1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-21 15:25:36 +03:00

Merge branch 'development' of https://github.com/borisbstyle/betaflight into build_parameterless_parallel

This commit is contained in:
Michael Keller 2016-06-28 07:30:14 +12:00
commit c7b8d94c7b
124 changed files with 2158 additions and 1829 deletions

View file

@ -667,24 +667,36 @@ $(VALID_TARGETS):
$(MAKE) binary hex TARGET=$@ && \ $(MAKE) binary hex TARGET=$@ && \
echo "Building $@ succeeded." echo "Building $@ succeeded."
## clean : clean up all temporary / machine-generated files
CLEAN_TARGETS = $(addprefix clean_,$(VALID_TARGETS) )
TARGETS_CLEAN = $(addsuffix _clean,$(VALID_TARGETS) )
## clean : clean up temporary / machine-generated files
clean: clean:
echo "Cleaning $(TARGET)"
rm -f $(CLEAN_ARTIFACTS) rm -f $(CLEAN_ARTIFACTS)
rm -rf $(OBJECT_DIR)/$(TARGET) rm -rf $(OBJECT_DIR)/$(TARGET)
echo "Cleaning $(TARGET) succeeded."
## clean_test : clean up all temporary / machine-generated files (tests) ## clean_test : clean up temporary / machine-generated files (tests)
clean_test: clean_test:
cd src/test && $(MAKE) clean || true cd src/test && $(MAKE) clean || true
## clean_all_targets : clean all valid target platforms ## clean_<TARGET> : clean up one specific target
clean_all: $(CLEAN_TARGETS) :
for clean_target in $(VALID_TARGETS); do \ $(MAKE) -j TARGET=$(subst clean_,,$@) clean
echo "" && \
echo "Cleaning $$clean_target" && \ ## <TARGET>_clean : clean up one specific target (alias for above)
$(MAKE) -j TARGET=$$clean_target clean || \ $(TARGETS_CLEAN) :
break; \ $(MAKE) -j TARGET=$(subst _clean,,$@) clean
echo "Cleaning $$clean_target succeeded."; \
done ## clean_all : clean all valid targets
clean_all:$(CLEAN_TARGETS)
## all_clean : clean all valid targets (alias for above)
all_clean:$(TARGETS_CLEAN)
flash_$(TARGET): $(TARGET_HEX) flash_$(TARGET): $(TARGET_HEX)
stty -F $(SERIAL_DEVICE) raw speed 115200 -crtscts cs8 -parenb -cstopb -ixon stty -F $(SERIAL_DEVICE) raw speed 115200 -crtscts cs8 -parenb -cstopb -ixon

View file

@ -1,6 +1,6 @@
# Betaflight # Betaflight
![Betaflight](https://dl.dropboxusercontent.com/u/31537757/betaflight%20logo.jpg) ![Betaflight](https://camo.githubusercontent.com/8178215d6cb90842dc95c9d437b1bdf09b2d57a7/687474703a2f2f7374617469632e726367726f7570732e6e65742f666f72756d732f6174746163686d656e74732f362f312f302f332f372f362f61393038383930302d3232382d62665f6c6f676f2e6a7067)
Clean-code version of baseflight flight-controller - flight controllers are used to fly multi-rotor craft and fixed wing craft. Clean-code version of baseflight flight-controller - flight controllers are used to fly multi-rotor craft and fixed wing craft.

View file

@ -20,7 +20,10 @@ targets=("PUBLISHMETA=True" \
"TARGET=ALIENFLIGHTF3" \ "TARGET=ALIENFLIGHTF3" \
"TARGET=DOGE" \ "TARGET=DOGE" \
"TARGET=SINGULARITY" \ "TARGET=SINGULARITY" \
"TARGET=SIRINFPV") "TARGET=SIRINFPV" \
"TARGET=X_RACERSPI")
#fake a travis build environment #fake a travis build environment
export TRAVIS_BUILD_NUMBER=$(date +%s) export TRAVIS_BUILD_NUMBER=$(date +%s)
@ -30,9 +33,9 @@ export TRAVIS_REPO_SLUG=${TRAVIS_REPO_SLUG:=$USER/simulated}
for target in "${targets[@]}" for target in "${targets[@]}"
do do
unset RUNTESTS PUBLISHMETA TARGET unset RUNTESTS PUBLISHMETA TARGET
echo echo
echo echo
echo "BUILDING '$target'" echo "BUILDING '$target'"
eval "export $target" eval "export $target"
make -f Makefile clean make -f Makefile clean
./.travis.sh ./.travis.sh

View file

@ -228,8 +228,8 @@ enum EP_BUF_NUM
/* GetDADDR */ /* GetDADDR */
#define _GetDADDR() ((__IO uint16_t) *DADDR) #define _GetDADDR() ((__IO uint16_t) *DADDR)
/* GetBTABLE */ /* GetBTABLE ; clear low-order bits explicitly to avoid problems in gcc 5.x */
#define _GetBTABLE() ((__IO uint16_t) *BTABLE) #define _GetBTABLE() (((__IO uint16_t) *BTABLE) & ~0x07)
/* SetENDPOINT */ /* SetENDPOINT */
#define _SetENDPOINT(bEpNum,wRegValue) (*(EP0REG + bEpNum)= \ #define _SetENDPOINT(bEpNum,wRegValue) (*(EP0REG + bEpNum)= \

View file

@ -23,6 +23,8 @@
#include "build_config.h" #include "build_config.h"
#include "blackbox/blackbox_io.h"
#include "common/color.h" #include "common/color.h"
#include "common/axis.h" #include "common/axis.h"
#include "common/maths.h" #include "common/maths.h"
@ -178,7 +180,7 @@ static void resetAccelerometerTrims(flightDynamicsTrims_t *accelerometerTrims)
accelerometerTrims->values.yaw = 0; accelerometerTrims->values.yaw = 0;
} }
static void resetPidProfile(pidProfile_t *pidProfile) void resetPidProfile(pidProfile_t *pidProfile)
{ {
#if (defined(STM32F10X)) #if (defined(STM32F10X))
@ -193,7 +195,7 @@ static void resetPidProfile(pidProfile_t *pidProfile)
pidProfile->P8[PITCH] = 50; pidProfile->P8[PITCH] = 50;
pidProfile->I8[PITCH] = 40; pidProfile->I8[PITCH] = 40;
pidProfile->D8[PITCH] = 18; pidProfile->D8[PITCH] = 18;
pidProfile->P8[YAW] = 90; pidProfile->P8[YAW] = 80;
pidProfile->I8[YAW] = 45; pidProfile->I8[YAW] = 45;
pidProfile->D8[YAW] = 20; pidProfile->D8[YAW] = 20;
pidProfile->P8[PIDALT] = 50; pidProfile->P8[PIDALT] = 50;
@ -218,10 +220,10 @@ static void resetPidProfile(pidProfile_t *pidProfile)
pidProfile->yaw_p_limit = YAW_P_LIMIT_MAX; pidProfile->yaw_p_limit = YAW_P_LIMIT_MAX;
pidProfile->yaw_lpf_hz = 80; pidProfile->yaw_lpf_hz = 80;
pidProfile->rollPitchItermIgnoreRate = 200; pidProfile->rollPitchItermIgnoreRate = 180;
pidProfile->yawItermIgnoreRate = 35; pidProfile->yawItermIgnoreRate = 35;
pidProfile->dterm_lpf_hz = 50; // filtering ON by default pidProfile->dterm_lpf_hz = 100; // filtering ON by default
pidProfile->deltaMethod = DELTA_FROM_ERROR; pidProfile->deltaMethod = DELTA_FROM_MEASUREMENT;
pidProfile->dynamic_pid = 1; pidProfile->dynamic_pid = 1;
#ifdef GTUNE #ifdef GTUNE
@ -397,7 +399,7 @@ uint8_t getCurrentControlRateProfile(void)
static void setControlRateProfile(uint8_t profileIndex) static void setControlRateProfile(uint8_t profileIndex)
{ {
currentControlRateProfileIndex = profileIndex; currentControlRateProfileIndex = profileIndex;
masterConfig.profile[getCurrentProfile()].activeRateProfile = profileIndex; masterConfig.profile[getCurrentProfile()].activeRateProfile = profileIndex;
currentControlRateProfile = &masterConfig.profile[getCurrentProfile()].controlRateProfile[profileIndex]; currentControlRateProfile = &masterConfig.profile[getCurrentProfile()].controlRateProfile[profileIndex];
} }
@ -536,10 +538,10 @@ static void resetConf(void)
#ifdef GPS #ifdef GPS
// gps/nav stuff // gps/nav stuff
masterConfig.gpsConfig.provider = GPS_NMEA; masterConfig.gpsConfig.provider = GPS_NMEA;
masterConfig.gpsConfig.sbasMode = SBAS_AUTO; masterConfig.gpsConfig.sbasMode = SBAS_AUTO;
masterConfig.gpsConfig.autoConfig = GPS_AUTOCONFIG_ON; masterConfig.gpsConfig.autoConfig = GPS_AUTOCONFIG_ON;
masterConfig.gpsConfig.autoBaud = GPS_AUTOBAUD_OFF; masterConfig.gpsConfig.autoBaud = GPS_AUTOBAUD_OFF;
#endif #endif
resetSerialConfig(&masterConfig.serialConfig); resetSerialConfig(&masterConfig.serialConfig);
@ -615,14 +617,14 @@ static void resetConf(void)
masterConfig.vtx_mhz = 5740; //F0 masterConfig.vtx_mhz = 5740; //F0
#endif #endif
#ifdef SPRACINGF3
masterConfig.blackbox_device = 1;
#ifdef TRANSPONDER #ifdef TRANSPONDER
static const uint8_t defaultTransponderData[6] = { 0x12, 0x34, 0x56, 0x78, 0x9A, 0xBC }; // Note, this is NOT a valid transponder code, it's just for testing production hardware static const uint8_t defaultTransponderData[6] = { 0x12, 0x34, 0x56, 0x78, 0x9A, 0xBC }; // Note, this is NOT a valid transponder code, it's just for testing production hardware
memcpy(masterConfig.transponderData, &defaultTransponderData, sizeof(defaultTransponderData)); memcpy(masterConfig.transponderData, &defaultTransponderData, sizeof(defaultTransponderData));
#endif #endif
#ifdef BLACKBOX
#if defined(ENABLE_BLACKBOX_LOGGING_ON_SPIFLASH_BY_DEFAULT) #if defined(ENABLE_BLACKBOX_LOGGING_ON_SPIFLASH_BY_DEFAULT)
featureSet(FEATURE_BLACKBOX); featureSet(FEATURE_BLACKBOX);
masterConfig.blackbox_device = BLACKBOX_DEVICE_FLASH; masterConfig.blackbox_device = BLACKBOX_DEVICE_FLASH;
@ -630,13 +632,14 @@ static void resetConf(void)
featureSet(FEATURE_BLACKBOX); featureSet(FEATURE_BLACKBOX);
masterConfig.blackbox_device = BLACKBOX_DEVICE_SDCARD; masterConfig.blackbox_device = BLACKBOX_DEVICE_SDCARD;
#else #else
masterConfig.blackbox_device = 0; masterConfig.blackbox_device = BLACKBOX_DEVICE_SERIAL;
#endif #endif
masterConfig.blackbox_rate_num = 1; masterConfig.blackbox_rate_num = 1;
masterConfig.blackbox_rate_denom = 1; masterConfig.blackbox_rate_denom = 1;
#endif
#endif // BLACKBOX
// alternative defaults settings for COLIBRI RACE targets // alternative defaults settings for COLIBRI RACE targets
#if defined(COLIBRI_RACE) #if defined(COLIBRI_RACE)
masterConfig.escAndServoConfig.minthrottle = 1025; masterConfig.escAndServoConfig.minthrottle = 1025;
@ -651,20 +654,21 @@ static void resetConf(void)
#if defined(ALIENFLIGHT) #if defined(ALIENFLIGHT)
featureClear(FEATURE_ONESHOT125); featureClear(FEATURE_ONESHOT125);
#ifdef ALIENFLIGHTF3 #ifdef ALIENFLIGHTF1
masterConfig.serialConfig.portConfigs[1].functionMask = FUNCTION_RX_SERIAL;
#else
masterConfig.serialConfig.portConfigs[2].functionMask = FUNCTION_RX_SERIAL; masterConfig.serialConfig.portConfigs[2].functionMask = FUNCTION_RX_SERIAL;
#endif
#ifdef ALIENFLIGHTF3
masterConfig.batteryConfig.vbatscale = 20; masterConfig.batteryConfig.vbatscale = 20;
masterConfig.mag_hardware = MAG_NONE; // disabled by default masterConfig.mag_hardware = MAG_NONE; // disabled by default
#else
masterConfig.serialConfig.portConfigs[1].functionMask = FUNCTION_RX_SERIAL;
#endif #endif
masterConfig.rxConfig.serialrx_provider = 1; masterConfig.rxConfig.serialrx_provider = SERIALRX_SPEKTRUM2048;
masterConfig.rxConfig.spektrum_sat_bind = 5; masterConfig.rxConfig.spektrum_sat_bind = 5;
masterConfig.rxConfig.spektrum_sat_bind_autoreset = 1; masterConfig.rxConfig.spektrum_sat_bind_autoreset = 1;
masterConfig.escAndServoConfig.minthrottle = 1000; masterConfig.escAndServoConfig.minthrottle = 1000;
masterConfig.escAndServoConfig.maxthrottle = 2000; masterConfig.escAndServoConfig.maxthrottle = 2000;
masterConfig.motor_pwm_rate = 32000; masterConfig.motor_pwm_rate = 32000;
currentProfile->pidProfile.pidController = 2;
masterConfig.failsafeConfig.failsafe_delay = 2; masterConfig.failsafeConfig.failsafe_delay = 2;
masterConfig.failsafeConfig.failsafe_off_delay = 0; masterConfig.failsafeConfig.failsafe_off_delay = 0;
currentControlRateProfile->rates[FD_PITCH] = 40; currentControlRateProfile->rates[FD_PITCH] = 40;
@ -684,10 +688,6 @@ static void resetConf(void)
#if defined(SINGULARITY) #if defined(SINGULARITY)
// alternative defaults settings for SINGULARITY target // alternative defaults settings for SINGULARITY target
masterConfig.blackbox_device = 1;
masterConfig.blackbox_rate_num = 1;
masterConfig.blackbox_rate_denom = 1;
masterConfig.batteryConfig.vbatscale = 77; masterConfig.batteryConfig.vbatscale = 77;
masterConfig.serialConfig.portConfigs[2].functionMask = FUNCTION_RX_SERIAL; masterConfig.serialConfig.portConfigs[2].functionMask = FUNCTION_RX_SERIAL;
@ -1046,7 +1046,8 @@ void changeProfile(uint8_t profileIndex)
beeperConfirmationBeeps(profileIndex + 1); beeperConfirmationBeeps(profileIndex + 1);
} }
void changeControlRateProfile(uint8_t profileIndex) { void changeControlRateProfile(uint8_t profileIndex)
{
if (profileIndex > MAX_RATEPROFILES) { if (profileIndex > MAX_RATEPROFILES) {
profileIndex = MAX_RATEPROFILES - 1; profileIndex = MAX_RATEPROFILES - 1;
} }
@ -1054,17 +1055,6 @@ void changeControlRateProfile(uint8_t profileIndex) {
activateControlRateConfig(); activateControlRateConfig();
} }
void handleOneshotFeatureChangeOnRestart(void)
{
// Shutdown PWM on all motors prior to soft restart
StopPwmAllMotors();
delay(50);
// Apply additional delay when OneShot125 feature changed from on to off state
if (feature(FEATURE_ONESHOT125) && !featureConfigured(FEATURE_ONESHOT125)) {
delay(ONESHOT_FEATURE_CHANGED_DELAY_ON_BOOT_MS);
}
}
void latchActiveFeatures() void latchActiveFeatures()
{ {
activeFeaturesLatch = masterConfig.enabledFeatures; activeFeaturesLatch = masterConfig.enabledFeatures;

View file

@ -50,7 +50,6 @@ typedef enum {
FEATURE_VTX = 1 << 25, FEATURE_VTX = 1 << 25,
} features_e; } features_e;
void handleOneshotFeatureChangeOnRestart(void);
void latchActiveFeatures(void); void latchActiveFeatures(void);
bool featureConfigured(uint32_t mask); bool featureConfigured(uint32_t mask);
bool feature(uint32_t mask); bool feature(uint32_t mask);

View file

@ -40,7 +40,7 @@ bool bma280Detect(acc_t *acc)
bool ack = false; bool ack = false;
uint8_t sig = 0; uint8_t sig = 0;
ack = i2cRead(MPU_I2C_INSTANCE, BMA280_ADDRESS, 0x00, 1, &sig); ack = i2cRead(MPU_I2C_INSTANCE, BMA280_ADDRESS, 0x00, 1, &sig);
if (!ack || sig != 0xFB) if (!ack || sig != 0xFB)
return false; return false;
@ -51,8 +51,8 @@ bool bma280Detect(acc_t *acc)
static void bma280Init(acc_t *acc) static void bma280Init(acc_t *acc)
{ {
i2cWrite(MPU_I2C_INSTANCE, BMA280_ADDRESS, BMA280_PMU_RANGE, 0x08); // +-8g range i2cWrite(MPU_I2C_INSTANCE, BMA280_ADDRESS, BMA280_PMU_RANGE, 0x08); // +-8g range
i2cWrite(MPU_I2C_INSTANCE, BMA280_ADDRESS, BMA280_PMU_BW, 0x0E); // 500Hz BW i2cWrite(MPU_I2C_INSTANCE, BMA280_ADDRESS, BMA280_PMU_BW, 0x0E); // 500Hz BW
acc->acc_1G = 512 * 8; acc->acc_1G = 512 * 8;
} }
@ -61,7 +61,7 @@ static bool bma280Read(int16_t *accelData)
{ {
uint8_t buf[6]; uint8_t buf[6];
if (!i2cRead(MPU_I2C_INSTANCE, BMA280_ADDRESS, BMA280_ACC_X_LSB, 6, buf)) { if (!i2cRead(MPU_I2C_INSTANCE, BMA280_ADDRESS, BMA280_ACC_X_LSB, 6, buf)) {
return false; return false;
} }

View file

@ -63,7 +63,7 @@ bool l3g4200dDetect(gyro_t *gyro)
delay(25); delay(25);
i2cRead(MPU_I2C_INSTANCE, L3G4200D_ADDRESS, L3G4200D_WHO_AM_I, 1, &deviceid); i2cRead(MPU_I2C_INSTANCE, L3G4200D_ADDRESS, L3G4200D_WHO_AM_I, 1, &deviceid);
if (deviceid != L3G4200D_ID) if (deviceid != L3G4200D_ID)
return false; return false;
@ -100,12 +100,12 @@ static void l3g4200dInit(uint8_t lpf)
delay(100); delay(100);
ack = i2cWrite(MPU_I2C_INSTANCE, L3G4200D_ADDRESS, L3G4200D_CTRL_REG4, L3G4200D_FS_SEL_2000DPS); ack = i2cWrite(MPU_I2C_INSTANCE, L3G4200D_ADDRESS, L3G4200D_CTRL_REG4, L3G4200D_FS_SEL_2000DPS);
if (!ack) if (!ack)
failureMode(FAILURE_ACC_INIT); failureMode(FAILURE_ACC_INIT);
delay(5); delay(5);
i2cWrite(MPU_I2C_INSTANCE, L3G4200D_ADDRESS, L3G4200D_CTRL_REG1, L3G4200D_POWER_ON | mpuLowPassFilter); i2cWrite(MPU_I2C_INSTANCE, L3G4200D_ADDRESS, L3G4200D_CTRL_REG1, L3G4200D_POWER_ON | mpuLowPassFilter);
} }
// Read 3 gyro values into user-provided buffer. No overrun checking is done. // Read 3 gyro values into user-provided buffer. No overrun checking is done.
@ -113,7 +113,7 @@ static bool l3g4200dRead(int16_t *gyroADC)
{ {
uint8_t buf[6]; uint8_t buf[6];
if (!i2cRead(MPU_I2C_INSTANCE, L3G4200D_ADDRESS, L3G4200D_AUTOINCR | L3G4200D_GYRO_OUT, 6, buf)) { if (!i2cRead(MPU_I2C_INSTANCE, L3G4200D_ADDRESS, L3G4200D_AUTOINCR | L3G4200D_GYRO_OUT, 6, buf)) {
return false; return false;
} }

View file

@ -62,7 +62,7 @@
#define BLOCK_DATA_UPDATE_CONTINUOUS ((uint8_t)0x00) #define BLOCK_DATA_UPDATE_CONTINUOUS ((uint8_t)0x00)
#define BLE_MSB ((uint8_t)0x40) #define BLE_MSB ((uint8_t)0x40)
#define BOOT ((uint8_t)0x80) #define BOOT ((uint8_t)0x80)
@ -81,7 +81,7 @@ static void l3gd20SpiInit(SPI_TypeDef *SPIx)
DISABLE_L3GD20; DISABLE_L3GD20;
spiSetDivisor(L3GD20_SPI, SPI_9MHZ_CLOCK_DIVIDER); spiSetDivisor(L3GD20_SPI, SPI_CLOCK_STANDARD);
} }
void l3gd20GyroInit(uint8_t lpf) void l3gd20GyroInit(uint8_t lpf)

View file

@ -115,15 +115,15 @@ int32_t accelSummedSamples500Hz[3];
void lsm303dlhcAccInit(acc_t *acc) void lsm303dlhcAccInit(acc_t *acc)
{ {
i2cWrite(MPU_I2C_INSTANCE, LSM303DLHC_ACCEL_ADDRESS, CTRL_REG5_A, BOOT); i2cWrite(MPU_I2C_INSTANCE, LSM303DLHC_ACCEL_ADDRESS, CTRL_REG5_A, BOOT);
delay(100); delay(100);
i2cWrite(MPU_I2C_INSTANCE, LSM303DLHC_ACCEL_ADDRESS, CTRL_REG1_A, ODR_1344_HZ | AXES_ENABLE); i2cWrite(MPU_I2C_INSTANCE, LSM303DLHC_ACCEL_ADDRESS, CTRL_REG1_A, ODR_1344_HZ | AXES_ENABLE);
delay(10); delay(10);
i2cWrite(MPU_I2C_INSTANCE, LSM303DLHC_ACCEL_ADDRESS, CTRL_REG4_A, FULLSCALE_4G); i2cWrite(MPU_I2C_INSTANCE, LSM303DLHC_ACCEL_ADDRESS, CTRL_REG4_A, FULLSCALE_4G);
delay(100); delay(100);

