfile)
{
@ -666,15 +667,18 @@ void pidInitConfig(const pidProfile_t *pidProfile)
thrustLinearizationB = (1.0f - thrustLinearization) / (2.0f * thrustLinearization);
}
#endif
#if defined(USE_D_CUT)
dtermCutPercent = pidProfile->dterm_cut_percent / 100.0f;
dtermCutPercentInv = 1.0f - dtermCutPercent;
dtermCutRangeHz = pidProfile->dterm_cut_range_hz;
dtermCutLowpassHz = pidProfile->dterm_cut_lowpass_hz;
dtermCutGain = pidProfile->dterm_cut_gain * dtermCutPercent * D_CUT_GAIN_FACTOR / dtermCutLowpassHz;
#if defined(USE_D_MIN)
for (int axis = FD_ROLL; axis <= FD_YAW; ++axis) {
if ((dMin[axis] > 0) && (dMin[axis] < pidProfile->pid[axis].D)) {
dMinPercent[axis] = dMin[axis] / (float)(pidProfile->pid[axis].D);
} else {
dMinPercent[axis] = 0;
}
}
dMinGyroGain = pidProfile->d_min_gain * D_MIN_GAIN_FACTOR / D_MIN_LOWPASS_HZ;
dMinSetpointGain = pidProfile->d_min_gain * D_MIN_SETPOINT_GAIN_FACTOR * pidProfile->d_min_advance * pidFrequency / (100 * D_MIN_LOWPASS_HZ);
// lowpass included inversely in gain since stronger lowpass decreases peak effect
#endif
dtermCutFactor = 1.0f;
}
void pidInit(const pidProfile_t *pidProfile)
@ -1313,6 +1317,15 @@ void FAST_CODE pidController(const pidProfile_t *pidProfile, timeUs_t currentTim
#endif
pidData[axis].I = constrainf(iterm + Ki * itermErrorRate * dynCi, -itermLimit, itermLimit);
// -----calculate pidSetpointDelta
float pidSetpointDelta = 0;
pidSetpointDelta = currentPidSetpoint - previousPidSetpoint[axis];
previousPidSetpoint[axis] = currentPidSetpoint;
#ifdef USE_RC_SMOOTHING_FILTER
pidSetpointDelta = applyRcSmoothingDerivativeFilter(axis, pidSetpointDelta);
#endif // USE_RC_SMOOTHING_FILTER
// -----calculate D component
// disable D if launch control is active
if ((pidCoefficient[axis].Kd > 0) && !launchControlActive){
@ -1331,44 +1344,37 @@ void FAST_CODE pidController(const pidProfile_t *pidProfile, timeUs_t currentTim
}
#endif
#if defined(USE_D_CUT)
if (dtermCutPercent){
dtermCutFactor = dtermCutRangeApplyFn((filter_t *) &dtermCutRange[axis], delta);
dtermCutFactor = fabsf(dtermCutFactor) * dtermCutGain;
dtermCutFactor = dtermCutLowpassApplyFn((filter_t *) &dtermCutLowpass[axis], dtermCutFactor);
dtermCutFactor = MIN(dtermCutFactor, 1.0f);
dtermCutFactor = dtermCutPercentInv + (dtermCutFactor * dtermCutPercent);
}
if (axis == FD_ROLL) {
DEBUG_SET(DEBUG_D_CUT, 2, lrintf(pidCoefficient[axis].Kd * dtermCutFactor * 10.0f / DTERM_SCALE));
} else if (axis == FD_PITCH) {
DEBUG_SET(DEBUG_D_CUT, 3, lrintf(pidCoefficient[axis].Kd * dtermCutFactor * 10.0f / DTERM_SCALE));
float dMinFactor = 1.0f;
#if defined(USE_D_MIN)
if (dMinPercent[axis] > 0) {
float dMinGyroFactor = biquadFilterApply(&dMinRange[axis], delta);
dMinGyroFactor = fabsf(dMinGyroFactor) * dMinGyroGain;
const float dMinSetpointFactor = (fabsf(pidSetpointDelta)) * dMinSetpointGain;
dMinFactor = MAX(dMinGyroFactor, dMinSetpointFactor);
dMinFactor = dMinPercent[axis] + (1.0f - dMinPercent[axis]) * dMinFactor;
dMinFactor = pt1FilterApply(&dMinLowpass[axis], dMinFactor);
dMinFactor = MIN(dMinFactor, 1.0f);
if (axis == FD_ROLL) {
DEBUG_SET(DEBUG_D_MIN, 0, lrintf(dMinGyroFactor * 100));
DEBUG_SET(DEBUG_D_MIN, 1, lrintf(dMinSetpointFactor * 100));
DEBUG_SET(DEBUG_D_MIN, 2, lrintf(pidCoefficient[axis].Kd * dMinFactor * 10 / DTERM_SCALE));
} else if (axis == FD_PITCH) {
DEBUG_SET(DEBUG_D_MIN, 3, lrintf(pidCoefficient[axis].Kd * dMinFactor * 10 / DTERM_SCALE));
}
}
#endif
pidData[axis].D = pidCoefficient[axis].Kd * delta * tpaFactor * dtermCutFactor;
pidData[axis].D = pidCoefficient[axis].Kd * delta * tpaFactor * dMinFactor;
} else {
pidData[axis].D = 0;
}
previousGyroRateDterm[axis] = gyroRateDterm[axis];
// -----calculate feedforward component
// Only enable feedforward for rate mode and if launch control is inactive
const float feedforwardGain = (flightModeFlags || launchControlActive) ? 0.0f : pidCoefficient[axis].Kf;
if (feedforwardGain > 0) {
// no transition if feedForwardTransition == 0
float transition = feedForwardTransition > 0 ? MIN(1.f, getRcDeflectionAbs(axis) * feedForwardTransition) : 1;
float pidSetpointDelta = currentPidSetpoint - previousPidSetpoint[axis];
#ifdef USE_RC_SMOOTHING_FILTER
pidSetpointDelta = applyRcSmoothingDerivativeFilter(axis, pidSetpointDelta);
#endif // USE_RC_SMOOTHING_FILTER
pidData[axis].F = feedforwardGain * transition * pidSetpointDelta * pidFrequency;
#if defined(USE_SMART_FEEDFORWARD)
@ -1377,7 +1383,6 @@ void FAST_CODE pidController(const pidProfile_t *pidProfile, timeUs_t currentTim
} else {
pidData[axis].F = 0;
}
previousPidSetpoint[axis] = currentPidSetpoint;
#ifdef USE_YAW_SPIN_RECOVERY
if (yawSpinActive) {