View file

@ -89,7 +89,7 @@ bool mma8452Detect(acc_t *acc)
bool ack = false; bool ack = false;
uint8_t sig = 0; uint8_t sig = 0;
ack = i2cRead(MPU_I2C_INSTANCE, MMA8452_ADDRESS, MMA8452_WHO_AM_I, 1, &sig); ack = i2cRead(MPU_I2C_INSTANCE, MMA8452_ADDRESS, MMA8452_WHO_AM_I, 1, &sig);
if (!ack || (sig != MMA8452_DEVICE_SIGNATURE && sig != MMA8451_DEVICE_SIGNATURE)) if (!ack || (sig != MMA8452_DEVICE_SIGNATURE && sig != MMA8451_DEVICE_SIGNATURE))
return false; return false;
@ -109,9 +109,9 @@ static inline void mma8451ConfigureInterrupt(void)
IOConfigGPIO(IOGetByTag(IO_TAG(PA5)), IOCFG_IN_FLOATING); // TODO - maybe pullup / pulldown ? IOConfigGPIO(IOGetByTag(IO_TAG(PA5)), IOCFG_IN_FLOATING); // TODO - maybe pullup / pulldown ?
#endif #endif
i2cWrite(MPU_I2C_INSTANCE, MMA8452_ADDRESS, MMA8452_CTRL_REG3, MMA8452_CTRL_REG3_IPOL); // Interrupt polarity (active HIGH) i2cWrite(MPU_I2C_INSTANCE, MMA8452_ADDRESS, MMA8452_CTRL_REG3, MMA8452_CTRL_REG3_IPOL); // Interrupt polarity (active HIGH)
i2cWrite(MPU_I2C_INSTANCE, MMA8452_ADDRESS, MMA8452_CTRL_REG4, MMA8452_CTRL_REG4_INT_EN_DRDY); // Enable DRDY interrupt (unused by this driver) i2cWrite(MPU_I2C_INSTANCE, MMA8452_ADDRESS, MMA8452_CTRL_REG4, MMA8452_CTRL_REG4_INT_EN_DRDY); // Enable DRDY interrupt (unused by this driver)
i2cWrite(MPU_I2C_INSTANCE, MMA8452_ADDRESS, MMA8452_CTRL_REG5, 0); // DRDY routed to INT2 i2cWrite(MPU_I2C_INSTANCE, MMA8452_ADDRESS, MMA8452_CTRL_REG5, 0); // DRDY routed to INT2
} }
static void mma8452Init(acc_t *acc) static void mma8452Init(acc_t *acc)

View file

@ -228,43 +228,43 @@ void mpuIntExtiHandler(extiCallbackRec_t *cb)
void mpuIntExtiInit(void) void mpuIntExtiInit(void)
{ {
static bool mpuExtiInitDone = false; static bool mpuExtiInitDone = false;
if (mpuExtiInitDone || !mpuIntExtiConfig) { if (mpuExtiInitDone || !mpuIntExtiConfig) {
return; return;
} }
#if defined(USE_MPU_DATA_READY_SIGNAL) && defined(USE_EXTI) #if defined(USE_MPU_DATA_READY_SIGNAL) && defined(USE_EXTI)
IO_t mpuIntIO = IOGetByTag(mpuIntExtiConfig->tag); IO_t mpuIntIO = IOGetByTag(mpuIntExtiConfig->tag);
#ifdef ENSURE_MPU_DATA_READY_IS_LOW #ifdef ENSURE_MPU_DATA_READY_IS_LOW
uint8_t status = IORead(mpuIntIO); uint8_t status = IORead(mpuIntIO);
if (status) { if (status) {
return; return;
} }
#endif #endif
IOInit(mpuIntIO, OWNER_SYSTEM, RESOURCE_INPUT | RESOURCE_EXTI); IOInit(mpuIntIO, OWNER_SYSTEM, RESOURCE_INPUT | RESOURCE_EXTI);
IOConfigGPIO(mpuIntIO, IOCFG_IN_FLOATING); // TODO - maybe pullup / pulldown ? IOConfigGPIO(mpuIntIO, IOCFG_IN_FLOATING); // TODO - maybe pullup / pulldown ?
EXTIHandlerInit(&mpuIntCallbackRec, mpuIntExtiHandler); EXTIHandlerInit(&mpuIntCallbackRec, mpuIntExtiHandler);
EXTIConfig(mpuIntIO, &mpuIntCallbackRec, NVIC_PRIO_MPU_INT_EXTI, EXTI_Trigger_Rising); EXTIConfig(mpuIntIO, &mpuIntCallbackRec, NVIC_PRIO_MPU_INT_EXTI, EXTI_Trigger_Rising);
EXTIEnable(mpuIntIO, true); EXTIEnable(mpuIntIO, true);
#endif #endif
mpuExtiInitDone = true; mpuExtiInitDone = true;
} }
static bool mpuReadRegisterI2C(uint8_t reg, uint8_t length, uint8_t* data) static bool mpuReadRegisterI2C(uint8_t reg, uint8_t length, uint8_t* data)
{ {
bool ack = i2cRead(MPU_I2C_INSTANCE, MPU_ADDRESS, reg, length, data); bool ack = i2cRead(MPU_I2C_INSTANCE, MPU_ADDRESS, reg, length, data);
return ack; return ack;
} }
static bool mpuWriteRegisterI2C(uint8_t reg, uint8_t data) static bool mpuWriteRegisterI2C(uint8_t reg, uint8_t data)
{ {
bool ack = i2cWrite(MPU_I2C_INSTANCE, MPU_ADDRESS, reg, data); bool ack = i2cWrite(MPU_I2C_INSTANCE, MPU_ADDRESS, reg, data);
return ack; return ack;
} }

View file

@ -120,12 +120,12 @@ typedef bool (*mpuWriteRegisterFunc)(uint8_t reg, uint8_t data);
typedef void(*mpuResetFuncPtr)(void); typedef void(*mpuResetFuncPtr)(void);
typedef struct mpuConfiguration_s { typedef struct mpuConfiguration_s {
uint8_t gyroReadXRegister; // Y and Z must registers follow this, 2 words each uint8_t gyroReadXRegister; // Y and Z must registers follow this, 2 words each
mpuReadRegisterFunc read; mpuReadRegisterFunc read;
mpuWriteRegisterFunc write; mpuWriteRegisterFunc write;
mpuReadRegisterFunc slowread; mpuReadRegisterFunc slowread;
mpuWriteRegisterFunc verifywrite; mpuWriteRegisterFunc verifywrite;
mpuResetFuncPtr reset; mpuResetFuncPtr reset;
} mpuConfiguration_t; } mpuConfiguration_t;
extern mpuConfiguration_t mpuConfiguration; extern mpuConfiguration_t mpuConfiguration;

View file

@ -49,12 +49,12 @@ static bool mpuSpi6000InitDone = false;
// Bits // Bits
#define BIT_SLEEP 0x40 #define BIT_SLEEP 0x40
#define BIT_H_RESET 0x80 #define BIT_H_RESET 0x80
#define BITS_CLKSEL 0x07 #define BITS_CLKSEL 0x07
#define MPU_CLK_SEL_PLLGYROX 0x01 #define MPU_CLK_SEL_PLLGYROX 0x01
#define MPU_CLK_SEL_PLLGYROZ 0x03 #define MPU_CLK_SEL_PLLGYROZ 0x03
#define MPU_EXT_SYNC_GYROX 0x02 #define MPU_EXT_SYNC_GYROX 0x02
#define BITS_FS_250DPS 0x00 #define BITS_FS_250DPS 0x00
#define BITS_FS_500DPS 0x08 #define BITS_FS_500DPS 0x08
#define BITS_FS_1000DPS 0x10 #define BITS_FS_1000DPS 0x10
@ -74,9 +74,9 @@ static bool mpuSpi6000InitDone = false;
#define BITS_DLPF_CFG_2100HZ_NOLPF 0x07 #define BITS_DLPF_CFG_2100HZ_NOLPF 0x07
#define BITS_DLPF_CFG_MASK 0x07 #define BITS_DLPF_CFG_MASK 0x07
#define BIT_INT_ANYRD_2CLEAR 0x10 #define BIT_INT_ANYRD_2CLEAR 0x10
#define BIT_RAW_RDY_EN 0x01 #define BIT_RAW_RDY_EN 0x01
#define BIT_I2C_IF_DIS 0x10 #define BIT_I2C_IF_DIS 0x10
#define BIT_INT_STATUS_DATA 0x01 #define BIT_INT_STATUS_DATA 0x01
#define BIT_GYRO 3 #define BIT_GYRO 3
#define BIT_ACC 2 #define BIT_ACC 2
#define BIT_TEMP 1 #define BIT_TEMP 1
@ -128,13 +128,13 @@ void mpu6000SpiGyroInit(uint8_t lpf)
mpu6000AccAndGyroInit(); mpu6000AccAndGyroInit();
spiSetDivisor(MPU6000_SPI_INSTANCE, SPI_0_5625MHZ_CLOCK_DIVIDER); spiSetDivisor(MPU6000_SPI_INSTANCE, SPI_CLOCK_INITIALIZATON);
// Accel and Gyro DLPF Setting // Accel and Gyro DLPF Setting
mpu6000WriteRegister(MPU6000_CONFIG, lpf); mpu6000WriteRegister(MPU6000_CONFIG, lpf);
delayMicroseconds(1); delayMicroseconds(1);
spiSetDivisor(MPU6000_SPI_INSTANCE, SPI_18MHZ_CLOCK_DIVIDER); // 18 MHz SPI clock spiSetDivisor(MPU6000_SPI_INSTANCE, SPI_CLOCK_FAST); // 18 MHz SPI clock
int16_t data[3]; int16_t data[3];
mpuGyroRead(data); mpuGyroRead(data);
@ -162,7 +162,7 @@ bool mpu6000SpiDetect(void)
IOInit(mpuSpi6000CsPin, OWNER_SYSTEM, RESOURCE_SPI); IOInit(mpuSpi6000CsPin, OWNER_SYSTEM, RESOURCE_SPI);
IOConfigGPIO(mpuSpi6000CsPin, SPI_IO_CS_CFG); IOConfigGPIO(mpuSpi6000CsPin, SPI_IO_CS_CFG);
spiSetDivisor(MPU6000_SPI_INSTANCE, SPI_0_5625MHZ_CLOCK_DIVIDER); spiSetDivisor(MPU6000_SPI_INSTANCE, SPI_CLOCK_INITIALIZATON);
mpu6000WriteRegister(MPU_RA_PWR_MGMT_1, BIT_H_RESET); mpu6000WriteRegister(MPU_RA_PWR_MGMT_1, BIT_H_RESET);
@ -209,7 +209,7 @@ static void mpu6000AccAndGyroInit(void) {
return; return;
} }
spiSetDivisor(MPU6000_SPI_INSTANCE, SPI_0_5625MHZ_CLOCK_DIVIDER); spiSetDivisor(MPU6000_SPI_INSTANCE, SPI_CLOCK_INITIALIZATON);
// Device Reset // Device Reset
mpu6000WriteRegister(MPU_RA_PWR_MGMT_1, BIT_H_RESET); mpu6000WriteRegister(MPU_RA_PWR_MGMT_1, BIT_H_RESET);
@ -251,7 +251,7 @@ static void mpu6000AccAndGyroInit(void) {
delayMicroseconds(15); delayMicroseconds(15);
#endif #endif
spiSetDivisor(MPU6000_SPI_INSTANCE, SPI_18MHZ_CLOCK_DIVIDER); // 18 MHz SPI clock spiSetDivisor(MPU6000_SPI_INSTANCE, SPI_CLOCK_FAST);
delayMicroseconds(1); delayMicroseconds(1);
mpuSpi6000InitDone = true; mpuSpi6000InitDone = true;

View file

@ -1,7 +1,7 @@
#pragma once #pragma once
#define MPU6000_CONFIG 0x1A #define MPU6000_CONFIG 0x1A
#define BITS_DLPF_CFG_256HZ 0x00 #define BITS_DLPF_CFG_256HZ 0x00
#define BITS_DLPF_CFG_188HZ 0x01 #define BITS_DLPF_CFG_188HZ 0x01

View file

@ -72,11 +72,7 @@ static void mpu6500SpiInit(void)
IOInit(mpuSpi6500CsPin, OWNER_SYSTEM, RESOURCE_SPI); IOInit(mpuSpi6500CsPin, OWNER_SYSTEM, RESOURCE_SPI);
IOConfigGPIO(mpuSpi6500CsPin, SPI_IO_CS_CFG); IOConfigGPIO(mpuSpi6500CsPin, SPI_IO_CS_CFG);
#if defined(STM32F4) spiSetDivisor(MPU6500_SPI_INSTANCE, SPI_CLOCK_FAST);
spiSetDivisor(MPU6500_SPI_INSTANCE, SPI_SLOW_CLOCK);
#else
spiSetDivisor(MPU6500_SPI_INSTANCE, SPI_STANDARD_CLOCK);
#endif
hardwareInitialised = true; hardwareInitialised = true;
} }

View file

@ -55,7 +55,8 @@ static IO_t mpuSpi9250CsPin = IO_NONE;
#define DISABLE_MPU9250 IOHi(mpuSpi9250CsPin) #define DISABLE_MPU9250 IOHi(mpuSpi9250CsPin)
#define ENABLE_MPU9250 IOLo(mpuSpi9250CsPin) #define ENABLE_MPU9250 IOLo(mpuSpi9250CsPin)
void mpu9250ResetGyro(void) { void mpu9250ResetGyro(void)
{
// Device Reset // Device Reset
mpu9250WriteRegister(MPU_RA_PWR_MGMT_1, MPU9250_BIT_RESET); mpu9250WriteRegister(MPU_RA_PWR_MGMT_1, MPU9250_BIT_RESET);
delay(150); delay(150);
@ -63,7 +64,7 @@ void mpu9250ResetGyro(void) {
bool mpu9250WriteRegister(uint8_t reg, uint8_t data) bool mpu9250WriteRegister(uint8_t reg, uint8_t data)
{ {
ENABLE_MPU9250; ENABLE_MPU9250;
delayMicroseconds(1); delayMicroseconds(1);
spiTransferByte(MPU9250_SPI_INSTANCE, reg); spiTransferByte(MPU9250_SPI_INSTANCE, reg);
spiTransferByte(MPU9250_SPI_INSTANCE, data); spiTransferByte(MPU9250_SPI_INSTANCE, data);
@ -75,7 +76,7 @@ bool mpu9250WriteRegister(uint8_t reg, uint8_t data)
bool mpu9250ReadRegister(uint8_t reg, uint8_t length, uint8_t *data) bool mpu9250ReadRegister(uint8_t reg, uint8_t length, uint8_t *data)
{ {
ENABLE_MPU9250; ENABLE_MPU9250;
spiTransferByte(MPU9250_SPI_INSTANCE, reg | 0x80); // read transaction spiTransferByte(MPU9250_SPI_INSTANCE, reg | 0x80); // read transaction
spiTransfer(MPU9250_SPI_INSTANCE, data, NULL, length); spiTransfer(MPU9250_SPI_INSTANCE, data, NULL, length);
DISABLE_MPU9250; DISABLE_MPU9250;
@ -85,7 +86,7 @@ bool mpu9250ReadRegister(uint8_t reg, uint8_t length, uint8_t *data)
bool mpu9250SlowReadRegister(uint8_t reg, uint8_t length, uint8_t *data) bool mpu9250SlowReadRegister(uint8_t reg, uint8_t length, uint8_t *data)
{ {
ENABLE_MPU9250; ENABLE_MPU9250;
delayMicroseconds(1); delayMicroseconds(1);
spiTransferByte(MPU9250_SPI_INSTANCE, reg | 0x80); // read transaction spiTransferByte(MPU9250_SPI_INSTANCE, reg | 0x80); // read transaction
spiTransfer(MPU9250_SPI_INSTANCE, data, NULL, length); spiTransfer(MPU9250_SPI_INSTANCE, data, NULL, length);
@ -97,7 +98,7 @@ bool mpu9250SlowReadRegister(uint8_t reg, uint8_t length, uint8_t *data)
void mpu9250SpiGyroInit(uint8_t lpf) void mpu9250SpiGyroInit(uint8_t lpf)
{ {
(void)(lpf); (void)(lpf);
mpuIntExtiInit(); mpuIntExtiInit();
@ -105,7 +106,7 @@ void mpu9250SpiGyroInit(uint8_t lpf)
spiResetErrorCounter(MPU9250_SPI_INSTANCE); spiResetErrorCounter(MPU9250_SPI_INSTANCE);
spiSetDivisor(MPU9250_SPI_INSTANCE, 5); //high speed now that we don't need to write to the slow registers spiSetDivisor(MPU9250_SPI_INSTANCE, SPI_CLOCK_FAST); //high speed now that we don't need to write to the slow registers
int16_t data[3]; int16_t data[3];
mpuGyroRead(data); mpuGyroRead(data);
@ -123,60 +124,61 @@ void mpu9250SpiAccInit(acc_t *acc)
acc->acc_1G = 512 * 8; acc->acc_1G = 512 * 8;
} }
bool verifympu9250WriteRegister(uint8_t reg, uint8_t data)
{
uint8_t in;
uint8_t attemptsRemaining = 20;
bool verifympu9250WriteRegister(uint8_t reg, uint8_t data) { mpu9250WriteRegister(reg, data);
delayMicroseconds(100);
uint8_t in;
uint8_t attemptsRemaining = 20;
mpu9250WriteRegister(reg, data);
delayMicroseconds(100);
do { do {
mpu9250SlowReadRegister(reg, 1, &in); mpu9250SlowReadRegister(reg, 1, &in);
if (in == data) { if (in == data) {
return true; return true;
} else { } else {
debug[3]++; debug[3]++;
mpu9250WriteRegister(reg, data); mpu9250WriteRegister(reg, data);
delayMicroseconds(100); delayMicroseconds(100);
} }
} while (attemptsRemaining--); } while (attemptsRemaining--);
return false; return false;
} }
static void mpu9250AccAndGyroInit(uint8_t lpf) { static void mpu9250AccAndGyroInit(uint8_t lpf) {
if (mpuSpi9250InitDone) { if (mpuSpi9250InitDone) {
return; return;
}
spiSetDivisor(MPU9250_SPI_INSTANCE, SPI_SLOW_CLOCK); //low speed for writing to slow registers
mpu9250WriteRegister(MPU_RA_PWR_MGMT_1, MPU9250_BIT_RESET);
delay(50);
verifympu9250WriteRegister(MPU_RA_PWR_MGMT_1, INV_CLK_PLL);
verifympu9250WriteRegister(MPU_RA_GYRO_CONFIG, INV_FSR_2000DPS << 3 | FCB_DISABLED); //Fchoice_b defaults to 00 which makes fchoice 11
if (lpf == 4) {
verifympu9250WriteRegister(MPU_RA_CONFIG, 1); //1KHz, 184DLPF
} else if (lpf < 4) {
verifympu9250WriteRegister(MPU_RA_CONFIG, 7); //8KHz, 3600DLPF
} else if (lpf > 4) {
verifympu9250WriteRegister(MPU_RA_CONFIG, 0); //8KHz, 250DLPF
} }
verifympu9250WriteRegister(MPU_RA_SMPLRT_DIV, gyroMPU6xxxGetDividerDrops()); // Get Divider Drops spiSetDivisor(MPU9250_SPI_INSTANCE, SPI_CLOCK_INITIALIZATON); //low speed for writing to slow registers
verifympu9250WriteRegister(MPU_RA_ACCEL_CONFIG, INV_FSR_8G << 3); mpu9250WriteRegister(MPU_RA_PWR_MGMT_1, MPU9250_BIT_RESET);
verifympu9250WriteRegister(MPU_RA_INT_PIN_CFG, 0 << 7 | 0 << 6 | 0 << 5 | 1 << 4 | 0 << 3 | 0 << 2 | 1 << 1 | 0 << 0); // INT_ANYRD_2CLEAR, BYPASS_EN delay(50);
verifympu9250WriteRegister(MPU_RA_PWR_MGMT_1, INV_CLK_PLL);
verifympu9250WriteRegister(MPU_RA_GYRO_CONFIG, INV_FSR_2000DPS << 3 | FCB_DISABLED); //Fchoice_b defaults to 00 which makes fchoice 11
if (lpf == 4) {
verifympu9250WriteRegister(MPU_RA_CONFIG, 1); //1KHz, 184DLPF
} else if (lpf < 4) {
verifympu9250WriteRegister(MPU_RA_CONFIG, 7); //8KHz, 3600DLPF
} else if (lpf > 4) {
verifympu9250WriteRegister(MPU_RA_CONFIG, 0); //8KHz, 250DLPF
}
verifympu9250WriteRegister(MPU_RA_SMPLRT_DIV, gyroMPU6xxxGetDividerDrops()); // Get Divider Drops
verifympu9250WriteRegister(MPU_RA_ACCEL_CONFIG, INV_FSR_8G << 3);
verifympu9250WriteRegister(MPU_RA_INT_PIN_CFG, 0 << 7 | 0 << 6 | 0 << 5 | 1 << 4 | 0 << 3 | 0 << 2 | 1 << 1 | 0 << 0); // INT_ANYRD_2CLEAR, BYPASS_EN
#if defined(USE_MPU_DATA_READY_SIGNAL) #if defined(USE_MPU_DATA_READY_SIGNAL)
verifympu9250WriteRegister(MPU_RA_INT_ENABLE, 0x01); //this resets register MPU_RA_PWR_MGMT_1 and won't read back correctly. verifympu9250WriteRegister(MPU_RA_INT_ENABLE, 0x01); //this resets register MPU_RA_PWR_MGMT_1 and won't read back correctly.
#endif #endif
spiSetDivisor(MPU9250_SPI_INSTANCE, SPI_CLOCK_FAST);
mpuSpi9250InitDone = true; //init done mpuSpi9250InitDone = true; //init done
} }
@ -189,10 +191,10 @@ bool mpu9250SpiDetect(void)
#ifdef MPU9250_CS_PIN #ifdef MPU9250_CS_PIN
mpuSpi9250CsPin = IOGetByTag(IO_TAG(MPU9250_CS_PIN)); mpuSpi9250CsPin = IOGetByTag(IO_TAG(MPU9250_CS_PIN));
#endif #endif
IOInit(mpuSpi9250CsPin, OWNER_SYSTEM, RESOURCE_SPI); IOInit(mpuSpi9250CsPin, OWNER_SYSTEM, RESOURCE_SPI);
IOConfigGPIO(mpuSpi9250CsPin, SPI_IO_CS_CFG); IOConfigGPIO(mpuSpi9250CsPin, SPI_IO_CS_CFG);
spiSetDivisor(MPU9250_SPI_INSTANCE, SPI_SLOW_CLOCK); //low speed spiSetDivisor(MPU9250_SPI_INSTANCE, SPI_CLOCK_INITIALIZATON); //low speed
mpu9250WriteRegister(MPU_RA_PWR_MGMT_1, MPU9250_BIT_RESET); mpu9250WriteRegister(MPU_RA_PWR_MGMT_1, MPU9250_BIT_RESET);
do { do {
@ -207,6 +209,8 @@ bool mpu9250SpiDetect(void)
} }
} while (attemptsRemaining--); } while (attemptsRemaining--);
spiSetDivisor(MPU9250_SPI_INSTANCE, SPI_CLOCK_FAST);
return true; return true;
} }

View file

@ -1,7 +1,7 @@
#pragma once #pragma once
#define mpu9250_CONFIG 0x1A #define mpu9250_CONFIG 0x1A
/* We should probably use these. :) /* We should probably use these. :)
#define BITS_DLPF_CFG_256HZ 0x00 #define BITS_DLPF_CFG_256HZ 0x00

View file

@ -33,6 +33,14 @@
adc_config_t adcConfig[ADC_CHANNEL_COUNT]; adc_config_t adcConfig[ADC_CHANNEL_COUNT];
volatile uint16_t adcValues[ADC_CHANNEL_COUNT]; volatile uint16_t adcValues[ADC_CHANNEL_COUNT];
uint8_t adcChannelByTag(ioTag_t ioTag)
{
for (uint8_t i = 0; i < ARRAYLEN(adcTagMap); i++) {
if (ioTag == adcTagMap[i].tag)
return adcTagMap[i].channel;
}
return 0;
}
uint16_t adcGetChannel(uint8_t channel) uint16_t adcGetChannel(uint8_t channel)
{ {

View file

@ -17,5 +17,52 @@
#pragma once #pragma once
#include "io.h"
#include "rcc.h"
#if defined(STM32F4)
#define ADC_TAG_MAP_COUNT 16
#elif defined(STM32F3)
#define ADC_TAG_MAP_COUNT 39
#else
#define ADC_TAG_MAP_COUNT 10
#endif
typedef enum ADCDevice {
ADCINVALID = -1,
ADCDEV_1 = 0,
#if defined(STM32F3)
ADCDEV_2,
ADCDEV_MAX = ADCDEV_2,
#elif defined(STM32F4)
ADCDEV_2,
ADCDEV_3,
ADCDEV_MAX = ADCDEV_3,
#else
ADCDEV_MAX = ADCDEV_1,
#endif
} ADCDevice;
typedef struct adcTagMap_s {
ioTag_t tag;
uint8_t channel;
} adcTagMap_t;
typedef struct adcDevice_s {
ADC_TypeDef* ADCx;
rccPeriphTag_t rccADC;
rccPeriphTag_t rccDMA;
#if defined(STM32F4)
DMA_Stream_TypeDef* DMAy_Streamx;
uint32_t channel;
#else
DMA_Channel_TypeDef* DMAy_Channelx;
#endif
} adcDevice_t;
extern const adcDevice_t adcHardware[];
extern const adcTagMap_t adcTagMap[ADC_TAG_MAP_COUNT];
extern adc_config_t adcConfig[ADC_CHANNEL_COUNT]; extern adc_config_t adcConfig[ADC_CHANNEL_COUNT];
extern volatile uint16_t adcValues[ADC_CHANNEL_COUNT]; extern volatile uint16_t adcValues[ADC_CHANNEL_COUNT];
uint8_t adcChannelByTag(ioTag_t ioTag);

View file

@ -29,17 +29,44 @@
#include "sensor.h" #include "sensor.h"
#include "accgyro.h" #include "accgyro.h"
#include "adc.h" #include "adc.h"
#include "adc_impl.h" #include "adc_impl.h"
#include "io.h"
#include "rcc.h"
#ifndef ADC_INSTANCE #ifndef ADC_INSTANCE
#define ADC_INSTANCE ADC1 #define ADC_INSTANCE ADC1
#define ADC_ABP2_PERIPHERAL RCC_APB2Periph_ADC1
#define ADC_AHB_PERIPHERAL RCC_AHBPeriph_DMA1
#define ADC_DMA_CHANNEL DMA1_Channel1
#endif #endif
const adcDevice_t adcHardware[] = {
{ .ADCx = ADC1, .rccADC = RCC_APB2(ADC1), .rccDMA = RCC_AHB(DMA1), .DMAy_Channelx = DMA1_Channel1 }
};
ADCDevice adcDeviceByInstance(ADC_TypeDef *instance)
{
if (instance == ADC1)
return ADCDEV_1;
/* TODO -- ADC2 available on large 10x devices.
if (instance == ADC2)
return ADCDEV_2;
*/
return ADCINVALID;
}
const adcTagMap_t adcTagMap[] = {
{ DEFIO_TAG_E__PA0, ADC_Channel_0 }, // ADC12
{ DEFIO_TAG_E__PA1, ADC_Channel_1 }, // ADC12
{ DEFIO_TAG_E__PA2, ADC_Channel_2 }, // ADC12
{ DEFIO_TAG_E__PA3, ADC_Channel_3 }, // ADC12
{ DEFIO_TAG_E__PA4, ADC_Channel_4 }, // ADC12
{ DEFIO_TAG_E__PA5, ADC_Channel_5 }, // ADC12
{ DEFIO_TAG_E__PA6, ADC_Channel_6 }, // ADC12
{ DEFIO_TAG_E__PA7, ADC_Channel_7 }, // ADC12
{ DEFIO_TAG_E__PB0, ADC_Channel_8 }, // ADC12
{ DEFIO_TAG_E__PB1, ADC_Channel_9 }, // ADC12
};
// Driver for STM32F103CB onboard ADC // Driver for STM32F103CB onboard ADC
// //
// Naze32 // Naze32
@ -50,77 +77,78 @@
// NAZE rev.5 hardware has PA5 (ADC1_IN5) on breakout pad on bottom of board // NAZE rev.5 hardware has PA5 (ADC1_IN5) on breakout pad on bottom of board
// //
void adcInit(drv_adc_config_t *init) void adcInit(drv_adc_config_t *init)
{ {
#if defined(CJMCU) || defined(CC3D)
#if !defined(VBAT_ADC_PIN) && !defined(EXTERNAL1_ADC_PIN) && !defined(RSSI_ADC_PIN) && !defined(CURRENT_METER_ADC_PIN)
UNUSED(init); UNUSED(init);
#endif #endif
uint8_t i; uint8_t i;
uint8_t configuredAdcChannels = 0; uint8_t configuredAdcChannels = 0;
memset(&adcConfig, 0, sizeof(adcConfig)); memset(&adcConfig, 0, sizeof(adcConfig));
GPIO_InitTypeDef GPIO_InitStructure; #ifdef VBAT_ADC_PIN
GPIO_StructInit(&GPIO_InitStructure);
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
#ifdef VBAT_ADC_GPIO
if (init->enableVBat) { if (init->enableVBat) {
GPIO_InitStructure.GPIO_Pin = VBAT_ADC_GPIO_PIN; IOInit(IOGetByTag(IO_TAG(VBAT_ADC_PIN)), OWNER_SYSTEM, RESOURCE_ADC);
GPIO_Init(VBAT_ADC_GPIO, &GPIO_InitStructure); IOConfigGPIO(IOGetByTag(IO_TAG(VBAT_ADC_PIN)), IO_CONFIG(GPIO_Mode_AIN, 0));
adcConfig[ADC_BATTERY].adcChannel = VBAT_ADC_CHANNEL; adcConfig[ADC_BATTERY].adcChannel = adcChannelByTag(IO_TAG(VBAT_ADC_PIN));
adcConfig[ADC_BATTERY].dmaIndex = configuredAdcChannels++; adcConfig[ADC_BATTERY].dmaIndex = configuredAdcChannels++;
adcConfig[ADC_BATTERY].enabled = true; adcConfig[ADC_BATTERY].enabled = true;
adcConfig[ADC_BATTERY].sampleTime = ADC_SampleTime_239Cycles5; adcConfig[ADC_BATTERY].sampleTime = ADC_SampleTime_239Cycles5;
} }
#endif #endif
#ifdef RSSI_ADC_GPIO #ifdef RSSI_ADC_PIN
if (init->enableRSSI) { if (init->enableRSSI) {
GPIO_InitStructure.GPIO_Pin = RSSI_ADC_GPIO_PIN; IOInit(IOGetByTag(IO_TAG(RSSI_ADC_PIN)), OWNER_SYSTEM, RESOURCE_ADC);
GPIO_Init(RSSI_ADC_GPIO, &GPIO_InitStructure); IOConfigGPIO(IOGetByTag(IO_TAG(RSSI_ADC_PIN)), IO_CONFIG(GPIO_Mode_AIN, 0));
adcConfig[ADC_RSSI].adcChannel = RSSI_ADC_CHANNEL; adcConfig[ADC_RSSI].adcChannel = adcChannelByTag(IO_TAG(RSSI_ADC_PIN));
adcConfig[ADC_RSSI].dmaIndex = configuredAdcChannels++; adcConfig[ADC_RSSI].dmaIndex = configuredAdcChannels++;
adcConfig[ADC_RSSI].enabled = true; adcConfig[ADC_RSSI].enabled = true;
adcConfig[ADC_RSSI].sampleTime = ADC_SampleTime_239Cycles5; adcConfig[ADC_RSSI].sampleTime = ADC_SampleTime_239Cycles5;
} }
#endif #endif
#ifdef EXTERNAL1_ADC_GPIO #ifdef EXTERNAL1_ADC_PIN
if (init->enableExternal1) { if (init->enableExternal1) {
GPIO_InitStructure.GPIO_Pin = EXTERNAL1_ADC_GPIO_PIN; IOInit(IOGetByTag(IO_TAG(EXTERNAL1_ADC_PIN)), OWNER_SYSTEM, RESOURCE_ADC);
GPIO_Init(EXTERNAL1_ADC_GPIO, &GPIO_InitStructure); IOConfigGPIO(IOGetByTag(IO_TAG(EXTERNAL1_ADC_PIN)), IO_CONFIG(GPIO_Mode_AIN, 0));
adcConfig[ADC_EXTERNAL1].adcChannel = EXTERNAL1_ADC_CHANNEL; adcConfig[ADC_EXTERNAL1].adcChannel = adcChannelByTag(IO_TAG(EXTERNAL1_ADC_PIN));
adcConfig[ADC_EXTERNAL1].dmaIndex = configuredAdcChannels++; adcConfig[ADC_EXTERNAL1].dmaIndex = configuredAdcChannels++;
adcConfig[ADC_EXTERNAL1].enabled = true; adcConfig[ADC_EXTERNAL1].enabled = true;
adcConfig[ADC_EXTERNAL1].sampleTime = ADC_SampleTime_239Cycles5; adcConfig[ADC_EXTERNAL1].sampleTime = ADC_SampleTime_239Cycles5;
} }
#endif #endif
#ifdef CURRENT_METER_ADC_GPIO #ifdef CURRENT_METER_ADC_PIN
if (init->enableCurrentMeter) { if (init->enableCurrentMeter) {
GPIO_InitStructure.GPIO_Pin = CURRENT_METER_ADC_GPIO_PIN; IOInit(IOGetByTag(IO_TAG(CURRENT_METER_ADC_PIN)), OWNER_SYSTEM, RESOURCE_ADC);
GPIO_Init(CURRENT_METER_ADC_GPIO, &GPIO_InitStructure); IOConfigGPIO(IOGetByTag(IO_TAG(CURRENT_METER_ADC_PIN)), IO_CONFIG(GPIO_Mode_AIN, 0));
adcConfig[ADC_CURRENT].adcChannel = CURRENT_METER_ADC_CHANNEL; adcConfig[ADC_CURRENT].adcChannel = adcChannelByTag(IO_TAG(CURRENT_METER_ADC_PIN));
adcConfig[ADC_CURRENT].dmaIndex = configuredAdcChannels++; adcConfig[ADC_CURRENT].dmaIndex = configuredAdcChannels++;
adcConfig[ADC_CURRENT].enabled = true; adcConfig[ADC_CURRENT].enabled = true;
adcConfig[ADC_CURRENT].sampleTime = ADC_SampleTime_239Cycles5; adcConfig[ADC_CURRENT].sampleTime = ADC_SampleTime_239Cycles5;
} }
#endif #endif
ADCDevice device = adcDeviceByInstance(ADC_INSTANCE);
if (device == ADCINVALID)
return;
adcDevice_t adc = adcHardware[device];
RCC_ADCCLKConfig(RCC_PCLK2_Div8); // 9MHz from 72MHz APB2 clock(HSE), 8MHz from 64MHz (HSI) RCC_ADCCLKConfig(RCC_PCLK2_Div8); // 9MHz from 72MHz APB2 clock(HSE), 8MHz from 64MHz (HSI)
RCC_AHBPeriphClockCmd(ADC_AHB_PERIPHERAL, ENABLE); RCC_ClockCmd(adc.rccADC, ENABLE);
RCC_APB2PeriphClockCmd(ADC_ABP2_PERIPHERAL, ENABLE); RCC_ClockCmd(adc.rccDMA, ENABLE);
// FIXME ADC driver assumes all the GPIO was already placed in 'AIN' mode // FIXME ADC driver assumes all the GPIO was already placed in 'AIN' mode
DMA_DeInit(ADC_DMA_CHANNEL); DMA_DeInit(adc.DMAy_Channelx);
DMA_InitTypeDef DMA_InitStructure; DMA_InitTypeDef DMA_InitStructure;
DMA_StructInit(&DMA_InitStructure); DMA_StructInit(&DMA_InitStructure);
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&ADC_INSTANCE->DR; DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&adc.ADCx->DR;
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)adcValues; DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)adcValues;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
DMA_InitStructure.DMA_BufferSize = configuredAdcChannels; DMA_InitStructure.DMA_BufferSize = configuredAdcChannels;
@ -131,8 +159,8 @@ void adcInit(drv_adc_config_t *init)
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High; DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(ADC_DMA_CHANNEL, &DMA_InitStructure); DMA_Init(adc.DMAy_Channelx, &DMA_InitStructure);
DMA_Cmd(ADC_DMA_CHANNEL, ENABLE); DMA_Cmd(adc.DMAy_Channelx, ENABLE);
ADC_InitTypeDef ADC_InitStructure; ADC_InitTypeDef ADC_InitStructure;
ADC_StructInit(&ADC_InitStructure); ADC_StructInit(&ADC_InitStructure);
@ -142,23 +170,23 @@ void adcInit(drv_adc_config_t *init)
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfChannel = configuredAdcChannels; ADC_InitStructure.ADC_NbrOfChannel = configuredAdcChannels;
ADC_Init(ADC_INSTANCE, &ADC_InitStructure); ADC_Init(adc.ADCx, &ADC_InitStructure);
uint8_t rank = 1; uint8_t rank = 1;
for (i = 0; i < ADC_CHANNEL_COUNT; i++) { for (i = 0; i < ADC_CHANNEL_COUNT; i++) {
if (!adcConfig[i].enabled) { if (!adcConfig[i].enabled) {
continue; continue;
} }
ADC_RegularChannelConfig(ADC_INSTANCE, adcConfig[i].adcChannel, rank++, adcConfig[i].sampleTime); ADC_RegularChannelConfig(adc.ADCx, adcConfig[i].adcChannel, rank++, adcConfig[i].sampleTime);
} }
ADC_DMACmd(ADC_INSTANCE, ENABLE); ADC_DMACmd(adc.ADCx, ENABLE);
ADC_Cmd(ADC_INSTANCE, ENABLE); ADC_Cmd(adc.ADCx, ENABLE);
ADC_ResetCalibration(ADC_INSTANCE); ADC_ResetCalibration(adc.ADCx);
while(ADC_GetResetCalibrationStatus(ADC_INSTANCE)); while (ADC_GetResetCalibrationStatus(adc.ADCx));
ADC_StartCalibration(ADC_INSTANCE); ADC_StartCalibration(adc.ADCx);
while(ADC_GetCalibrationStatus(ADC_INSTANCE)); while (ADC_GetCalibrationStatus(adc.ADCx));
ADC_SoftwareStartConvCmd(ADC_INSTANCE, ENABLE); ADC_SoftwareStartConvCmd(adc.ADCx, ENABLE);
} }

View file

@ -29,35 +29,88 @@
#include "adc.h" #include "adc.h"
#include "adc_impl.h" #include "adc_impl.h"
#include "io.h"
#include "rcc.h"
#ifndef ADC_INSTANCE #ifndef ADC_INSTANCE
#define ADC_INSTANCE ADC1 #define ADC_INSTANCE ADC1
#define ADC_AHB_PERIPHERAL RCC_AHBPeriph_DMA1
#define ADC_DMA_CHANNEL DMA1_Channel1
#endif #endif
const adcDevice_t adcHardware[] = {
{ .ADCx = ADC1, .rccADC = RCC_AHB(ADC12), .rccDMA = RCC_AHB(DMA1), .DMAy_Channelx = DMA1_Channel1 },
{ .ADCx = ADC2, .rccADC = RCC_AHB(ADC12), .rccDMA = RCC_AHB(DMA2), .DMAy_Channelx = DMA2_Channel1 }
};
const adcTagMap_t adcTagMap[] = {
{ DEFIO_TAG_E__PA0, ADC_Channel_1 }, // ADC1
{ DEFIO_TAG_E__PA1, ADC_Channel_2 }, // ADC1
{ DEFIO_TAG_E__PA2, ADC_Channel_3 }, // ADC1
{ DEFIO_TAG_E__PA3, ADC_Channel_4 }, // ADC1
{ DEFIO_TAG_E__PA4, ADC_Channel_1 }, // ADC2
{ DEFIO_TAG_E__PA5, ADC_Channel_2 }, // ADC2
{ DEFIO_TAG_E__PA6, ADC_Channel_3 }, // ADC2
{ DEFIO_TAG_E__PA7, ADC_Channel_4 }, // ADC2
{ DEFIO_TAG_E__PB0, ADC_Channel_12 }, // ADC3
{ DEFIO_TAG_E__PB1, ADC_Channel_1 }, // ADC3
{ DEFIO_TAG_E__PB2, ADC_Channel_12 }, // ADC2
{ DEFIO_TAG_E__PB12, ADC_Channel_3 }, // ADC4
{ DEFIO_TAG_E__PB13, ADC_Channel_5 }, // ADC3
{ DEFIO_TAG_E__PB14, ADC_Channel_4 }, // ADC4
{ DEFIO_TAG_E__PB15, ADC_Channel_5 }, // ADC4
{ DEFIO_TAG_E__PC0, ADC_Channel_6 }, // ADC12
{ DEFIO_TAG_E__PC1, ADC_Channel_7 }, // ADC12
{ DEFIO_TAG_E__PC2, ADC_Channel_8 }, // ADC12
{ DEFIO_TAG_E__PC3, ADC_Channel_9 }, // ADC12
{ DEFIO_TAG_E__PC4, ADC_Channel_5 }, // ADC2
{ DEFIO_TAG_E__PC5, ADC_Channel_11 }, // ADC2
{ DEFIO_TAG_E__PD8, ADC_Channel_12 }, // ADC4
{ DEFIO_TAG_E__PD9, ADC_Channel_13 }, // ADC4
{ DEFIO_TAG_E__PD10, ADC_Channel_7 }, // ADC34
{ DEFIO_TAG_E__PD11, ADC_Channel_8 }, // ADC34
{ DEFIO_TAG_E__PD12, ADC_Channel_9 }, // ADC34
{ DEFIO_TAG_E__PD13, ADC_Channel_10 }, // ADC34
{ DEFIO_TAG_E__PD14, ADC_Channel_11 }, // ADC34
{ DEFIO_TAG_E__PE7, ADC_Channel_13 }, // ADC3
{ DEFIO_TAG_E__PE8, ADC_Channel_6 }, // ADC34
{ DEFIO_TAG_E__PE9, ADC_Channel_2 }, // ADC3
{ DEFIO_TAG_E__PE10, ADC_Channel_14 }, // ADC3
{ DEFIO_TAG_E__PE11, ADC_Channel_15 }, // ADC3
{ DEFIO_TAG_E__PE12, ADC_Channel_16 }, // ADC3
{ DEFIO_TAG_E__PE13, ADC_Channel_3 }, // ADC3
{ DEFIO_TAG_E__PE14, ADC_Channel_1 }, // ADC4
{ DEFIO_TAG_E__PE15, ADC_Channel_2 }, // ADC4
{ DEFIO_TAG_E__PF2, ADC_Channel_10 }, // ADC12
{ DEFIO_TAG_E__PF4, ADC_Channel_5 }, // ADC1
};
ADCDevice adcDeviceByInstance(ADC_TypeDef *instance)
{
if (instance == ADC1)
return ADCDEV_1;
if (instance == ADC2)
return ADCDEV_2;
return ADCINVALID;
}
void adcInit(drv_adc_config_t *init) void adcInit(drv_adc_config_t *init)
{ {
UNUSED(init); UNUSED(init);
ADC_InitTypeDef ADC_InitStructure; ADC_InitTypeDef ADC_InitStructure;
DMA_InitTypeDef DMA_InitStructure; DMA_InitTypeDef DMA_InitStructure;
GPIO_InitTypeDef GPIO_InitStructure;
uint8_t i; uint8_t i;
uint8_t adcChannelCount = 0; uint8_t adcChannelCount = 0;
memset(&adcConfig, 0, sizeof(adcConfig)); memset(&adcConfig, 0, sizeof(adcConfig));
GPIO_StructInit(&GPIO_InitStructure); #ifdef VBAT_ADC_PIN
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ;
#ifdef VBAT_ADC_GPIO
if (init->enableVBat) { if (init->enableVBat) {
GPIO_InitStructure.GPIO_Pin = VBAT_ADC_GPIO_PIN; IOInit(IOGetByTag(IO_TAG(VBAT_ADC_PIN)), OWNER_SYSTEM, RESOURCE_ADC);
GPIO_Init(VBAT_ADC_GPIO, &GPIO_InitStructure); IOConfigGPIO(IOGetByTag(IO_TAG(VBAT_ADC_PIN)), IO_CONFIG(GPIO_Mode_AN, 0, GPIO_OType_OD, GPIO_PuPd_NOPULL));
adcConfig[ADC_BATTERY].adcChannel = VBAT_ADC_CHANNEL; adcConfig[ADC_BATTERY].adcChannel = adcChannelByTag(IO_TAG(VBAT_ADC_PIN));
adcConfig[ADC_BATTERY].dmaIndex = adcChannelCount; adcConfig[ADC_BATTERY].dmaIndex = adcChannelCount;
adcConfig[ADC_BATTERY].sampleTime = ADC_SampleTime_601Cycles5; adcConfig[ADC_BATTERY].sampleTime = ADC_SampleTime_601Cycles5;
adcConfig[ADC_BATTERY].enabled = true; adcConfig[ADC_BATTERY].enabled = true;
@ -65,12 +118,12 @@ void adcInit(drv_adc_config_t *init)
} }
#endif #endif
#ifdef RSSI_ADC_GPIO #ifdef RSSI_ADC_PIN
if (init->enableRSSI) { if (init->enableRSSI) {
GPIO_InitStructure.GPIO_Pin = RSSI_ADC_GPIO_PIN; IOInit(IOGetByTag(IO_TAG(RSSI_ADC_PIN)), OWNER_SYSTEM, RESOURCE_ADC);
GPIO_Init(RSSI_ADC_GPIO, &GPIO_InitStructure); IOConfigGPIO(IOGetByTag(IO_TAG(RSSI_ADC_PIN)), IO_CONFIG(GPIO_Mode_AN, 0, GPIO_OType_OD, GPIO_PuPd_NOPULL));
adcConfig[ADC_RSSI].adcChannel = RSSI_ADC_CHANNEL; adcConfig[ADC_RSSI].adcChannel = adcChannelByTag(IO_TAG(RSSI_ADC_PIN));
adcConfig[ADC_RSSI].dmaIndex = adcChannelCount; adcConfig[ADC_RSSI].dmaIndex = adcChannelCount;
adcConfig[ADC_RSSI].sampleTime = ADC_SampleTime_601Cycles5; adcConfig[ADC_RSSI].sampleTime = ADC_SampleTime_601Cycles5;
adcConfig[ADC_RSSI].enabled = true; adcConfig[ADC_RSSI].enabled = true;
@ -80,10 +133,10 @@ void adcInit(drv_adc_config_t *init)
#ifdef CURRENT_METER_ADC_GPIO #ifdef CURRENT_METER_ADC_GPIO
if (init->enableCurrentMeter) { if (init->enableCurrentMeter) {
GPIO_InitStructure.GPIO_Pin = CURRENT_METER_ADC_GPIO_PIN; IOInit(IOGetByTag(IO_TAG(CURRENT_METER_ADC_PIN)), OWNER_SYSTEM, RESOURCE_ADC);
GPIO_Init(CURRENT_METER_ADC_GPIO, &GPIO_InitStructure); IOConfigGPIO(IOGetByTag(IO_TAG(CURRENT_METER_ADC_PIN)), IO_CONFIG(GPIO_Mode_AN, 0, GPIO_OType_OD, GPIO_PuPd_NOPULL));
adcConfig[ADC_CURRENT].adcChannel = CURRENT_METER_ADC_CHANNEL; adcConfig[ADC_CURRENT].adcChannel = adcChannelByTag(IO_TAG(CURRENT_METER_ADC_PIN));
adcConfig[ADC_CURRENT].dmaIndex = adcChannelCount; adcConfig[ADC_CURRENT].dmaIndex = adcChannelCount;
adcConfig[ADC_CURRENT].sampleTime = ADC_SampleTime_601Cycles5; adcConfig[ADC_CURRENT].sampleTime = ADC_SampleTime_601Cycles5;
adcConfig[ADC_CURRENT].enabled = true; adcConfig[ADC_CURRENT].enabled = true;
@ -93,10 +146,10 @@ void adcInit(drv_adc_config_t *init)
#ifdef EXTERNAL1_ADC_GPIO #ifdef EXTERNAL1_ADC_GPIO
if (init->enableExternal1) { if (init->enableExternal1) {
GPIO_InitStructure.GPIO_Pin = EXTERNAL1_ADC_GPIO_PIN; IOInit(IOGetByTag(IO_TAG(EXTERNAL1_ADC_PIN)), OWNER_SYSTEM, RESOURCE_ADC);
GPIO_Init(EXTERNAL1_ADC_GPIO, &GPIO_InitStructure); IOConfigGPIO(IOGetByTag(IO_TAG(EXTERNAL1_ADC_PIN)), IO_CONFIG(GPIO_Mode_AN, 0, GPIO_OType_OD, GPIO_PuPd_NOPULL));
adcConfig[ADC_EXTERNAL1].adcChannel = EXTERNAL1_ADC_CHANNEL; adcConfig[ADC_EXTERNAL1].adcChannel = adcChannelByTag(IO_TAG(EXTERNAL1_ADC_PIN));
adcConfig[ADC_EXTERNAL1].dmaIndex = adcChannelCount; adcConfig[ADC_EXTERNAL1].dmaIndex = adcChannelCount;
adcConfig[ADC_EXTERNAL1].sampleTime = ADC_SampleTime_601Cycles5; adcConfig[ADC_EXTERNAL1].sampleTime = ADC_SampleTime_601Cycles5;
adcConfig[ADC_EXTERNAL1].enabled = true; adcConfig[ADC_EXTERNAL1].enabled = true;
@ -104,13 +157,20 @@ void adcInit(drv_adc_config_t *init)
} }
#endif #endif
RCC_ADCCLKConfig(RCC_ADC12PLLCLK_Div256); // 72 MHz divided by 256 = 281.25 kHz ADCDevice device = adcDeviceByInstance(ADC_INSTANCE);
RCC_AHBPeriphClockCmd(ADC_AHB_PERIPHERAL | RCC_AHBPeriph_ADC12, ENABLE); if (device == ADCINVALID)
return;
adcDevice_t adc = adcHardware[device];
DMA_DeInit(ADC_DMA_CHANNEL); RCC_ADCCLKConfig(RCC_ADC12PLLCLK_Div256); // 72 MHz divided by 256 = 281.25 kHz
RCC_ClockCmd(adc.rccADC, ENABLE);
RCC_ClockCmd(adc.rccDMA, ENABLE);
DMA_DeInit(adc.DMAy_Channelx);
DMA_StructInit(&DMA_InitStructure); DMA_StructInit(&DMA_InitStructure);
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&ADC_INSTANCE->DR; DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&adc.ADCx->DR;
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)adcValues; DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)adcValues;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
DMA_InitStructure.DMA_BufferSize = adcChannelCount; DMA_InitStructure.DMA_BufferSize = adcChannelCount;
@ -122,20 +182,18 @@ void adcInit(drv_adc_config_t *init)
DMA_InitStructure.DMA_Priority = DMA_Priority_High; DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(ADC_DMA_CHANNEL, &DMA_InitStructure); DMA_Init(adc.DMAy_Channelx, &DMA_InitStructure);
DMA_Cmd(ADC_DMA_CHANNEL, ENABLE);
DMA_Cmd(adc.DMAy_Channelx, ENABLE);
// calibrate // calibrate
ADC_VoltageRegulatorCmd(ADC_INSTANCE, ENABLE); ADC_VoltageRegulatorCmd(adc.ADCx, ENABLE);
delay(10); delay(10);
ADC_SelectCalibrationMode(ADC_INSTANCE, ADC_CalibrationMode_Single); ADC_SelectCalibrationMode(adc.ADCx, ADC_CalibrationMode_Single);
ADC_StartCalibration(ADC_INSTANCE); ADC_StartCalibration(adc.ADCx);
while(ADC_GetCalibrationStatus(ADC_INSTANCE) != RESET); while (ADC_GetCalibrationStatus(adc.ADCx) != RESET);
ADC_VoltageRegulatorCmd(ADC_INSTANCE, DISABLE); ADC_VoltageRegulatorCmd(adc.ADCx, DISABLE);
ADC_CommonInitTypeDef ADC_CommonInitStructure; ADC_CommonInitTypeDef ADC_CommonInitStructure;
@ -145,7 +203,7 @@ void adcInit(drv_adc_config_t *init)
ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_1; ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_1;
ADC_CommonInitStructure.ADC_DMAMode = ADC_DMAMode_Circular; ADC_CommonInitStructure.ADC_DMAMode = ADC_DMAMode_Circular;
ADC_CommonInitStructure.ADC_TwoSamplingDelay = 0; ADC_CommonInitStructure.ADC_TwoSamplingDelay = 0;
ADC_CommonInit(ADC_INSTANCE, &ADC_CommonInitStructure); ADC_CommonInit(adc.ADCx, &ADC_CommonInitStructure);
ADC_StructInit(&ADC_InitStructure); ADC_StructInit(&ADC_InitStructure);
@ -158,24 +216,24 @@ void adcInit(drv_adc_config_t *init)
ADC_InitStructure.ADC_AutoInjMode = ADC_AutoInjec_Disable; ADC_InitStructure.ADC_AutoInjMode = ADC_AutoInjec_Disable;
ADC_InitStructure.ADC_NbrOfRegChannel = adcChannelCount; ADC_InitStructure.ADC_NbrOfRegChannel = adcChannelCount;
ADC_Init(ADC_INSTANCE, &ADC_InitStructure); ADC_Init(adc.ADCx, &ADC_InitStructure);
uint8_t rank = 1; uint8_t rank = 1;
for (i = 0; i < ADC_CHANNEL_COUNT; i++) { for (i = 0; i < ADC_CHANNEL_COUNT; i++) {
if (!adcConfig[i].enabled) { if (!adcConfig[i].enabled) {
continue; continue;
} }
ADC_RegularChannelConfig(ADC_INSTANCE, adcConfig[i].adcChannel, rank++, adcConfig[i].sampleTime); ADC_RegularChannelConfig(adc.ADCx, adcConfig[i].adcChannel, rank++, adcConfig[i].sampleTime);
} }
ADC_Cmd(ADC_INSTANCE, ENABLE); ADC_Cmd(adc.ADCx, ENABLE);
while(!ADC_GetFlagStatus(ADC_INSTANCE, ADC_FLAG_RDY)); while (!ADC_GetFlagStatus(adc.ADCx, ADC_FLAG_RDY));
ADC_DMAConfig(ADC_INSTANCE, ADC_DMAMode_Circular); ADC_DMAConfig(adc.ADCx, ADC_DMAMode_Circular);
ADC_DMACmd(ADC_INSTANCE, ENABLE); ADC_DMACmd(adc.ADCx, ENABLE);
ADC_StartConversion(ADC_INSTANCE); ADC_StartConversion(adc.ADCx);
} }

View file

@ -23,6 +23,8 @@
#include "system.h" #include "system.h"
#include "io.h" #include "io.h"
#include "io_impl.h"
#include "rcc.h"
#include "sensors/sensors.h" // FIXME dependency into the main code #include "sensors/sensors.h" // FIXME dependency into the main code
@ -32,6 +34,56 @@
#include "adc.h" #include "adc.h"
#include "adc_impl.h" #include "adc_impl.h"
#ifndef ADC_INSTANCE
#define ADC_INSTANCE ADC1
#endif
const adcDevice_t adcHardware[] = {
{ .ADCx = ADC1, .rccADC = RCC_APB2(ADC1), .rccDMA = RCC_AHB1(DMA2), .DMAy_Streamx = DMA2_Stream4, .channel = DMA_Channel_0 },
//{ .ADCx = ADC2, .rccADC = RCC_APB2(ADC2), .rccDMA = RCC_AHB1(DMA2), .DMAy_Streamx = DMA2_Stream1, .channel = DMA_Channel_0 }
};
/* note these could be packed up for saving space */
const adcTagMap_t adcTagMap[] = {
/*
{ DEFIO_TAG_E__PF3, ADC_Channel_9 },
{ DEFIO_TAG_E__PF4, ADC_Channel_14 },
{ DEFIO_TAG_E__PF5, ADC_Channel_15 },
{ DEFIO_TAG_E__PF6, ADC_Channel_4 },
{ DEFIO_TAG_E__PF7, ADC_Channel_5 },
{ DEFIO_TAG_E__PF8, ADC_Channel_6 },
{ DEFIO_TAG_E__PF9, ADC_Channel_7 },
{ DEFIO_TAG_E__PF10, ADC_Channel_8 },
*/
{ DEFIO_TAG_E__PC0, ADC_Channel_10 },
{ DEFIO_TAG_E__PC1, ADC_Channel_11 },
{ DEFIO_TAG_E__PC2, ADC_Channel_12 },
{ DEFIO_TAG_E__PC3, ADC_Channel_13 },
{ DEFIO_TAG_E__PC4, ADC_Channel_14 },
{ DEFIO_TAG_E__PC5, ADC_Channel_15 },
{ DEFIO_TAG_E__PB0, ADC_Channel_8 },
{ DEFIO_TAG_E__PB1, ADC_Channel_9 },
{ DEFIO_TAG_E__PA0, ADC_Channel_0 },
{ DEFIO_TAG_E__PA1, ADC_Channel_1 },
{ DEFIO_TAG_E__PA2, ADC_Channel_2 },
{ DEFIO_TAG_E__PA3, ADC_Channel_3 },
{ DEFIO_TAG_E__PA4, ADC_Channel_4 },
{ DEFIO_TAG_E__PA5, ADC_Channel_5 },
{ DEFIO_TAG_E__PA6, ADC_Channel_6 },
{ DEFIO_TAG_E__PA7, ADC_Channel_7 },
};
ADCDevice adcDeviceByInstance(ADC_TypeDef *instance)
{
if (instance == ADC1)
return ADCDEV_1;
/*
if (instance == ADC2) // TODO add ADC2 and 3
return ADCDEV_2;
*/
return ADCINVALID;
}
void adcInit(drv_adc_config_t *init) void adcInit(drv_adc_config_t *init)
{ {
ADC_InitTypeDef ADC_InitStructure; ADC_InitTypeDef ADC_InitStructure;
@ -50,7 +102,7 @@ void adcInit(drv_adc_config_t *init)
if (init->enableVBat) { if (init->enableVBat) {
IOInit(IOGetByTag(IO_TAG(VBAT_ADC_PIN)), OWNER_SYSTEM, RESOURCE_ADC); IOInit(IOGetByTag(IO_TAG(VBAT_ADC_PIN)), OWNER_SYSTEM, RESOURCE_ADC);
IOConfigGPIO(IOGetByTag(IO_TAG(VBAT_ADC_PIN)), IO_CONFIG(GPIO_Mode_AN, 0, GPIO_OType_OD, GPIO_PuPd_NOPULL)); IOConfigGPIO(IOGetByTag(IO_TAG(VBAT_ADC_PIN)), IO_CONFIG(GPIO_Mode_AN, 0, GPIO_OType_OD, GPIO_PuPd_NOPULL));
adcConfig[ADC_BATTERY].adcChannel = VBAT_ADC_CHANNEL; adcConfig[ADC_BATTERY].adcChannel = adcChannelByTag(IO_TAG(VBAT_ADC_PIN)); //VBAT_ADC_CHANNEL;
adcConfig[ADC_BATTERY].dmaIndex = configuredAdcChannels++; adcConfig[ADC_BATTERY].dmaIndex = configuredAdcChannels++;
adcConfig[ADC_BATTERY].enabled = true; adcConfig[ADC_BATTERY].enabled = true;
adcConfig[ADC_BATTERY].sampleTime = ADC_SampleTime_480Cycles; adcConfig[ADC_BATTERY].sampleTime = ADC_SampleTime_480Cycles;
@ -60,8 +112,8 @@ void adcInit(drv_adc_config_t *init)
#ifdef EXTERNAL1_ADC_PIN #ifdef EXTERNAL1_ADC_PIN
if (init->enableExternal1) { if (init->enableExternal1) {
IOInit(IOGetByTag(IO_TAG(EXTERNAL1_ADC_PIN)), OWNER_SYSTEM, RESOURCE_ADC); IOInit(IOGetByTag(IO_TAG(EXTERNAL1_ADC_PIN)), OWNER_SYSTEM, RESOURCE_ADC);
IOConfigGPIO(IOGetByTag(IO_TAG(EXTERNAL1_ADC_PIN)), IO_CONFIG(GPIO_Mode_AN, 0, GPIO_OType_OD, GPIO_PuPd_NOPULL)); IOConfigGPIO(IOGetByTag(IO_TAG(EXTERNAL1_ADC_PIN)), IO_CONFIG(GPIO_Mode_AN, 0, GPIO_OType_OD, GPIO_PuPd_NOPULL));
adcConfig[ADC_EXTERNAL1].adcChannel = EXTERNAL1_ADC_CHANNEL; adcConfig[ADC_EXTERNAL1].adcChannel = adcChannelByTag(IO_TAG(EXTERNAL1_ADC_PIN)); //EXTERNAL1_ADC_CHANNEL;
adcConfig[ADC_EXTERNAL1].dmaIndex = configuredAdcChannels++; adcConfig[ADC_EXTERNAL1].dmaIndex = configuredAdcChannels++;
adcConfig[ADC_EXTERNAL1].enabled = true; adcConfig[ADC_EXTERNAL1].enabled = true;
adcConfig[ADC_EXTERNAL1].sampleTime = ADC_SampleTime_480Cycles; adcConfig[ADC_EXTERNAL1].sampleTime = ADC_SampleTime_480Cycles;
@ -71,8 +123,8 @@ void adcInit(drv_adc_config_t *init)
#ifdef RSSI_ADC_PIN #ifdef RSSI_ADC_PIN
if (init->enableRSSI) { if (init->enableRSSI) {
IOInit(IOGetByTag(IO_TAG(RSSI_ADC_PIN)), OWNER_SYSTEM, RESOURCE_ADC); IOInit(IOGetByTag(IO_TAG(RSSI_ADC_PIN)), OWNER_SYSTEM, RESOURCE_ADC);
IOConfigGPIO(IOGetByTag(IO_TAG(RSSI_ADC_PIN)), IO_CONFIG(GPIO_Mode_AN, 0, GPIO_OType_OD, GPIO_PuPd_NOPULL)); IOConfigGPIO(IOGetByTag(IO_TAG(RSSI_ADC_PIN)), IO_CONFIG(GPIO_Mode_AN, 0, GPIO_OType_OD, GPIO_PuPd_NOPULL));
adcConfig[ADC_RSSI].adcChannel = RSSI_ADC_CHANNEL; adcConfig[ADC_RSSI].adcChannel = adcChannelByTag(IO_TAG(RSSI_ADC_PIN)); //RSSI_ADC_CHANNEL;
adcConfig[ADC_RSSI].dmaIndex = configuredAdcChannels++; adcConfig[ADC_RSSI].dmaIndex = configuredAdcChannels++;
adcConfig[ADC_RSSI].enabled = true; adcConfig[ADC_RSSI].enabled = true;
adcConfig[ADC_RSSI].sampleTime = ADC_SampleTime_480Cycles; adcConfig[ADC_RSSI].sampleTime = ADC_SampleTime_480Cycles;
@ -82,8 +134,8 @@ void adcInit(drv_adc_config_t *init)
#ifdef CURRENT_METER_ADC_PIN #ifdef CURRENT_METER_ADC_PIN
if (init->enableCurrentMeter) { if (init->enableCurrentMeter) {
IOInit(IOGetByTag(IO_TAG(CURRENT_METER_ADC_PIN)), OWNER_SYSTEM, RESOURCE_ADC); IOInit(IOGetByTag(IO_TAG(CURRENT_METER_ADC_PIN)), OWNER_SYSTEM, RESOURCE_ADC);
IOConfigGPIO(IOGetByTag(IO_TAG(CURRENT_METER_ADC_PIN)), IO_CONFIG(GPIO_Mode_AN, 0, GPIO_OType_OD, GPIO_PuPd_NOPULL)); IOConfigGPIO(IOGetByTag(IO_TAG(CURRENT_METER_ADC_PIN)), IO_CONFIG(GPIO_Mode_AN, 0, GPIO_OType_OD, GPIO_PuPd_NOPULL));
adcConfig[ADC_CURRENT].adcChannel = CURRENT_METER_ADC_CHANNEL; adcConfig[ADC_CURRENT].adcChannel = adcChannelByTag(IO_TAG(CURRENT_METER_ADC_PIN)); //CURRENT_METER_ADC_CHANNEL;
adcConfig[ADC_CURRENT].dmaIndex = configuredAdcChannels++; adcConfig[ADC_CURRENT].dmaIndex = configuredAdcChannels++;
adcConfig[ADC_CURRENT].enabled = true; adcConfig[ADC_CURRENT].enabled = true;
adcConfig[ADC_CURRENT].sampleTime = ADC_SampleTime_480Cycles; adcConfig[ADC_CURRENT].sampleTime = ADC_SampleTime_480Cycles;
@ -92,15 +144,20 @@ void adcInit(drv_adc_config_t *init)
//RCC_ADCCLKConfig(RCC_ADC12PLLCLK_Div256); // 72 MHz divided by 256 = 281.25 kHz //RCC_ADCCLKConfig(RCC_ADC12PLLCLK_Div256); // 72 MHz divided by 256 = 281.25 kHz
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA2, ENABLE); ADCDevice device = adcDeviceByInstance(ADC_INSTANCE);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE); if (device == ADCINVALID)
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); return;
adcDevice_t adc = adcHardware[device];
RCC_ClockCmd(adc.rccDMA, ENABLE);
RCC_ClockCmd(adc.rccADC, ENABLE);
DMA_DeInit(DMA2_Stream4); DMA_DeInit(adc.DMAy_Streamx);
DMA_StructInit(&DMA_InitStructure); DMA_StructInit(&DMA_InitStructure);
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&ADC1->DR; DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&adc.ADCx->DR;
DMA_InitStructure.DMA_Channel = DMA_Channel_0; DMA_InitStructure.DMA_Channel = adc.channel;
DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)adcValues; DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)adcValues;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory; DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory;
DMA_InitStructure.DMA_BufferSize = configuredAdcChannels; DMA_InitStructure.DMA_BufferSize = configuredAdcChannels;
@ -110,20 +167,9 @@ void adcInit(drv_adc_config_t *init)
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High; DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_Init(DMA2_Stream4, &DMA_InitStructure); DMA_Init(adc.DMAy_Streamx, &DMA_InitStructure);
DMA_Cmd(DMA2_Stream4, ENABLE); DMA_Cmd(adc.DMAy_Streamx, ENABLE);
// calibrate
/*
ADC_VoltageRegulatorCmd(ADC1, ENABLE);
delay(10);
ADC_SelectCalibrationMode(ADC1, ADC_CalibrationMode_Single);
ADC_StartCalibration(ADC1);
while(ADC_GetCalibrationStatus(ADC1) != RESET);
ADC_VoltageRegulatorCmd(ADC1, DISABLE);
*/
ADC_CommonInitTypeDef ADC_CommonInitStructure; ADC_CommonInitTypeDef ADC_CommonInitStructure;
@ -138,25 +184,25 @@ void adcInit(drv_adc_config_t *init)
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b; ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b;
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1; ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1;
ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None; ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfConversion = configuredAdcChannels; ADC_InitStructure.ADC_NbrOfConversion = configuredAdcChannels;
ADC_InitStructure.ADC_ScanConvMode = configuredAdcChannels > 1 ? ENABLE : DISABLE; // 1=scan more that one channel in group ADC_InitStructure.ADC_ScanConvMode = configuredAdcChannels > 1 ? ENABLE : DISABLE; // 1=scan more that one channel in group
ADC_Init(ADC1, &ADC_InitStructure); ADC_Init(adc.ADCx, &ADC_InitStructure);
uint8_t rank = 1; uint8_t rank = 1;
for (i = 0; i < ADC_CHANNEL_COUNT; i++) { for (i = 0; i < ADC_CHANNEL_COUNT; i++) {
if (!adcConfig[i].enabled) { if (!adcConfig[i].enabled) {
continue; continue;
} }
ADC_RegularChannelConfig(ADC1, adcConfig[i].adcChannel, rank++, adcConfig[i].sampleTime); ADC_RegularChannelConfig(adc.ADCx, adcConfig[i].adcChannel, rank++, adcConfig[i].sampleTime);
} }
ADC_DMARequestAfterLastTransferCmd(ADC1, ENABLE); ADC_DMARequestAfterLastTransferCmd(adc.ADCx, ENABLE);
ADC_DMACmd(ADC1, ENABLE); ADC_DMACmd(adc.ADCx, ENABLE);
ADC_Cmd(ADC1, ENABLE); ADC_Cmd(adc.ADCx, ENABLE);
ADC_SoftwareStartConv(ADC1); ADC_SoftwareStartConv(adc.ADCx);
} }

View file

@ -45,8 +45,8 @@ static bool isEOCConnected = true;
// EXTI14 for BMP085 End of Conversion Interrupt // EXTI14 for BMP085 End of Conversion Interrupt
void bmp085_extiHandler(extiCallbackRec_t* cb) void bmp085_extiHandler(extiCallbackRec_t* cb)
{ {
UNUSED(cb); UNUSED(cb);
isConversionComplete = true; isConversionComplete = true;
} }
bool bmp085TestEOCConnected(const bmp085Config_t *config); bool bmp085TestEOCConnected(const bmp085Config_t *config);
@ -184,13 +184,13 @@ bool bmp085Detect(const bmp085Config_t *config, baro_t *baro)
delay(20); // datasheet says 10ms, we'll be careful and do 20. delay(20); // datasheet says 10ms, we'll be careful and do 20.
ack = i2cRead(BARO_I2C_INSTANCE, BMP085_I2C_ADDR, BMP085_CHIP_ID__REG, 1, &data); /* read Chip Id */ ack = i2cRead(BARO_I2C_INSTANCE, BMP085_I2C_ADDR, BMP085_CHIP_ID__REG, 1, &data); /* read Chip Id */
if (ack) { if (ack) {
bmp085.chip_id = BMP085_GET_BITSLICE(data, BMP085_CHIP_ID); bmp085.chip_id = BMP085_GET_BITSLICE(data, BMP085_CHIP_ID);
bmp085.oversampling_setting = 3; bmp085.oversampling_setting = 3;
if (bmp085.chip_id == BMP085_CHIP_ID) { /* get bitslice */ if (bmp085.chip_id == BMP085_CHIP_ID) { /* get bitslice */
i2cRead(BARO_I2C_INSTANCE, BMP085_I2C_ADDR, BMP085_VERSION_REG, 1, &data); /* read Version reg */ i2cRead(BARO_I2C_INSTANCE, BMP085_I2C_ADDR, BMP085_VERSION_REG, 1, &data); /* read Version reg */
bmp085.ml_version = BMP085_GET_BITSLICE(data, BMP085_ML_VERSION); /* get ML Version */ bmp085.ml_version = BMP085_GET_BITSLICE(data, BMP085_ML_VERSION); /* get ML Version */
bmp085.al_version = BMP085_GET_BITSLICE(data, BMP085_AL_VERSION); /* get AL Version */ bmp085.al_version = BMP085_GET_BITSLICE(data, BMP085_AL_VERSION); /* get AL Version */
bmp085_get_cal_param(); /* readout bmp085 calibparam structure */ bmp085_get_cal_param(); /* readout bmp085 calibparam structure */
@ -277,7 +277,7 @@ static void bmp085_start_ut(void)
#if defined(BARO_EOC_GPIO) #if defined(BARO_EOC_GPIO)
isConversionComplete = false; isConversionComplete = false;
#endif #endif
i2cWrite(BARO_I2C_INSTANCE, BMP085_I2C_ADDR, BMP085_CTRL_MEAS_REG, BMP085_T_MEASURE); i2cWrite(BARO_I2C_INSTANCE, BMP085_I2C_ADDR, BMP085_CTRL_MEAS_REG, BMP085_T_MEASURE);
} }
static void bmp085_get_ut(void) static void bmp085_get_ut(void)
@ -291,7 +291,7 @@ static void bmp085_get_ut(void)
} }
#endif #endif
i2cRead(BARO_I2C_INSTANCE, BMP085_I2C_ADDR, BMP085_ADC_OUT_MSB_REG, 2, data); i2cRead(BARO_I2C_INSTANCE, BMP085_I2C_ADDR, BMP085_ADC_OUT_MSB_REG, 2, data);
bmp085_ut = (data[0] << 8) | data[1]; bmp085_ut = (data[0] << 8) | data[1];
} }
@ -305,7 +305,7 @@ static void bmp085_start_up(void)
isConversionComplete = false; isConversionComplete = false;
#endif #endif
i2cWrite(BARO_I2C_INSTANCE, BMP085_I2C_ADDR, BMP085_CTRL_MEAS_REG, ctrl_reg_data); i2cWrite(BARO_I2C_INSTANCE, BMP085_I2C_ADDR, BMP085_CTRL_MEAS_REG, ctrl_reg_data);
} }
/** read out up for pressure conversion /** read out up for pressure conversion
@ -323,7 +323,7 @@ static void bmp085_get_up(void)
} }
#endif #endif
i2cRead(BARO_I2C_INSTANCE, BMP085_I2C_ADDR, BMP085_ADC_OUT_MSB_REG, 3, data); i2cRead(BARO_I2C_INSTANCE, BMP085_I2C_ADDR, BMP085_ADC_OUT_MSB_REG, 3, data);
bmp085_up = (((uint32_t) data[0] << 16) | ((uint32_t) data[1] << 8) | (uint32_t) data[2]) bmp085_up = (((uint32_t) data[0] << 16) | ((uint32_t) data[1] << 8) | (uint32_t) data[2])
>> (8 - bmp085.oversampling_setting); >> (8 - bmp085.oversampling_setting);
} }
@ -343,7 +343,7 @@ STATIC_UNIT_TESTED void bmp085_calculate(int32_t *pressure, int32_t *temperature
static void bmp085_get_cal_param(void) static void bmp085_get_cal_param(void)
{ {
uint8_t data[22]; uint8_t data[22];
i2cRead(BARO_I2C_INSTANCE, BMP085_I2C_ADDR, BMP085_PROM_START__ADDR, BMP085_PROM_DATA__LEN, data); i2cRead(BARO_I2C_INSTANCE, BMP085_I2C_ADDR, BMP085_PROM_START__ADDR, BMP085_PROM_DATA__LEN, data);
/*parameters AC1-AC6*/ /*parameters AC1-AC6*/
bmp085.cal_param.ac1 = (data[0] << 8) | data[1]; bmp085.cal_param.ac1 = (data[0] << 8) | data[1];

View file

@ -18,8 +18,8 @@
#pragma once #pragma once
typedef struct bmp085Config_s { typedef struct bmp085Config_s {
ioTag_t xclrIO; ioTag_t xclrIO;
ioTag_t eocIO; ioTag_t eocIO;
} bmp085Config_t; } bmp085Config_t;
bool bmp085Detect(const bmp085Config_t *config, baro_t *baro); bool bmp085Detect(const bmp085Config_t *config, baro_t *baro);

View file

@ -83,14 +83,14 @@ bool bmp280Detect(baro_t *baro)
// set oversampling + power mode (forced), and start sampling // set oversampling + power mode (forced), and start sampling
bmp280WriteRegister(BMP280_CTRL_MEAS_REG, BMP280_MODE); bmp280WriteRegister(BMP280_CTRL_MEAS_REG, BMP280_MODE);
#else #else
i2cRead(BARO_I2C_INSTANCE, BMP280_I2C_ADDR, BMP280_CHIP_ID_REG, 1, &bmp280_chip_id); /* read Chip Id */ i2cRead(BARO_I2C_INSTANCE, BMP280_I2C_ADDR, BMP280_CHIP_ID_REG, 1, &bmp280_chip_id); /* read Chip Id */
if (bmp280_chip_id != BMP280_DEFAULT_CHIP_ID) if (bmp280_chip_id != BMP280_DEFAULT_CHIP_ID)
return false; return false;
// read calibration // read calibration
i2cRead(BARO_I2C_INSTANCE, BMP280_I2C_ADDR, BMP280_TEMPERATURE_CALIB_DIG_T1_LSB_REG, 24, (uint8_t *)&bmp280_cal); i2cRead(BARO_I2C_INSTANCE, BMP280_I2C_ADDR, BMP280_TEMPERATURE_CALIB_DIG_T1_LSB_REG, 24, (uint8_t *)&bmp280_cal);
// set oversampling + power mode (forced), and start sampling // set oversampling + power mode (forced), and start sampling
i2cWrite(BARO_I2C_INSTANCE, BMP280_I2C_ADDR, BMP280_CTRL_MEAS_REG, BMP280_MODE); i2cWrite(BARO_I2C_INSTANCE, BMP280_I2C_ADDR, BMP280_CTRL_MEAS_REG, BMP280_MODE);
#endif #endif
bmp280InitDone = true; bmp280InitDone = true;
@ -129,7 +129,7 @@ static void bmp280_start_up(void)
{ {
// start measurement // start measurement
// set oversampling + power mode (forced), and start sampling // set oversampling + power mode (forced), and start sampling
i2cWrite(BARO_I2C_INSTANCE, BMP280_I2C_ADDR, BMP280_CTRL_MEAS_REG, BMP280_MODE); i2cWrite(BARO_I2C_INSTANCE, BMP280_I2C_ADDR, BMP280_CTRL_MEAS_REG, BMP280_MODE);
} }
static void bmp280_get_up(void) static void bmp280_get_up(void)
@ -137,7 +137,7 @@ static void bmp280_get_up(void)
uint8_t data[BMP280_DATA_FRAME_SIZE]; uint8_t data[BMP280_DATA_FRAME_SIZE];
// read data from sensor // read data from sensor
i2cRead(BARO_I2C_INSTANCE, BMP280_I2C_ADDR, BMP280_PRESSURE_MSB_REG, BMP280_DATA_FRAME_SIZE, data); i2cRead(BARO_I2C_INSTANCE, BMP280_I2C_ADDR, BMP280_PRESSURE_MSB_REG, BMP280_DATA_FRAME_SIZE, data);
bmp280_up = (int32_t)((((uint32_t)(data[0])) << 12) | (((uint32_t)(data[1])) << 4) | ((uint32_t)data[2] >> 4)); bmp280_up = (int32_t)((((uint32_t)(data[0])) << 12) | (((uint32_t)(data[1])) << 4) | ((uint32_t)data[2] >> 4));
bmp280_ut = (int32_t)((((uint32_t)(data[3])) << 12) | (((uint32_t)(data[4])) << 4) | ((uint32_t)data[5] >> 4)); bmp280_ut = (int32_t)((((uint32_t)(data[3])) << 12) | (((uint32_t)(data[4])) << 4) | ((uint32_t)data[5] >> 4));
} }

View file

@ -67,7 +67,7 @@ bool ms5611Detect(baro_t *baro)
delay(10); // No idea how long the chip takes to power-up, but let's make it 10ms delay(10); // No idea how long the chip takes to power-up, but let's make it 10ms
ack = i2cRead(BARO_I2C_INSTANCE, MS5611_ADDR, CMD_PROM_RD, 1, &sig); ack = i2cRead(BARO_I2C_INSTANCE, MS5611_ADDR, CMD_PROM_RD, 1, &sig);
if (!ack) if (!ack)
return false; return false;
@ -93,14 +93,14 @@ bool ms5611Detect(baro_t *baro)
static void ms5611_reset(void) static void ms5611_reset(void)
{ {
i2cWrite(BARO_I2C_INSTANCE, MS5611_ADDR, CMD_RESET, 1); i2cWrite(BARO_I2C_INSTANCE, MS5611_ADDR, CMD_RESET, 1);
delayMicroseconds(2800); delayMicroseconds(2800);
} }
static uint16_t ms5611_prom(int8_t coef_num) static uint16_t ms5611_prom(int8_t coef_num)
{ {
uint8_t rxbuf[2] = { 0, 0 }; uint8_t rxbuf[2] = { 0, 0 };
i2cRead(BARO_I2C_INSTANCE, MS5611_ADDR, CMD_PROM_RD + coef_num * 2, 2, rxbuf); // send PROM READ command i2cRead(BARO_I2C_INSTANCE, MS5611_ADDR, CMD_PROM_RD + coef_num * 2, 2, rxbuf); // send PROM READ command
return rxbuf[0] << 8 | rxbuf[1]; return rxbuf[0] << 8 | rxbuf[1];
} }
@ -137,13 +137,13 @@ STATIC_UNIT_TESTED int8_t ms5611_crc(uint16_t *prom)
static uint32_t ms5611_read_adc(void) static uint32_t ms5611_read_adc(void)
{ {
uint8_t rxbuf[3]; uint8_t rxbuf[3];
i2cRead(BARO_I2C_INSTANCE, MS5611_ADDR, CMD_ADC_READ, 3, rxbuf); // read ADC i2cRead(BARO_I2C_INSTANCE, MS5611_ADDR, CMD_ADC_READ, 3, rxbuf); // read ADC
return (rxbuf[0] << 16) | (rxbuf[1] << 8) | rxbuf[2]; return (rxbuf[0] << 16) | (rxbuf[1] << 8) | rxbuf[2];
} }
static void ms5611_start_ut(void) static void ms5611_start_ut(void)
{ {
i2cWrite(BARO_I2C_INSTANCE, MS5611_ADDR, CMD_ADC_CONV + CMD_ADC_D2 + ms5611_osr, 1); // D2 (temperature) conversion start! i2cWrite(BARO_I2C_INSTANCE, MS5611_ADDR, CMD_ADC_CONV + CMD_ADC_D2 + ms5611_osr, 1); // D2 (temperature) conversion start!
} }
static void ms5611_get_ut(void) static void ms5611_get_ut(void)
@ -153,7 +153,7 @@ static void ms5611_get_ut(void)
static void ms5611_start_up(void) static void ms5611_start_up(void)
{ {
i2cWrite(BARO_I2C_INSTANCE, MS5611_ADDR, CMD_ADC_CONV + CMD_ADC_D1 + ms5611_osr, 1); // D1 (pressure) conversion start! i2cWrite(BARO_I2C_INSTANCE, MS5611_ADDR, CMD_ADC_CONV + CMD_ADC_D1 + ms5611_osr, 1); // D1 (pressure) conversion start!
} }
static void ms5611_get_up(void) static void ms5611_get_up(void)

View file

@ -28,12 +28,14 @@
#include "barometer.h" #include "barometer.h"
#include "barometer_bmp280.h" #include "barometer_bmp280.h"
#define DISABLE_BMP280 GPIO_SetBits(BMP280_CS_GPIO, BMP280_CS_PIN) #define DISABLE_BMP280 IOHi(bmp280CsPin)
#define ENABLE_BMP280 GPIO_ResetBits(BMP280_CS_GPIO, BMP280_CS_PIN) #define ENABLE_BMP280 IOLo(bmp280CsPin)
extern int32_t bmp280_up; extern int32_t bmp280_up;
extern int32_t bmp280_ut; extern int32_t bmp280_ut;
static IO_t bmp280CsPin = IO_NONE;
bool bmp280WriteRegister(uint8_t reg, uint8_t data) bool bmp280WriteRegister(uint8_t reg, uint8_t data)
{ {
ENABLE_BMP280; ENABLE_BMP280;
@ -62,32 +64,13 @@ void bmp280SpiInit(void)
return; return;
} }
#ifdef STM32F303 bmp280CsPin = IOGetByTag(IO_TAG(BMP280_CS_PIN));
RCC_AHBPeriphClockCmd(BMP280_CS_GPIO_CLK_PERIPHERAL, ENABLE); IOInit(bmp280CsPin, OWNER_BARO, RESOURCE_SPI);
IOConfigGPIO(bmp280CsPin, IOCFG_OUT_PP);
GPIO_InitTypeDef GPIO_InitStructure; DISABLE_BMP280;
GPIO_InitStructure.GPIO_Pin = BMP280_CS_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(BMP280_CS_GPIO, &GPIO_InitStructure); spiSetDivisor(BMP280_SPI_INSTANCE, SPI_CLOCK_STANDARD);
#endif
#ifdef STM32F10X
RCC_APB2PeriphClockCmd(BMP280_CS_GPIO_CLK_PERIPHERAL, ENABLE);
gpio_config_t gpio;
gpio.mode = Mode_Out_PP;
gpio.pin = BMP280_CS_PIN;
gpio.speed = Speed_50MHz;
gpioInit(BMP280_CS_GPIO, &gpio);
#endif
GPIO_SetBits(BMP280_CS_GPIO, BMP280_CS_PIN);
spiSetDivisor(BMP280_SPI_INSTANCE, SPI_9MHZ_CLOCK_DIVIDER);
hardwareInitialised = true; hardwareInitialised = true;
} }

View file

@ -48,218 +48,218 @@ static volatile uint16_t i2cErrorCount = 0;
static void I2C_delay(void) static void I2C_delay(void)
{ {
volatile int i = 7; volatile int i = 7;
while (i) { while (i) {
i--; i--;
} }
} }
static bool I2C_Start(void) static bool I2C_Start(void)
{ {
SDA_H; SDA_H;
SCL_H; SCL_H;
I2C_delay(); I2C_delay();
if (!SDA_read) { if (!SDA_read) {
return false; return false;
} }
SDA_L; SDA_L;
I2C_delay(); I2C_delay();
if (SDA_read) { if (SDA_read) {
return false; return false;
} }
SDA_L; SDA_L;
I2C_delay(); I2C_delay();
return true; return true;
} }
static void I2C_Stop(void) static void I2C_Stop(void)
{ {
SCL_L; SCL_L;
I2C_delay(); I2C_delay();
SDA_L; SDA_L;
I2C_delay(); I2C_delay();
SCL_H; SCL_H;
I2C_delay(); I2C_delay();
SDA_H; SDA_H;
I2C_delay(); I2C_delay();
} }
static void I2C_Ack(void) static void I2C_Ack(void)
{ {
SCL_L; SCL_L;
I2C_delay(); I2C_delay();
SDA_L; SDA_L;
I2C_delay(); I2C_delay();
SCL_H; SCL_H;
I2C_delay(); I2C_delay();
SCL_L; SCL_L;
I2C_delay(); I2C_delay();
} }
static void I2C_NoAck(void) static void I2C_NoAck(void)
{ {
SCL_L; SCL_L;
I2C_delay(); I2C_delay();
SDA_H; SDA_H;
I2C_delay(); I2C_delay();
SCL_H; SCL_H;
I2C_delay(); I2C_delay();
SCL_L; SCL_L;
I2C_delay(); I2C_delay();
} }
static bool I2C_WaitAck(void) static bool I2C_WaitAck(void)
{ {
SCL_L; SCL_L;
I2C_delay(); I2C_delay();
SDA_H; SDA_H;
I2C_delay(); I2C_delay();
SCL_H; SCL_H;
I2C_delay(); I2C_delay();
if (SDA_read) { if (SDA_read) {
SCL_L; SCL_L;
return false; return false;
} }
SCL_L; SCL_L;
return true; return true;
} }
static void I2C_SendByte(uint8_t byte) static void I2C_SendByte(uint8_t byte)
{ {
uint8_t i = 8; uint8_t i = 8;
while (i--) { while (i--) {
SCL_L; SCL_L;
I2C_delay(); I2C_delay();
if (byte & 0x80) { if (byte & 0x80) {
SDA_H; SDA_H;
} }
else { else {
SDA_L; SDA_L;
} }
byte <<= 1; byte <<= 1;
I2C_delay(); I2C_delay();
SCL_H; SCL_H;
I2C_delay(); I2C_delay();
} }
SCL_L; SCL_L;
} }
static uint8_t I2C_ReceiveByte(void) static uint8_t I2C_ReceiveByte(void)
{ {
uint8_t i = 8; uint8_t i = 8;
uint8_t byte = 0; uint8_t byte = 0;
SDA_H; SDA_H;
while (i--) { while (i--) {
byte <<= 1; byte <<= 1;
SCL_L; SCL_L;
I2C_delay(); I2C_delay();
SCL_H; SCL_H;
I2C_delay(); I2C_delay();
if (SDA_read) { if (SDA_read) {
byte |= 0x01; byte |= 0x01;
} }
} }
SCL_L; SCL_L;
return byte; return byte;
} }
void i2cInit(I2CDevice device) void i2cInit(I2CDevice device)
{ {
UNUSED(device); UNUSED(device);
scl = IOGetByTag(IO_TAG(SOFT_I2C_SCL)); scl = IOGetByTag(IO_TAG(SOFT_I2C_SCL));
sda = IOGetByTag(IO_TAG(SOFT_I2C_SDA)); sda = IOGetByTag(IO_TAG(SOFT_I2C_SDA));
IOConfigGPIO(scl, IOCFG_OUT_OD); IOConfigGPIO(scl, IOCFG_OUT_OD);
IOConfigGPIO(sda, IOCFG_OUT_OD); IOConfigGPIO(sda, IOCFG_OUT_OD);
} }
bool i2cWriteBuffer(I2CDevice device, uint8_t addr, uint8_t reg, uint8_t len, uint8_t * data) bool i2cWriteBuffer(I2CDevice device, uint8_t addr, uint8_t reg, uint8_t len, uint8_t * data)
{ {
UNUSED(device); UNUSED(device);
int i; int i;
if (!I2C_Start()) { if (!I2C_Start()) {
i2cErrorCount++; i2cErrorCount++;
return false; return false;
} }
I2C_SendByte(addr << 1 | I2C_Direction_Transmitter); I2C_SendByte(addr << 1 | I2C_Direction_Transmitter);
if (!I2C_WaitAck()) { if (!I2C_WaitAck()) {
I2C_Stop(); I2C_Stop();
return false; return false;
} }
I2C_SendByte(reg); I2C_SendByte(reg);
I2C_WaitAck(); I2C_WaitAck();
for (i = 0; i < len; i++) { for (i = 0; i < len; i++) {
I2C_SendByte(data[i]); I2C_SendByte(data[i]);
if (!I2C_WaitAck()) { if (!I2C_WaitAck()) {
I2C_Stop(); I2C_Stop();
i2cErrorCount++; i2cErrorCount++;
return false; return false;
} }
} }
I2C_Stop(); I2C_Stop();
return true; return true;
} }
bool i2cWrite(I2CDevice device, uint8_t addr, uint8_t reg, uint8_t data) bool i2cWrite(I2CDevice device, uint8_t addr, uint8_t reg, uint8_t data)
{ {
UNUSED(device); UNUSED(device);
if (!I2C_Start()) { if (!I2C_Start()) {
return false; return false;
} }
I2C_SendByte(addr << 1 | I2C_Direction_Transmitter); I2C_SendByte(addr << 1 | I2C_Direction_Transmitter);
if (!I2C_WaitAck()) { if (!I2C_WaitAck()) {
I2C_Stop(); I2C_Stop();
i2cErrorCount++; i2cErrorCount++;
return false; return false;
} }
I2C_SendByte(reg); I2C_SendByte(reg);
I2C_WaitAck(); I2C_WaitAck();
I2C_SendByte(data); I2C_SendByte(data);
I2C_WaitAck(); I2C_WaitAck();
I2C_Stop(); I2C_Stop();
return true; return true;
} }
bool i2cRead(I2CDevice device, uint8_t addr, uint8_t reg, uint8_t len, uint8_t *buf) bool i2cRead(I2CDevice device, uint8_t addr, uint8_t reg, uint8_t len, uint8_t *buf)
{ {
UNUSED(device); UNUSED(device);
if (!I2C_Start()) { if (!I2C_Start()) {
return false; return false;
} }
I2C_SendByte(addr << 1 | I2C_Direction_Transmitter); I2C_SendByte(addr << 1 | I2C_Direction_Transmitter);
if (!I2C_WaitAck()) { if (!I2C_WaitAck()) {
I2C_Stop(); I2C_Stop();
i2cErrorCount++; i2cErrorCount++;
return false; return false;
} }
I2C_SendByte(reg); I2C_SendByte(reg);
I2C_WaitAck(); I2C_WaitAck();
I2C_Start(); I2C_Start();
I2C_SendByte(addr << 1 | I2C_Direction_Receiver); I2C_SendByte(addr << 1 | I2C_Direction_Receiver);
I2C_WaitAck(); I2C_WaitAck();
while (len) { while (len) {
*buf = I2C_ReceiveByte(); *buf = I2C_ReceiveByte();
if (len == 1) { if (len == 1) {
I2C_NoAck(); I2C_NoAck();
} }
else { else {
I2C_Ack(); I2C_Ack();
} }
buf++; buf++;
len--; len--;
} }
I2C_Stop(); I2C_Stop();
return true; return true;
} }
uint16_t i2cGetErrorCounter(void) uint16_t i2cGetErrorCounter(void)
{ {
return i2cErrorCount; return i2cErrorCount;
} }
#endif #endif

View file

@ -82,10 +82,10 @@ static void i2cUnstick(IO_t scl, IO_t sda);
#endif #endif
static i2cDevice_t i2cHardwareMap[] = { static i2cDevice_t i2cHardwareMap[] = {
{ .dev = I2C1, .scl = IO_TAG(I2C1_SCL), .sda = IO_TAG(I2C1_SDA), .rcc = RCC_APB1(I2C1), .overClock = false, .ev_irq = I2C1_EV_IRQn, .er_irq = I2C1_ER_IRQn }, { .dev = I2C1, .scl = IO_TAG(I2C1_SCL), .sda = IO_TAG(I2C1_SDA), .rcc = RCC_APB1(I2C1), .overClock = I2C1_OVERCLOCK, .ev_irq = I2C1_EV_IRQn, .er_irq = I2C1_ER_IRQn },
{ .dev = I2C2, .scl = IO_TAG(I2C2_SCL), .sda = IO_TAG(I2C2_SDA), .rcc = RCC_APB1(I2C2), .overClock = false, .ev_irq = I2C2_EV_IRQn, .er_irq = I2C2_ER_IRQn }, { .dev = I2C2, .scl = IO_TAG(I2C2_SCL), .sda = IO_TAG(I2C2_SDA), .rcc = RCC_APB1(I2C2), .overClock = I2C2_OVERCLOCK, .ev_irq = I2C2_EV_IRQn, .er_irq = I2C2_ER_IRQn },
#ifdef STM32F4 #ifdef STM32F4
{ .dev = I2C3, .scl = IO_TAG(I2C3_SCL), .sda = IO_TAG(I2C3_SDA), .rcc = RCC_APB1(I2C3), .overClock = false, .ev_irq = I2C3_EV_IRQn, .er_irq = I2C3_ER_IRQn } { .dev = I2C3, .scl = IO_TAG(I2C3_SCL), .sda = IO_TAG(I2C3_SDA), .rcc = RCC_APB1(I2C3), .overClock = I2C2_OVERCLOCK, .ev_irq = I2C3_EV_IRQn, .er_irq = I2C3_ER_IRQn }
#endif #endif
}; };
@ -396,7 +396,7 @@ void i2cInit(I2CDevice device)
i2cUnstick(scl, sda); i2cUnstick(scl, sda);
// Init pins // Init pins
#if defined(STM32F40_41xxx) || defined(STM32F411xE) #ifdef STM32F4
IOConfigGPIOAF(scl, IOCFG_I2C, GPIO_AF_I2C); IOConfigGPIOAF(scl, IOCFG_I2C, GPIO_AF_I2C);
IOConfigGPIOAF(sda, IOCFG_I2C, GPIO_AF_I2C); IOConfigGPIOAF(sda, IOCFG_I2C, GPIO_AF_I2C);
#else #else
@ -416,8 +416,7 @@ void i2cInit(I2CDevice device)
if (i2c->overClock) { if (i2c->overClock) {
i2cInit.I2C_ClockSpeed = 800000; // 800khz Maximum speed tested on various boards without issues i2cInit.I2C_ClockSpeed = 800000; // 800khz Maximum speed tested on various boards without issues
} } else {
else {
i2cInit.I2C_ClockSpeed = 400000; // 400khz Operation according specs i2cInit.I2C_ClockSpeed = 400000; // 400khz Operation according specs
} }

View file

@ -54,8 +54,8 @@ static volatile uint16_t i2cErrorCount = 0;
//static volatile uint16_t i2c2ErrorCount = 0; //static volatile uint16_t i2c2ErrorCount = 0;
static i2cDevice_t i2cHardwareMap[] = { static i2cDevice_t i2cHardwareMap[] = {
{ .dev = I2C1, .scl = IO_TAG(I2C1_SCL), .sda = IO_TAG(I2C1_SDA), .rcc = RCC_APB1(I2C1), .overClock = false }, { .dev = I2C1, .scl = IO_TAG(I2C1_SCL), .sda = IO_TAG(I2C1_SDA), .rcc = RCC_APB1(I2C1), .overClock = I2C1_OVERCLOCK },
{ .dev = I2C2, .scl = IO_TAG(I2C2_SCL), .sda = IO_TAG(I2C2_SDA), .rcc = RCC_APB1(I2C2), .overClock = false } { .dev = I2C2, .scl = IO_TAG(I2C2_SCL), .sda = IO_TAG(I2C2_SDA), .rcc = RCC_APB1(I2C2), .overClock = I2C2_OVERCLOCK }
}; };
/////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////
@ -64,190 +64,189 @@ static i2cDevice_t i2cHardwareMap[] = {
uint32_t i2cTimeoutUserCallback(void) uint32_t i2cTimeoutUserCallback(void)
{ {
i2cErrorCount++; i2cErrorCount++;
return false; return false;
} }
void i2cInit(I2CDevice device) void i2cInit(I2CDevice device)
{ {
i2cDevice_t *i2c; i2cDevice_t *i2c;
i2c = &(i2cHardwareMap[device]); i2c = &(i2cHardwareMap[device]);
I2C_TypeDef *I2Cx; I2C_TypeDef *I2Cx;
I2Cx = i2c->dev; I2Cx = i2c->dev;
IO_t scl = IOGetByTag(i2c->scl); IO_t scl = IOGetByTag(i2c->scl);
IO_t sda = IOGetByTag(i2c->sda); IO_t sda = IOGetByTag(i2c->sda);
RCC_ClockCmd(i2c->rcc, ENABLE); RCC_ClockCmd(i2c->rcc, ENABLE);
RCC_I2CCLKConfig(I2Cx == I2C2 ? RCC_I2C2CLK_SYSCLK : RCC_I2C1CLK_SYSCLK); RCC_I2CCLKConfig(I2Cx == I2C2 ? RCC_I2C2CLK_SYSCLK : RCC_I2C1CLK_SYSCLK);
IOConfigGPIOAF(scl, IO_CONFIG(GPIO_Mode_AF, GPIO_Speed_50MHz, GPIO_OType_OD, GPIO_PuPd_NOPULL), GPIO_AF_4); IOConfigGPIOAF(scl, IO_CONFIG(GPIO_Mode_AF, GPIO_Speed_50MHz, GPIO_OType_OD, GPIO_PuPd_NOPULL), GPIO_AF_4);
IOConfigGPIOAF(sda, IO_CONFIG(GPIO_Mode_AF, GPIO_Speed_50MHz, GPIO_OType_OD, GPIO_PuPd_NOPULL), GPIO_AF_4); IOConfigGPIOAF(sda, IO_CONFIG(GPIO_Mode_AF, GPIO_Speed_50MHz, GPIO_OType_OD, GPIO_PuPd_NOPULL), GPIO_AF_4);
I2C_InitTypeDef i2cInit = { I2C_InitTypeDef i2cInit = {
.I2C_Mode = I2C_Mode_I2C, .I2C_Mode = I2C_Mode_I2C,
.I2C_AnalogFilter = I2C_AnalogFilter_Enable, .I2C_AnalogFilter = I2C_AnalogFilter_Enable,
.I2C_DigitalFilter = 0x00, .I2C_DigitalFilter = 0x00,
.I2C_OwnAddress1 = 0x00, .I2C_OwnAddress1 = 0x00,
.I2C_Ack = I2C_Ack_Enable, .I2C_Ack = I2C_Ack_Enable,
.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit, .I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit,
.I2C_Timing = 0x00E0257A, // 400 Khz, 72Mhz Clock, Analog Filter Delay ON, Rise 100, Fall 10. .I2C_Timing = i2c->overClock ?
//.I2C_Timing = 0x8000050B; 0x00500E30 : // 1000 Khz, 72Mhz Clock, Analog Filter Delay ON, Setup 40, Hold 4.
}; 0x00E0257A, // 400 Khz, 72Mhz Clock, Analog Filter Delay ON, Rise 100, Fall 10.
//.I2C_Timing = 0x8000050B;
};
if (i2c->overClock) { I2C_Init(I2Cx, &i2cInit);
i2cInit.I2C_Timing = 0x00500E30; // 1000 Khz, 72Mhz Clock, Analog Filter Delay ON, Setup 40, Hold 4.
}
I2C_Init(I2Cx, &i2cInit);
I2C_Cmd(I2Cx, ENABLE); I2C_Cmd(I2Cx, ENABLE);
} }
uint16_t i2cGetErrorCounter(void) uint16_t i2cGetErrorCounter(void)
{ {
return i2cErrorCount; return i2cErrorCount;
} }
bool i2cWrite(I2CDevice device, uint8_t addr_, uint8_t reg, uint8_t data) bool i2cWrite(I2CDevice device, uint8_t addr_, uint8_t reg, uint8_t data)
{ {
addr_ <<= 1; addr_ <<= 1;
I2C_TypeDef *I2Cx; I2C_TypeDef *I2Cx;
I2Cx = i2cHardwareMap[device].dev; I2Cx = i2cHardwareMap[device].dev;
/* Test on BUSY Flag */ /* Test on BUSY Flag */
i2cTimeout = I2C_LONG_TIMEOUT; i2cTimeout = I2C_LONG_TIMEOUT;
while (I2C_GetFlagStatus(I2Cx, I2C_ISR_BUSY) != RESET) { while (I2C_GetFlagStatus(I2Cx, I2C_ISR_BUSY) != RESET) {
if ((i2cTimeout--) == 0) { if ((i2cTimeout--) == 0) {
return i2cTimeoutUserCallback(); return i2cTimeoutUserCallback();
} }
} }
/* Configure slave address, nbytes, reload, end mode and start or stop generation */ /* Configure slave address, nbytes, reload, end mode and start or stop generation */
I2C_TransferHandling(I2Cx, addr_, 1, I2C_Reload_Mode, I2C_Generate_Start_Write); I2C_TransferHandling(I2Cx, addr_, 1, I2C_Reload_Mode, I2C_Generate_Start_Write);
/* Wait until TXIS flag is set */ /* Wait until TXIS flag is set */
i2cTimeout = I2C_LONG_TIMEOUT; i2cTimeout = I2C_LONG_TIMEOUT;
while (I2C_GetFlagStatus(I2Cx, I2C_ISR_TXIS) == RESET) { while (I2C_GetFlagStatus(I2Cx, I2C_ISR_TXIS) == RESET) {
if ((i2cTimeout--) == 0) { if ((i2cTimeout--) == 0) {
return i2cTimeoutUserCallback(); return i2cTimeoutUserCallback();
} }
} }
/* Send Register address */ /* Send Register address */
I2C_SendData(I2Cx, (uint8_t) reg); I2C_SendData(I2Cx, (uint8_t) reg);
/* Wait until TCR flag is set */ /* Wait until TCR flag is set */
i2cTimeout = I2C_LONG_TIMEOUT; i2cTimeout = I2C_LONG_TIMEOUT;
while (I2C_GetFlagStatus(I2Cx, I2C_ISR_TCR) == RESET) while (I2C_GetFlagStatus(I2Cx, I2C_ISR_TCR) == RESET)
{ {
if ((i2cTimeout--) == 0) { if ((i2cTimeout--) == 0) {
return i2cTimeoutUserCallback(); return i2cTimeoutUserCallback();
} }
} }
/* Configure slave address, nbytes, reload, end mode and start or stop generation */ /* Configure slave address, nbytes, reload, end mode and start or stop generation */
I2C_TransferHandling(I2Cx, addr_, 1, I2C_AutoEnd_Mode, I2C_No_StartStop); I2C_TransferHandling(I2Cx, addr_, 1, I2C_AutoEnd_Mode, I2C_No_StartStop);
/* Wait until TXIS flag is set */ /* Wait until TXIS flag is set */
i2cTimeout = I2C_LONG_TIMEOUT; i2cTimeout = I2C_LONG_TIMEOUT;
while (I2C_GetFlagStatus(I2Cx, I2C_ISR_TXIS) == RESET) { while (I2C_GetFlagStatus(I2Cx, I2C_ISR_TXIS) == RESET) {
if ((i2cTimeout--) == 0) { if ((i2cTimeout--) == 0) {
return i2cTimeoutUserCallback(); return i2cTimeoutUserCallback();
} }
} }
/* Write data to TXDR */ /* Write data to TXDR */
I2C_SendData(I2Cx, data); I2C_SendData(I2Cx, data);
/* Wait until STOPF flag is set */ /* Wait until STOPF flag is set */
i2cTimeout = I2C_LONG_TIMEOUT; i2cTimeout = I2C_LONG_TIMEOUT;
while (I2C_GetFlagStatus(I2Cx, I2C_ISR_STOPF) == RESET) { while (I2C_GetFlagStatus(I2Cx, I2C_ISR_STOPF) == RESET) {
if ((i2cTimeout--) == 0) { if ((i2cTimeout--) == 0) {
return i2cTimeoutUserCallback(); return i2cTimeoutUserCallback();
} }
} }
/* Clear STOPF flag */ /* Clear STOPF flag */
I2C_ClearFlag(I2Cx, I2C_ICR_STOPCF); I2C_ClearFlag(I2Cx, I2C_ICR_STOPCF);
return true; return true;
} }
bool i2cRead(I2CDevice device, uint8_t addr_, uint8_t reg, uint8_t len, uint8_t* buf) bool i2cRead(I2CDevice device, uint8_t addr_, uint8_t reg, uint8_t len, uint8_t* buf)
{ {
addr_ <<= 1; addr_ <<= 1;
I2C_TypeDef *I2Cx; I2C_TypeDef *I2Cx;
I2Cx = i2cHardwareMap[device].dev; I2Cx = i2cHardwareMap[device].dev;
/* Test on BUSY Flag */ /* Test on BUSY Flag */
i2cTimeout = I2C_LONG_TIMEOUT; i2cTimeout = I2C_LONG_TIMEOUT;
while (I2C_GetFlagStatus(I2Cx, I2C_ISR_BUSY) != RESET) { while (I2C_GetFlagStatus(I2Cx, I2C_ISR_BUSY) != RESET) {
if ((i2cTimeout--) == 0) { if ((i2cTimeout--) == 0) {
return i2cTimeoutUserCallback(); return i2cTimeoutUserCallback();
} }
} }
/* Configure slave address, nbytes, reload, end mode and start or stop generation */ /* Configure slave address, nbytes, reload, end mode and start or stop generation */
I2C_TransferHandling(I2Cx, addr_, 1, I2C_SoftEnd_Mode, I2C_Generate_Start_Write); I2C_TransferHandling(I2Cx, addr_, 1, I2C_SoftEnd_Mode, I2C_Generate_Start_Write);
/* Wait until TXIS flag is set */ /* Wait until TXIS flag is set */
i2cTimeout = I2C_LONG_TIMEOUT; i2cTimeout = I2C_LONG_TIMEOUT;
while (I2C_GetFlagStatus(I2Cx, I2C_ISR_TXIS) == RESET) { while (I2C_GetFlagStatus(I2Cx, I2C_ISR_TXIS) == RESET) {
if ((i2cTimeout--) == 0) { if ((i2cTimeout--) == 0) {
return i2cTimeoutUserCallback(); return i2cTimeoutUserCallback();
} }
} }
/* Send Register address */ /* Send Register address */
I2C_SendData(I2Cx, (uint8_t) reg); I2C_SendData(I2Cx, (uint8_t) reg);
/* Wait until TC flag is set */ /* Wait until TC flag is set */
i2cTimeout = I2C_LONG_TIMEOUT; i2cTimeout = I2C_LONG_TIMEOUT;
while (I2C_GetFlagStatus(I2Cx, I2C_ISR_TC) == RESET) { while (I2C_GetFlagStatus(I2Cx, I2C_ISR_TC) == RESET) {
if ((i2cTimeout--) == 0) { if ((i2cTimeout--) == 0) {
return i2cTimeoutUserCallback(); return i2cTimeoutUserCallback();
} }
} }
/* Configure slave address, nbytes, reload, end mode and start or stop generation */ /* Configure slave address, nbytes, reload, end mode and start or stop generation */
I2C_TransferHandling(I2Cx, addr_, len, I2C_AutoEnd_Mode, I2C_Generate_Start_Read); I2C_TransferHandling(I2Cx, addr_, len, I2C_AutoEnd_Mode, I2C_Generate_Start_Read);
/* Wait until all data are received */ /* Wait until all data are received */
while (len) { while (len) {
/* Wait until RXNE flag is set */ /* Wait until RXNE flag is set */
i2cTimeout = I2C_LONG_TIMEOUT; i2cTimeout = I2C_LONG_TIMEOUT;
while (I2C_GetFlagStatus(I2Cx, I2C_ISR_RXNE) == RESET) { while (I2C_GetFlagStatus(I2Cx, I2C_ISR_RXNE) == RESET) {
if ((i2cTimeout--) == 0) { if ((i2cTimeout--) == 0) {
return i2cTimeoutUserCallback(); return i2cTimeoutUserCallback();
} }
} }
/* Read data from RXDR */ /* Read data from RXDR */
*buf = I2C_ReceiveData(I2Cx); *buf = I2C_ReceiveData(I2Cx);
/* Point to the next location where the byte read will be saved */ /* Point to the next location where the byte read will be saved */
buf++; buf++;
/* Decrement the read bytes counter */ /* Decrement the read bytes counter */
len--; len--;
} }
/* Wait until STOPF flag is set */ /* Wait until STOPF flag is set */
i2cTimeout = I2C_LONG_TIMEOUT; i2cTimeout = I2C_LONG_TIMEOUT;
while (I2C_GetFlagStatus(I2Cx, I2C_ISR_STOPF) == RESET) { while (I2C_GetFlagStatus(I2Cx, I2C_ISR_STOPF) == RESET) {
if ((i2cTimeout--) == 0) { if ((i2cTimeout--) == 0) {
return i2cTimeoutUserCallback(); return i2cTimeoutUserCallback();
} }
} }
/* Clear STOPF flag */ /* Clear STOPF flag */
I2C_ClearFlag(I2Cx, I2C_ICR_STOPCF); I2C_ClearFlag(I2Cx, I2C_ICR_STOPCF);
/* If all operations OK */ /* If all operations OK */
return true; return true;
} }
#endif #endif

View file

@ -36,7 +36,7 @@
#define GPIO_AF_SPI2 GPIO_AF_5 #define GPIO_AF_SPI2 GPIO_AF_5
#endif #endif
#ifndef GPIO_AF_SPI3 #ifndef GPIO_AF_SPI3
#define GPIO_AF_SPI3 GPIO_AF_6 #define GPIO_AF_SPI3 GPIO_AF_6
#endif #endif
#endif #endif
@ -72,169 +72,169 @@
#endif #endif
static spiDevice_t spiHardwareMap[] = { static spiDevice_t spiHardwareMap[] = {
#if defined(STM32F10X) #if defined(STM32F1)
{ .dev = SPI1, .nss = IO_TAG(SPI1_NSS_PIN), .sck = IO_TAG(SPI1_SCK_PIN), .miso = IO_TAG(SPI1_MISO_PIN), .mosi = IO_TAG(SPI1_MOSI_PIN), .rcc = RCC_APB2(SPI1), .af = 0, false }, { .dev = SPI1, .nss = IO_TAG(SPI1_NSS_PIN), .sck = IO_TAG(SPI1_SCK_PIN), .miso = IO_TAG(SPI1_MISO_PIN), .mosi = IO_TAG(SPI1_MOSI_PIN), .rcc = RCC_APB2(SPI1), .af = 0, false },
{ .dev = SPI2, .nss = IO_TAG(SPI2_NSS_PIN), .sck = IO_TAG(SPI2_SCK_PIN), .miso = IO_TAG(SPI2_MISO_PIN), .mosi = IO_TAG(SPI2_MOSI_PIN), .rcc = RCC_APB1(SPI2), .af = 0, false }, { .dev = SPI2, .nss = IO_TAG(SPI2_NSS_PIN), .sck = IO_TAG(SPI2_SCK_PIN), .miso = IO_TAG(SPI2_MISO_PIN), .mosi = IO_TAG(SPI2_MOSI_PIN), .rcc = RCC_APB1(SPI2), .af = 0, false },
#else #else
{ .dev = SPI1, .nss = IO_TAG(SPI1_NSS_PIN), .sck = IO_TAG(SPI1_SCK_PIN), .miso = IO_TAG(SPI1_MISO_PIN), .mosi = IO_TAG(SPI1_MOSI_PIN), .rcc = RCC_APB2(SPI1), .af = GPIO_AF_SPI1, false }, { .dev = SPI1, .nss = IO_TAG(SPI1_NSS_PIN), .sck = IO_TAG(SPI1_SCK_PIN), .miso = IO_TAG(SPI1_MISO_PIN), .mosi = IO_TAG(SPI1_MOSI_PIN), .rcc = RCC_APB2(SPI1), .af = GPIO_AF_SPI1, false },
{ .dev = SPI2, .nss = IO_TAG(SPI2_NSS_PIN), .sck = IO_TAG(SPI2_SCK_PIN), .miso = IO_TAG(SPI2_MISO_PIN), .mosi = IO_TAG(SPI2_MOSI_PIN), .rcc = RCC_APB1(SPI2), .af = GPIO_AF_SPI2, false }, { .dev = SPI2, .nss = IO_TAG(SPI2_NSS_PIN), .sck = IO_TAG(SPI2_SCK_PIN), .miso = IO_TAG(SPI2_MISO_PIN), .mosi = IO_TAG(SPI2_MOSI_PIN), .rcc = RCC_APB1(SPI2), .af = GPIO_AF_SPI2, false },
#endif #endif
#if defined(STM32F303xC) || defined(STM32F40_41xxx) || defined(STM32F411xE) #if defined(STM32F3) || defined(STM32F4)
{ .dev = SPI3, .nss = IO_TAG(SPI3_NSS_PIN), .sck = IO_TAG(SPI3_SCK_PIN), .miso = IO_TAG(SPI3_MISO_PIN), .mosi = IO_TAG(SPI3_MOSI_PIN), .rcc = RCC_APB1(SPI3), .af = GPIO_AF_SPI3, false } { .dev = SPI3, .nss = IO_TAG(SPI3_NSS_PIN), .sck = IO_TAG(SPI3_SCK_PIN), .miso = IO_TAG(SPI3_MISO_PIN), .mosi = IO_TAG(SPI3_MOSI_PIN), .rcc = RCC_APB1(SPI3), .af = GPIO_AF_SPI3, false }
#endif #endif
}; };
SPIDevice spiDeviceByInstance(SPI_TypeDef *instance) SPIDevice spiDeviceByInstance(SPI_TypeDef *instance)
{ {
if (instance == SPI1) if (instance == SPI1)
return SPIDEV_1; return SPIDEV_1;
if (instance == SPI2) if (instance == SPI2)
return SPIDEV_2; return SPIDEV_2;
if (instance == SPI3) if (instance == SPI3)
return SPIDEV_3; return SPIDEV_3;
return SPIINVALID; return SPIINVALID;
} }
void spiInitDevice(SPIDevice device) void spiInitDevice(SPIDevice device)
{ {
SPI_InitTypeDef spiInit; SPI_InitTypeDef spiInit;
spiDevice_t *spi = &(spiHardwareMap[device]); spiDevice_t *spi = &(spiHardwareMap[device]);
#ifdef SDCARD_SPI_INSTANCE #ifdef SDCARD_SPI_INSTANCE
if (spi->dev == SDCARD_SPI_INSTANCE) if (spi->dev == SDCARD_SPI_INSTANCE)
spi->sdcard = true; spi->sdcard = true;
#endif #endif
// Enable SPI clock // Enable SPI clock
RCC_ClockCmd(spi->rcc, ENABLE); RCC_ClockCmd(spi->rcc, ENABLE);
RCC_ResetCmd(spi->rcc, ENABLE); RCC_ResetCmd(spi->rcc, ENABLE);
IOInit(IOGetByTag(spi->sck), OWNER_SYSTEM, RESOURCE_SPI); IOInit(IOGetByTag(spi->sck), OWNER_SYSTEM, RESOURCE_SPI);
IOInit(IOGetByTag(spi->miso), OWNER_SYSTEM, RESOURCE_SPI); IOInit(IOGetByTag(spi->miso), OWNER_SYSTEM, RESOURCE_SPI);
IOInit(IOGetByTag(spi->mosi), OWNER_SYSTEM, RESOURCE_SPI); IOInit(IOGetByTag(spi->mosi), OWNER_SYSTEM, RESOURCE_SPI);
#if defined(STM32F303xC) || defined(STM32F4) #if defined(STM32F303xC) || defined(STM32F4)
if (spi->sdcard) { if (spi->sdcard) {
IOConfigGPIOAF(IOGetByTag(spi->sck), SPI_IO_AF_SCK_CFG, spi->af); IOConfigGPIOAF(IOGetByTag(spi->sck), SPI_IO_AF_SCK_CFG, spi->af);
IOConfigGPIOAF(IOGetByTag(spi->miso), SPI_IO_AF_MISO_CFG, spi->af); IOConfigGPIOAF(IOGetByTag(spi->miso), SPI_IO_AF_MISO_CFG, spi->af);
} }
else { else {
IOConfigGPIOAF(IOGetByTag(spi->sck), SPI_IO_AF_CFG, spi->af); IOConfigGPIOAF(IOGetByTag(spi->sck), SPI_IO_AF_CFG, spi->af);
IOConfigGPIOAF(IOGetByTag(spi->miso), SPI_IO_AF_CFG, spi->af); IOConfigGPIOAF(IOGetByTag(spi->miso), SPI_IO_AF_CFG, spi->af);
} }
IOConfigGPIOAF(IOGetByTag(spi->mosi), SPI_IO_AF_CFG, spi->af); IOConfigGPIOAF(IOGetByTag(spi->mosi), SPI_IO_AF_CFG, spi->af);
if (spi->nss) if (spi->nss)
IOConfigGPIOAF(IOGetByTag(spi->nss), SPI_IO_CS_CFG, spi->af); IOConfigGPIOAF(IOGetByTag(spi->nss), SPI_IO_CS_CFG, spi->af);
#endif #endif
#if defined(STM32F10X) #if defined(STM32F10X)
IOConfigGPIO(IOGetByTag(spi->sck), SPI_IO_AF_CFG); IOConfigGPIO(IOGetByTag(spi->sck), SPI_IO_AF_CFG);
IOConfigGPIO(IOGetByTag(spi->miso), SPI_IO_AF_CFG); IOConfigGPIO(IOGetByTag(spi->miso), SPI_IO_AF_CFG);
IOConfigGPIO(IOGetByTag(spi->mosi), SPI_IO_AF_CFG); IOConfigGPIO(IOGetByTag(spi->mosi), SPI_IO_AF_CFG);
if (spi->nss) if (spi->nss)
IOConfigGPIO(IOGetByTag(spi->nss), SPI_IO_CS_CFG); IOConfigGPIO(IOGetByTag(spi->nss), SPI_IO_CS_CFG);
#endif #endif
// Init SPI hardware // Init SPI hardware
SPI_I2S_DeInit(spi->dev); SPI_I2S_DeInit(spi->dev);
spiInit.SPI_Mode = SPI_Mode_Master; spiInit.SPI_Mode = SPI_Mode_Master;
spiInit.SPI_Direction = SPI_Direction_2Lines_FullDuplex; spiInit.SPI_Direction = SPI_Direction_2Lines_FullDuplex;
spiInit.SPI_DataSize = SPI_DataSize_8b; spiInit.SPI_DataSize = SPI_DataSize_8b;
spiInit.SPI_NSS = SPI_NSS_Soft; spiInit.SPI_NSS = SPI_NSS_Soft;
spiInit.SPI_FirstBit = SPI_FirstBit_MSB; spiInit.SPI_FirstBit = SPI_FirstBit_MSB;
spiInit.SPI_CRCPolynomial = 7; spiInit.SPI_CRCPolynomial = 7;
spiInit.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_8; spiInit.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_8;
if (spi->sdcard) { if (spi->sdcard) {
spiInit.SPI_CPOL = SPI_CPOL_Low; spiInit.SPI_CPOL = SPI_CPOL_Low;
spiInit.SPI_CPHA = SPI_CPHA_1Edge; spiInit.SPI_CPHA = SPI_CPHA_1Edge;
} }
else { else {
spiInit.SPI_CPOL = SPI_CPOL_High; spiInit.SPI_CPOL = SPI_CPOL_High;
spiInit.SPI_CPHA = SPI_CPHA_2Edge; spiInit.SPI_CPHA = SPI_CPHA_2Edge;
} }
#ifdef STM32F303xC #ifdef STM32F303xC
// Configure for 8-bit reads. // Configure for 8-bit reads.
SPI_RxFIFOThresholdConfig(spi->dev, SPI_RxFIFOThreshold_QF); SPI_RxFIFOThresholdConfig(spi->dev, SPI_RxFIFOThreshold_QF);
#endif #endif
SPI_Init(spi->dev, &spiInit); SPI_Init(spi->dev, &spiInit);
SPI_Cmd(spi->dev, ENABLE); SPI_Cmd(spi->dev, ENABLE);
if (spi->nss) if (spi->nss)
IOHi(IOGetByTag(spi->nss)); IOHi(IOGetByTag(spi->nss));
} }
bool spiInit(SPIDevice device) bool spiInit(SPIDevice device)
{ {
switch (device) switch (device)
{ {
case SPIINVALID: case SPIINVALID:
return false; return false;
case SPIDEV_1: case SPIDEV_1:
#ifdef USE_SPI_DEVICE_1 #ifdef USE_SPI_DEVICE_1
spiInitDevice(device); spiInitDevice(device);
return true; return true;
#else #else
break; break;
#endif #endif
case SPIDEV_2: case SPIDEV_2:
#ifdef USE_SPI_DEVICE_2 #ifdef USE_SPI_DEVICE_2
spiInitDevice(device); spiInitDevice(device);
return true; return true;
#else #else
break; break;
#endif #endif
case SPIDEV_3: case SPIDEV_3:
#if defined(USE_SPI_DEVICE_3) && (defined(STM32F303xC) || defined(STM32F4)) #if defined(USE_SPI_DEVICE_3) && (defined(STM32F303xC) || defined(STM32F4))
spiInitDevice(device); spiInitDevice(device);
return true; return true;
#else #else
break; break;
#endif #endif
} }
return false; return false;
} }
uint32_t spiTimeoutUserCallback(SPI_TypeDef *instance) uint32_t spiTimeoutUserCallback(SPI_TypeDef *instance)
{ {
SPIDevice device = spiDeviceByInstance(instance); SPIDevice device = spiDeviceByInstance(instance);
if (device == SPIINVALID) if (device == SPIINVALID)
return -1; return -1;
spiHardwareMap[device].errorCount++; spiHardwareMap[device].errorCount++;
return spiHardwareMap[device].errorCount; return spiHardwareMap[device].errorCount;
} }
// return uint8_t value or -1 when failure // return uint8_t value or -1 when failure
uint8_t spiTransferByte(SPI_TypeDef *instance, uint8_t data) uint8_t spiTransferByte(SPI_TypeDef *instance, uint8_t data)
{ {
uint16_t spiTimeout = 1000; uint16_t spiTimeout = 1000;
while (SPI_I2S_GetFlagStatus(instance, SPI_I2S_FLAG_TXE) == RESET) while (SPI_I2S_GetFlagStatus(instance, SPI_I2S_FLAG_TXE) == RESET)
if ((spiTimeout--) == 0) if ((spiTimeout--) == 0)
return spiTimeoutUserCallback(instance); return spiTimeoutUserCallback(instance);
#ifdef STM32F303xC #ifdef STM32F303xC
SPI_SendData8(instance, data); SPI_SendData8(instance, data);
#else #else
SPI_I2S_SendData(instance, data); SPI_I2S_SendData(instance, data);
#endif #endif
spiTimeout = 1000; spiTimeout = 1000;
while (SPI_I2S_GetFlagStatus(instance, SPI_I2S_FLAG_RXNE) == RESET) while (SPI_I2S_GetFlagStatus(instance, SPI_I2S_FLAG_RXNE) == RESET)
if ((spiTimeout--) == 0) if ((spiTimeout--) == 0)
return spiTimeoutUserCallback(instance); return spiTimeoutUserCallback(instance);
#ifdef STM32F303xC #ifdef STM32F303xC
return ((uint8_t)SPI_ReceiveData8(instance)); return ((uint8_t)SPI_ReceiveData8(instance));
#else #else
return ((uint8_t)SPI_I2S_ReceiveData(instance)); return ((uint8_t)SPI_I2S_ReceiveData(instance));
#endif #endif
} }
@ -244,118 +244,115 @@ uint8_t spiTransferByte(SPI_TypeDef *instance, uint8_t data)
bool spiIsBusBusy(SPI_TypeDef *instance) bool spiIsBusBusy(SPI_TypeDef *instance)
{ {
#ifdef STM32F303xC #ifdef STM32F303xC
return SPI_GetTransmissionFIFOStatus(instance) != SPI_TransmissionFIFOStatus_Empty || SPI_I2S_GetFlagStatus(instance, SPI_I2S_FLAG_BSY) == SET; return SPI_GetTransmissionFIFOStatus(instance) != SPI_TransmissionFIFOStatus_Empty || SPI_I2S_GetFlagStatus(instance, SPI_I2S_FLAG_BSY) == SET;
#else #else
return SPI_I2S_GetFlagStatus(instance, SPI_I2S_FLAG_TXE) == RESET || SPI_I2S_GetFlagStatus(instance, SPI_I2S_FLAG_BSY) == SET; return SPI_I2S_GetFlagStatus(instance, SPI_I2S_FLAG_TXE) == RESET || SPI_I2S_GetFlagStatus(instance, SPI_I2S_FLAG_BSY) == SET;
#endif #endif
} }
bool spiTransfer(SPI_TypeDef *instance, uint8_t *out, const uint8_t *in, int len) bool spiTransfer(SPI_TypeDef *instance, uint8_t *out, const uint8_t *in, int len)
{ {
uint16_t spiTimeout = 1000; uint16_t spiTimeout = 1000;
uint8_t b; uint8_t b;
instance->DR; instance->DR;
while (len--) { while (len--) {
b = in ? *(in++) : 0xFF; b = in ? *(in++) : 0xFF;
while (SPI_I2S_GetFlagStatus(instance, SPI_I2S_FLAG_TXE) == RESET) { while (SPI_I2S_GetFlagStatus(instance, SPI_I2S_FLAG_TXE) == RESET) {
if ((spiTimeout--) == 0) if ((spiTimeout--) == 0)
return spiTimeoutUserCallback(instance); return spiTimeoutUserCallback(instance);
} }
#ifdef STM32F303xC #ifdef STM32F303xC
SPI_SendData8(instance, b); SPI_SendData8(instance, b);
//SPI_I2S_SendData16(instance, b);
#else #else
SPI_I2S_SendData(instance, b); SPI_I2S_SendData(instance, b);
#endif #endif
spiTimeout = 1000; spiTimeout = 1000;
while (SPI_I2S_GetFlagStatus(instance, SPI_I2S_FLAG_RXNE) == RESET) { while (SPI_I2S_GetFlagStatus(instance, SPI_I2S_FLAG_RXNE) == RESET) {
if ((spiTimeout--) == 0) if ((spiTimeout--) == 0)
return spiTimeoutUserCallback(instance); return spiTimeoutUserCallback(instance);
} }
#ifdef STM32F303xC #ifdef STM32F303xC
b = SPI_ReceiveData8(instance); b = SPI_ReceiveData8(instance);
//b = SPI_I2S_ReceiveData16(instance);
#else #else
b = SPI_I2S_ReceiveData(instance); b = SPI_I2S_ReceiveData(instance);
#endif #endif
if (out) if (out)
*(out++) = b; *(out++) = b;
} }
return true; return true;
} }
void spiSetDivisor(SPI_TypeDef *instance, uint16_t divisor) void spiSetDivisor(SPI_TypeDef *instance, uint16_t divisor)
{ {
#define BR_CLEAR_MASK 0xFFC7 #define BR_CLEAR_MASK 0xFFC7
uint16_t tempRegister; uint16_t tempRegister;
SPI_Cmd(instance, DISABLE); SPI_Cmd(instance, DISABLE);
tempRegister = instance->CR1; tempRegister = instance->CR1;
switch (divisor) { switch (divisor) {
case 2: case 2:
tempRegister &= BR_CLEAR_MASK; tempRegister &= BR_CLEAR_MASK;
tempRegister |= SPI_BaudRatePrescaler_2; tempRegister |= SPI_BaudRatePrescaler_2;
break; break;
case 4: case 4:
tempRegister &= BR_CLEAR_MASK; tempRegister &= BR_CLEAR_MASK;
tempRegister |= SPI_BaudRatePrescaler_4; tempRegister |= SPI_BaudRatePrescaler_4;
break; break;
case 8: case 8:
tempRegister &= BR_CLEAR_MASK; tempRegister &= BR_CLEAR_MASK;
tempRegister |= SPI_BaudRatePrescaler_8; tempRegister |= SPI_BaudRatePrescaler_8;
break; break;
case 16: case 16:
tempRegister &= BR_CLEAR_MASK; tempRegister &= BR_CLEAR_MASK;
tempRegister |= SPI_BaudRatePrescaler_16; tempRegister |= SPI_BaudRatePrescaler_16;
break; break;
case 32: case 32:
tempRegister &= BR_CLEAR_MASK; tempRegister &= BR_CLEAR_MASK;
tempRegister |= SPI_BaudRatePrescaler_32; tempRegister |= SPI_BaudRatePrescaler_32;
break; break;
case 64: case 64:
tempRegister &= BR_CLEAR_MASK; tempRegister &= BR_CLEAR_MASK;
tempRegister |= SPI_BaudRatePrescaler_64; tempRegister |= SPI_BaudRatePrescaler_64;
break; break;
case 128: case 128:
tempRegister &= BR_CLEAR_MASK; tempRegister &= BR_CLEAR_MASK;
tempRegister |= SPI_BaudRatePrescaler_128; tempRegister |= SPI_BaudRatePrescaler_128;
break; break;
case 256: case 256:
tempRegister &= BR_CLEAR_MASK; tempRegister &= BR_CLEAR_MASK;
tempRegister |= SPI_BaudRatePrescaler_256; tempRegister |= SPI_BaudRatePrescaler_256;
break; break;
} }
instance->CR1 = tempRegister; instance->CR1 = tempRegister;
SPI_Cmd(instance, ENABLE); SPI_Cmd(instance, ENABLE);
} }
uint16_t spiGetErrorCounter(SPI_TypeDef *instance) uint16_t spiGetErrorCounter(SPI_TypeDef *instance)
{ {
SPIDevice device = spiDeviceByInstance(instance); SPIDevice device = spiDeviceByInstance(instance);
if (device == SPIINVALID) if (device == SPIINVALID)
return 0; return 0;
return spiHardwareMap[device].errorCount; return spiHardwareMap[device].errorCount;
} }
void spiResetErrorCounter(SPI_TypeDef *instance) void spiResetErrorCounter(SPI_TypeDef *instance)
{ {
SPIDevice device = spiDeviceByInstance(instance); SPIDevice device = spiDeviceByInstance(instance);
if (device != SPIINVALID) if (device != SPIINVALID)
spiHardwareMap[device].errorCount = 0; spiHardwareMap[device].errorCount = 0;
} }

View file

@ -17,60 +17,58 @@
#pragma once #pragma once
#define SPI_0_28125MHZ_CLOCK_DIVIDER 256
#define SPI_0_5625MHZ_CLOCK_DIVIDER 128
#define SPI_18MHZ_CLOCK_DIVIDER 2
#define SPI_9MHZ_CLOCK_DIVIDER 4
#include <stdint.h> #include <stdint.h>
#include "io.h" #include "io.h"
#include "rcc.h" #include "rcc.h"
#if defined(STM32F40_41xxx) || defined (STM32F411xE) || defined(STM32F303xC) #if defined(STM32F4) || defined(STM32F3)
#define SPI_IO_AF_CFG IO_CONFIG(GPIO_Mode_AF, GPIO_Speed_50MHz, GPIO_OType_PP, GPIO_PuPd_NOPULL) #define SPI_IO_AF_CFG IO_CONFIG(GPIO_Mode_AF, GPIO_Speed_50MHz, GPIO_OType_PP, GPIO_PuPd_NOPULL)
#define SPI_IO_AF_SCK_CFG IO_CONFIG(GPIO_Mode_AF, GPIO_Speed_50MHz, GPIO_OType_PP, GPIO_PuPd_DOWN) #define SPI_IO_AF_SCK_CFG IO_CONFIG(GPIO_Mode_AF, GPIO_Speed_50MHz, GPIO_OType_PP, GPIO_PuPd_DOWN)
#define SPI_IO_AF_MISO_CFG IO_CONFIG(GPIO_Mode_AF, GPIO_Speed_50MHz, GPIO_OType_PP, GPIO_PuPd_UP) #define SPI_IO_AF_MISO_CFG IO_CONFIG(GPIO_Mode_AF, GPIO_Speed_50MHz, GPIO_OType_PP, GPIO_PuPd_UP)
#define SPI_IO_CS_CFG IO_CONFIG(GPIO_Mode_OUT, GPIO_Speed_50MHz, GPIO_OType_PP, GPIO_PuPd_NOPULL) #define SPI_IO_CS_CFG IO_CONFIG(GPIO_Mode_OUT, GPIO_Speed_50MHz, GPIO_OType_PP, GPIO_PuPd_NOPULL)
#elif defined(STM32F10X) #elif defined(STM32F1)
#define SPI_IO_AF_CFG IO_CONFIG(GPIO_Mode_AF_OD, GPIO_Speed_50MHz) #define SPI_IO_AF_CFG IO_CONFIG(GPIO_Mode_AF_OD, GPIO_Speed_50MHz)
#define SPI_IO_CS_CFG IO_CONFIG(GPIO_Mode_Out_OD, GPIO_Speed_50MHz) #define SPI_IO_CS_CFG IO_CONFIG(GPIO_Mode_Out_OD, GPIO_Speed_50MHz)
#else #else
#error "Unknown processor" #error "Unknown processor"
#endif #endif
#if defined(STM32F40_41xxx) || defined (STM32F411xE)
#define SPI_SLOW_CLOCK 128 //00.65625 MHz
#define SPI_STANDARD_CLOCK 8 //11.50000 MHz
#define SPI_FAST_CLOCK 4 //21.00000 MHz
#define SPI_ULTRAFAST_CLOCK 2 //42.00000 MHz
/*
Flash M25p16 tolerates 20mhz, SPI_CLOCK_FAST should sit around 20 or less.
*/
typedef enum {
SPI_CLOCK_INITIALIZATON = 256,
#if defined(STM32F4)
SPI_CLOCK_SLOW = 128, //00.65625 MHz
SPI_CLOCK_STANDARD = 8, //10.50000 MHz
SPI_CLOCK_FAST = 4, //21.00000 MHz
SPI_CLOCK_ULTRAFAST = 2, //42.00000 MHz
#else #else
SPI_CLOCK_SLOW = 128, //00.56250 MHz
#define SPI_SLOW_CLOCK 128 //00.56250 MHz SPI_CLOCK_STANDARD = 4, //09.00000 MHz
#define SPI_STANDARD_CLOCK 4 //09.00000 MHz SPI_CLOCK_FAST = 2, //18.00000 MHz
#define SPI_FAST_CLOCK 2 //18.00000 MHz SPI_CLOCK_ULTRAFAST = 2, //18.00000 MHz
#define SPI_ULTRAFAST_CLOCK 2 //18.00000 MHz
#endif #endif
} SPIClockDivider_e;
typedef enum SPIDevice { typedef enum SPIDevice {
SPIINVALID = -1, SPIINVALID = -1,
SPIDEV_1 = 0, SPIDEV_1 = 0,
SPIDEV_2, SPIDEV_2,
SPIDEV_3, SPIDEV_3,
SPIDEV_MAX = SPIDEV_3, SPIDEV_MAX = SPIDEV_3,
} SPIDevice; } SPIDevice;
typedef struct SPIDevice_s { typedef struct SPIDevice_s {
SPI_TypeDef *dev; SPI_TypeDef *dev;
ioTag_t nss; ioTag_t nss;
ioTag_t sck; ioTag_t sck;
ioTag_t mosi; ioTag_t mosi;
ioTag_t miso; ioTag_t miso;
rccPeriphTag_t rcc; rccPeriphTag_t rcc;
uint8_t af; uint8_t af;
volatile uint16_t errorCount; volatile uint16_t errorCount;
bool sdcard; bool sdcard;
} spiDevice_t; } spiDevice_t;
bool spiInit(SPIDevice device); bool spiInit(SPIDevice device);

View file

@ -33,6 +33,7 @@
#include "gpio.h" #include "gpio.h"
#include "exti.h" #include "exti.h"
#include "bus_i2c.h" #include "bus_i2c.h"
#include "bus_spi.h"
#include "sensors/boardalignment.h" #include "sensors/boardalignment.h"
#include "sensors/sensors.h" #include "sensors/sensors.h"
@ -42,7 +43,9 @@
#include "accgyro.h" #include "accgyro.h"
#include "accgyro_mpu.h" #include "accgyro_mpu.h"
#include "accgyro_mpu6500.h"
#include "accgyro_spi_mpu6500.h" #include "accgyro_spi_mpu6500.h"
#include "accgyro_spi_mpu9250.h"
#include "compass_ak8963.h" #include "compass_ak8963.h"
// This sensor is available in MPU-9250. // This sensor is available in MPU-9250.
@ -83,18 +86,10 @@
#define CNTL_MODE_SELF_TEST 0x08 #define CNTL_MODE_SELF_TEST 0x08
#define CNTL_MODE_FUSE_ROM 0x0F #define CNTL_MODE_FUSE_ROM 0x0F
typedef bool (*ak8963ReadRegisterFunc)(uint8_t addr_, uint8_t reg_, uint8_t len_, uint8_t *buf);
typedef bool (*ak8963WriteRegisterFunc)(uint8_t addr_, uint8_t reg_, uint8_t data);
typedef struct ak8963Configuration_s {
ak8963ReadRegisterFunc read;
ak8963WriteRegisterFunc write;
} ak8963Configuration_t;
ak8963Configuration_t ak8963config;
static float magGain[3] = { 1.0f, 1.0f, 1.0f }; static float magGain[3] = { 1.0f, 1.0f, 1.0f };
// FIXME pretend we have real MPU9250 support // FIXME pretend we have real MPU9250 support
// Is an separate MPU9250 driver really needed? The GYRO/ACC part between MPU6500 and MPU9250 is exactly the same.
#if defined(MPU6500_SPI_INSTANCE) && !defined(MPU9250_SPI_INSTANCE) #if defined(MPU6500_SPI_INSTANCE) && !defined(MPU9250_SPI_INSTANCE)
#define MPU9250_SPI_INSTANCE #define MPU9250_SPI_INSTANCE
#define verifympu9250WriteRegister mpu6500WriteRegister #define verifympu9250WriteRegister mpu6500WriteRegister
@ -102,30 +97,7 @@ static float magGain[3] = { 1.0f, 1.0f, 1.0f };
#define mpu9250ReadRegister mpu6500ReadRegister #define mpu9250ReadRegister mpu6500ReadRegister
#endif #endif
#ifdef USE_SPI #if defined(USE_SPI) && defined(MPU9250_SPI_INSTANCE)
bool ak8963SPIRead(uint8_t addr_, uint8_t reg_, uint8_t len_, uint8_t *buf)
{
mpu6500WriteRegister(MPU_RA_I2C_SLV0_ADDR, addr_ | READ_FLAG); // set I2C slave address for read
mpu6500WriteRegister(MPU_RA_I2C_SLV0_REG, reg_); // set I2C slave register
mpu6500WriteRegister(MPU_RA_I2C_SLV0_CTRL, len_ | 0x80); // read number of bytes
delay(8);
__disable_irq();
mpu6500ReadRegister(MPU_RA_EXT_SENS_DATA_00, len_, buf); // read I2C
__enable_irq();
return true;
}
bool ak8963SPIWrite(uint8_t addr_, uint8_t reg_, uint8_t data)
{
mpu6500WriteRegister(MPU_RA_I2C_SLV0_ADDR, addr_); // set I2C slave address for write
mpu6500WriteRegister(MPU_RA_I2C_SLV0_REG, reg_); // set I2C slave register
mpu6500WriteRegister(MPU_RA_I2C_SLV0_DO, data); // set I2C salve value
mpu6500WriteRegister(MPU_RA_I2C_SLV0_CTRL, 0x81); // write 1 byte
return true;
}
#endif
#ifdef SPRACINGF3EVO
typedef struct queuedReadState_s { typedef struct queuedReadState_s {
bool waiting; bool waiting;
@ -133,9 +105,36 @@ typedef struct queuedReadState_s {
uint32_t readStartedAt; // time read was queued in micros. uint32_t readStartedAt; // time read was queued in micros.
} queuedReadState_t; } queuedReadState_t;
typedef enum {
CHECK_STATUS = 0,
WAITING_FOR_STATUS,
WAITING_FOR_DATA
} ak8963ReadState_e;
static queuedReadState_t queuedRead = { false, 0, 0}; static queuedReadState_t queuedRead = { false, 0, 0};
bool ak8963SPIStartRead(uint8_t addr_, uint8_t reg_, uint8_t len_) bool ak8963SensorRead(uint8_t addr_, uint8_t reg_, uint8_t len_, uint8_t *buf)
{
verifympu9250WriteRegister(MPU_RA_I2C_SLV0_ADDR, addr_ | READ_FLAG); // set I2C slave address for read
verifympu9250WriteRegister(MPU_RA_I2C_SLV0_REG, reg_); // set I2C slave register
verifympu9250WriteRegister(MPU_RA_I2C_SLV0_CTRL, len_ | 0x80); // read number of bytes
delay(10);
__disable_irq();
mpu9250ReadRegister(MPU_RA_EXT_SENS_DATA_00, len_, buf); // read I2C
__enable_irq();
return true;
}
bool ak8963SensorWrite(uint8_t addr_, uint8_t reg_, uint8_t data)
{
verifympu9250WriteRegister(MPU_RA_I2C_SLV0_ADDR, addr_); // set I2C slave address for write
verifympu9250WriteRegister(MPU_RA_I2C_SLV0_REG, reg_); // set I2C slave register
verifympu9250WriteRegister(MPU_RA_I2C_SLV0_DO, data); // set I2C salve value
verifympu9250WriteRegister(MPU_RA_I2C_SLV0_CTRL, 0x81); // write 1 byte
return true;
}
bool ak8963SensorStartRead(uint8_t addr_, uint8_t reg_, uint8_t len_)
{ {
if (queuedRead.waiting) { if (queuedRead.waiting) {
return false; return false;
@ -153,7 +152,7 @@ bool ak8963SPIStartRead(uint8_t addr_, uint8_t reg_, uint8_t len_)
return true; return true;
} }
static uint32_t ak8963SPIQueuedReadTimeRemaining(void) static uint32_t ak8963SensorQueuedReadTimeRemaining(void)
{ {
if (!queuedRead.waiting) { if (!queuedRead.waiting) {
return 0; return 0;
@ -170,9 +169,9 @@ static uint32_t ak8963SPIQueuedReadTimeRemaining(void)
return timeRemaining; return timeRemaining;
} }
bool ak8963SPICompleteRead(uint8_t *buf) bool ak8963SensorCompleteRead(uint8_t *buf)
{ {
uint32_t timeRemaining = ak8963SPIQueuedReadTimeRemaining(); uint32_t timeRemaining = ak8963SensorQueuedReadTimeRemaining();
if (timeRemaining > 0) { if (timeRemaining > 0) {
delayMicroseconds(timeRemaining); delayMicroseconds(timeRemaining);
@ -183,18 +182,15 @@ bool ak8963SPICompleteRead(uint8_t *buf)
mpu9250ReadRegister(MPU_RA_EXT_SENS_DATA_00, queuedRead.len, buf); // read I2C buffer mpu9250ReadRegister(MPU_RA_EXT_SENS_DATA_00, queuedRead.len, buf); // read I2C buffer
return true; return true;
} }
#else
#endif bool ak8963SensorRead(uint8_t addr_, uint8_t reg_, uint8_t len, uint8_t* buf)
#ifdef USE_I2C
bool c_i2cWrite(uint8_t addr_, uint8_t reg_, uint8_t data)
{ {
return i2cWrite(MAG_I2C_INSTANCE, addr_, reg_, data); return i2cRead(MAG_I2C_INSTANCE, addr_, reg_, len, buf);
} }
bool c_i2cRead(uint8_t addr_, uint8_t reg_, uint8_t len, uint8_t* buf) bool ak8963SensorWrite(uint8_t addr_, uint8_t reg_, uint8_t data)
{ {
return i2cRead(MAG_I2C_INSTANCE, addr_, reg_, len, buf); return i2cWrite(MAG_I2C_INSTANCE, addr_, reg_, data);
} }
#endif #endif
@ -203,43 +199,28 @@ bool ak8963Detect(mag_t *mag)
bool ack = false; bool ack = false;
uint8_t sig = 0; uint8_t sig = 0;
#ifdef USE_I2C #if defined(USE_SPI) && defined(MPU9250_SPI_INSTANCE)
// check for AK8963 on I2C bus // initialze I2C master via SPI bus (MPU9250)
ack = i2cRead(MAG_I2C_INSTANCE, AK8963_MAG_I2C_ADDRESS, AK8963_MAG_REG_WHO_AM_I, 1, &sig);
ack = verifympu9250WriteRegister(MPU_RA_INT_PIN_CFG, 0x10); // INT_ANYRD_2CLEAR
delay(10);
ack = verifympu9250WriteRegister(MPU_RA_I2C_MST_CTRL, 0x0D); // I2C multi-master / 400kHz
delay(10);
ack = verifympu9250WriteRegister(MPU_RA_USER_CTRL, 0x30); // I2C master mode, SPI mode only
delay(10);
#endif
// check for AK8963
ack = ak8963SensorRead(AK8963_MAG_I2C_ADDRESS, AK8963_MAG_REG_WHO_AM_I, 1, &sig);
if (ack && sig == AK8963_Device_ID) // 0x48 / 01001000 / 'H' if (ack && sig == AK8963_Device_ID) // 0x48 / 01001000 / 'H'
{ {
ak8963config.read = c_i2cRead;
ak8963config.write = c_i2cWrite;
mag->init = ak8963Init; mag->init = ak8963Init;
mag->read = ak8963Read; mag->read = ak8963Read;
return true; return true;
} }
#endif
#ifdef USE_SPI
// check for AK8963 on I2C master via SPI bus (as part of MPU9250)
ack = mpu6500WriteRegister(MPU_RA_INT_PIN_CFG, 0x10); // INT_ANYRD_2CLEAR
delay(10);
ack = mpu6500WriteRegister(MPU_RA_I2C_MST_CTRL, 0x0D); // I2C multi-master / 400kHz
delay(10);
ack = mpu6500WriteRegister(MPU_RA_USER_CTRL, 0x30); // I2C master mode, SPI mode only
delay(10);
ack = ak8963SPIRead(AK8963_MAG_I2C_ADDRESS, AK8963_MAG_REG_WHO_AM_I, 1, &sig);
if (ack && sig == AK8963_Device_ID) // 0x48 / 01001000 / 'H'
{
ak8963config.read = ak8963SPIRead;
ak8963config.write = ak8963SPIWrite;
mag->init = ak8963Init;
mag->read = ak8963Read;
return true;
}
#endif
return false; return false;
} }
@ -250,49 +231,43 @@ void ak8963Init()
uint8_t calibration[3]; uint8_t calibration[3];
uint8_t status; uint8_t status;
ack = ak8963config.write(AK8963_MAG_I2C_ADDRESS, AK8963_MAG_REG_CNTL, CNTL_MODE_POWER_DOWN); // power down before entering fuse mode ack = ak8963SensorWrite(AK8963_MAG_I2C_ADDRESS, AK8963_MAG_REG_CNTL, CNTL_MODE_POWER_DOWN); // power down before entering fuse mode
delay(20); delay(20);
ack = ak8963config.write(AK8963_MAG_I2C_ADDRESS, AK8963_MAG_REG_CNTL, CNTL_MODE_FUSE_ROM); // Enter Fuse ROM access mode ack = ak8963SensorWrite(AK8963_MAG_I2C_ADDRESS, AK8963_MAG_REG_CNTL, CNTL_MODE_FUSE_ROM); // Enter Fuse ROM access mode
delay(10); delay(10);
ack = ak8963config.read(AK8963_MAG_I2C_ADDRESS, AK8963_MAG_REG_ASAX, sizeof(calibration), calibration); // Read the x-, y-, and z-axis calibration values ack = ak8963SensorRead(AK8963_MAG_I2C_ADDRESS, AK8963_MAG_REG_ASAX, sizeof(calibration), calibration); // Read the x-, y-, and z-axis calibration values
delay(10); delay(10);
magGain[X] = (((((float)(int8_t)calibration[X] - 128) / 256) + 1) * 30); magGain[X] = (((((float)(int8_t)calibration[X] - 128) / 256) + 1) * 30);
magGain[Y] = (((((float)(int8_t)calibration[Y] - 128) / 256) + 1) * 30); magGain[Y] = (((((float)(int8_t)calibration[Y] - 128) / 256) + 1) * 30);
magGain[Z] = (((((float)(int8_t)calibration[Z] - 128) / 256) + 1) * 30); magGain[Z] = (((((float)(int8_t)calibration[Z] - 128) / 256) + 1) * 30);
ack = ak8963config.write(AK8963_MAG_I2C_ADDRESS, AK8963_MAG_REG_CNTL, CNTL_MODE_POWER_DOWN); // power down after reading. ack = ak8963SensorWrite(AK8963_MAG_I2C_ADDRESS, AK8963_MAG_REG_CNTL, CNTL_MODE_POWER_DOWN); // power down after reading.
delay(10); delay(10);
// Clear status registers // Clear status registers
ack = ak8963config.read(AK8963_MAG_I2C_ADDRESS, AK8963_MAG_REG_STATUS1, 1, &status); ack = ak8963SensorRead(AK8963_MAG_I2C_ADDRESS, AK8963_MAG_REG_STATUS1, 1, &status);
ack = ak8963config.read(AK8963_MAG_I2C_ADDRESS, AK8963_MAG_REG_STATUS2, 1, &status); ack = ak8963SensorRead(AK8963_MAG_I2C_ADDRESS, AK8963_MAG_REG_STATUS2, 1, &status);
// Trigger first measurement // Trigger first measurement
#ifdef SPRACINGF3EVO #if defined(USE_SPI) && defined(MPU9250_SPI_INSTANCE)
ack = ak8963config.write(AK8963_MAG_I2C_ADDRESS, AK8963_MAG_REG_CNTL, CNTL_MODE_CONT1); ack = ak8963SensorWrite(AK8963_MAG_I2C_ADDRESS, AK8963_MAG_REG_CNTL, CNTL_MODE_CONT1);
#else #else
ack = ak8963config.write(AK8963_MAG_I2C_ADDRESS, AK8963_MAG_REG_CNTL, CNTL_MODE_ONCE); ack = ak8963SensorWrite(AK8963_MAG_I2C_ADDRESS, AK8963_MAG_REG_CNTL, CNTL_MODE_ONCE);
#endif #endif
} }
typedef enum {
CHECK_STATUS = 0,
WAITING_FOR_STATUS,
WAITING_FOR_DATA
} ak8963ReadState_e;
bool ak8963Read(int16_t *magData) bool ak8963Read(int16_t *magData)
{ {
bool ack; bool ack = false;
uint8_t buf[7]; uint8_t buf[7];
#ifdef SPRACINGF3EVO #if defined(USE_SPI) && defined(MPU9250_SPI_INSTANCE)
// we currently need a different approach on the SPRacingF3EVO which has an MPU9250 connected via SPI. // we currently need a different approach for the MPU9250 connected via SPI.
// we cannot use the ak8963SPIRead() method, it is to slow and blocks for far too long. // we cannot use the ak8963SensorRead() method for SPI, it is to slow and blocks for far too long.
static ak8963ReadState_e state = CHECK_STATUS; static ak8963ReadState_e state = CHECK_STATUS;
@ -301,17 +276,17 @@ bool ak8963Read(int16_t *magData)
restart: restart:
switch (state) { switch (state) {
case CHECK_STATUS: case CHECK_STATUS:
ak8963SPIStartRead(AK8963_MAG_I2C_ADDRESS, AK8963_MAG_REG_STATUS1, 1); ak8963SensorStartRead(AK8963_MAG_I2C_ADDRESS, AK8963_MAG_REG_STATUS1, 1);
state++; state++;
return false; return false;
case WAITING_FOR_STATUS: { case WAITING_FOR_STATUS: {
uint32_t timeRemaining = ak8963SPIQueuedReadTimeRemaining(); uint32_t timeRemaining = ak8963SensorQueuedReadTimeRemaining();
if (timeRemaining) { if (timeRemaining) {
return false; return false;
} }
ack = ak8963SPICompleteRead(&buf[0]); ack = ak8963SensorCompleteRead(&buf[0]);
uint8_t status = buf[0]; uint8_t status = buf[0];
@ -327,7 +302,7 @@ restart:
// read the 6 bytes of data and the status2 register // read the 6 bytes of data and the status2 register
ak8963SPIStartRead(AK8963_MAG_I2C_ADDRESS, AK8963_MAG_REG_HXL, 7); ak8963SensorStartRead(AK8963_MAG_I2C_ADDRESS, AK8963_MAG_REG_HXL, 7);
state++; state++;
@ -335,31 +310,16 @@ restart:
} }
case WAITING_FOR_DATA: { case WAITING_FOR_DATA: {
uint32_t timeRemaining = ak8963SPIQueuedReadTimeRemaining(); uint32_t timeRemaining = ak8963SensorQueuedReadTimeRemaining();
if (timeRemaining) { if (timeRemaining) {
return false; return false;
} }
ack = ak8963SPICompleteRead(&buf[0]); ack = ak8963SensorCompleteRead(&buf[0]);
uint8_t status2 = buf[6];
if (!ack || (status2 & STATUS2_DATA_ERROR) || (status2 & STATUS2_MAG_SENSOR_OVERFLOW)) {
return false;
}
magData[X] = -(int16_t)(buf[1] << 8 | buf[0]) * magGain[X];
magData[Y] = -(int16_t)(buf[3] << 8 | buf[2]) * magGain[Y];
magData[Z] = -(int16_t)(buf[5] << 8 | buf[4]) * magGain[Z];
state = CHECK_STATUS;
return true;
} }
} }
return false;
#else #else
ack = ak8963config.read(AK8963_MAG_I2C_ADDRESS, AK8963_MAG_REG_STATUS1, 1, &buf[0]); ack = ak8963SensorRead(AK8963_MAG_I2C_ADDRESS, AK8963_MAG_REG_STATUS1, 1, &buf[0]);
uint8_t status = buf[0]; uint8_t status = buf[0];
@ -367,8 +327,8 @@ restart:
return false; return false;
} }
ack = ak8963config.read(AK8963_MAG_I2C_ADDRESS, AK8963_MAG_REG_HXL, 7, &buf[0]); ack = ak8963SensorRead(AK8963_MAG_I2C_ADDRESS, AK8963_MAG_REG_HXL, 7, &buf[0]);
#endif
uint8_t status2 = buf[6]; uint8_t status2 = buf[6];
if (!ack || (status2 & STATUS2_DATA_ERROR) || (status2 & STATUS2_MAG_SENSOR_OVERFLOW)) { if (!ack || (status2 & STATUS2_DATA_ERROR) || (status2 & STATUS2_MAG_SENSOR_OVERFLOW)) {
return false; return false;
@ -378,6 +338,10 @@ restart:
magData[Y] = -(int16_t)(buf[3] << 8 | buf[2]) * magGain[Y]; magData[Y] = -(int16_t)(buf[3] << 8 | buf[2]) * magGain[Y];
magData[Z] = -(int16_t)(buf[5] << 8 | buf[4]) * magGain[Z]; magData[Z] = -(int16_t)(buf[5] << 8 | buf[4]) * magGain[Z];
return ak8963config.write(AK8963_MAG_I2C_ADDRESS, AK8963_MAG_REG_CNTL, CNTL_MODE_ONCE); // start reading again #if defined(USE_SPI) && defined(MPU9250_SPI_INSTANCE)
state = CHECK_STATUS;
return true;
#else
return ak8963SensorWrite(AK8963_MAG_I2C_ADDRESS, AK8963_MAG_REG_CNTL, CNTL_MODE_ONCE); // start reading again
#endif #endif
} }

View file

@ -64,7 +64,7 @@ bool ak8975detect(mag_t *mag)
bool ack = false; bool ack = false;
uint8_t sig = 0; uint8_t sig = 0;
ack = i2cRead(MAG_I2C_INSTANCE, AK8975_MAG_I2C_ADDRESS, AK8975_MAG_REG_WHO_AM_I, 1, &sig); ack = i2cRead(MAG_I2C_INSTANCE, AK8975_MAG_I2C_ADDRESS, AK8975_MAG_REG_WHO_AM_I, 1, &sig);
if (!ack || sig != 'H') // 0x48 / 01001000 / 'H' if (!ack || sig != 'H') // 0x48 / 01001000 / 'H'
return false; return false;
@ -86,24 +86,24 @@ void ak8975Init()
UNUSED(ack); UNUSED(ack);
ack = i2cWrite(MAG_I2C_INSTANCE, AK8975_MAG_I2C_ADDRESS, AK8975_MAG_REG_CNTL, 0x00); // power down before entering fuse mode ack = i2cWrite(MAG_I2C_INSTANCE, AK8975_MAG_I2C_ADDRESS, AK8975_MAG_REG_CNTL, 0x00); // power down before entering fuse mode
delay(20); delay(20);
ack = i2cWrite(MAG_I2C_INSTANCE, AK8975_MAG_I2C_ADDRESS, AK8975_MAG_REG_CNTL, 0x0F); // Enter Fuse ROM access mode ack = i2cWrite(MAG_I2C_INSTANCE, AK8975_MAG_I2C_ADDRESS, AK8975_MAG_REG_CNTL, 0x0F); // Enter Fuse ROM access mode
delay(10); delay(10);
ack = i2cRead(MAG_I2C_INSTANCE, AK8975_MAG_I2C_ADDRESS, AK8975A_ASAX, 3, &buffer[0]); // Read the x-, y-, and z-axis calibration values ack = i2cRead(MAG_I2C_INSTANCE, AK8975_MAG_I2C_ADDRESS, AK8975A_ASAX, 3, &buffer[0]); // Read the x-, y-, and z-axis calibration values
delay(10); delay(10);
ack = i2cWrite(MAG_I2C_INSTANCE, AK8975_MAG_I2C_ADDRESS, AK8975_MAG_REG_CNTL, 0x00); // power down after reading. ack = i2cWrite(MAG_I2C_INSTANCE, AK8975_MAG_I2C_ADDRESS, AK8975_MAG_REG_CNTL, 0x00); // power down after reading.
delay(10); delay(10);
// Clear status registers // Clear status registers
ack = i2cRead(MAG_I2C_INSTANCE, AK8975_MAG_I2C_ADDRESS, AK8975_MAG_REG_STATUS1, 1, &status); ack = i2cRead(MAG_I2C_INSTANCE, AK8975_MAG_I2C_ADDRESS, AK8975_MAG_REG_STATUS1, 1, &status);
ack = i2cRead(MAG_I2C_INSTANCE, AK8975_MAG_I2C_ADDRESS, AK8975_MAG_REG_STATUS2, 1, &status); ack = i2cRead(MAG_I2C_INSTANCE, AK8975_MAG_I2C_ADDRESS, AK8975_MAG_REG_STATUS2, 1, &status);
// Trigger first measurement // Trigger first measurement
ack = i2cWrite(MAG_I2C_INSTANCE, AK8975_MAG_I2C_ADDRESS, AK8975_MAG_REG_CNTL, 0x01); ack = i2cWrite(MAG_I2C_INSTANCE, AK8975_MAG_I2C_ADDRESS, AK8975_MAG_REG_CNTL, 0x01);
} }
#define BIT_STATUS1_REG_DATA_READY (1 << 0) #define BIT_STATUS1_REG_DATA_READY (1 << 0)
@ -118,13 +118,13 @@ bool ak8975Read(int16_t *magData)
uint8_t status; uint8_t status;
uint8_t buf[6]; uint8_t buf[6];
ack = i2cRead(MAG_I2C_INSTANCE, AK8975_MAG_I2C_ADDRESS, AK8975_MAG_REG_STATUS1, 1, &status); ack = i2cRead(MAG_I2C_INSTANCE, AK8975_MAG_I2C_ADDRESS, AK8975_MAG_REG_STATUS1, 1, &status);
if (!ack || (status & BIT_STATUS1_REG_DATA_READY) == 0) { if (!ack || (status & BIT_STATUS1_REG_DATA_READY) == 0) {
return false; return false;
} }
#if 1 // USE_I2C_SINGLE_BYTE_READS #if 1 // USE_I2C_SINGLE_BYTE_READS
ack = i2cRead(MAG_I2C_INSTANCE, AK8975_MAG_I2C_ADDRESS, AK8975_MAG_REG_HXL, 6, buf); // read from AK8975_MAG_REG_HXL to AK8975_MAG_REG_HZH ack = i2cRead(MAG_I2C_INSTANCE, AK8975_MAG_I2C_ADDRESS, AK8975_MAG_REG_HXL, 6, buf); // read from AK8975_MAG_REG_HXL to AK8975_MAG_REG_HZH
#else #else
for (uint8_t i = 0; i < 6; i++) { for (uint8_t i = 0; i < 6; i++) {
ack = i2cRead(AK8975_MAG_I2C_ADDRESS, AK8975_MAG_REG_HXL + i, 1, &buf[i]); // read from AK8975_MAG_REG_HXL to AK8975_MAG_REG_HZH ack = i2cRead(AK8975_MAG_I2C_ADDRESS, AK8975_MAG_REG_HXL + i, 1, &buf[i]); // read from AK8975_MAG_REG_HXL to AK8975_MAG_REG_HZH
@ -134,7 +134,7 @@ bool ak8975Read(int16_t *magData)
} }
#endif #endif
ack = i2cRead(MAG_I2C_INSTANCE, AK8975_MAG_I2C_ADDRESS, AK8975_MAG_REG_STATUS2, 1, &status); ack = i2cRead(MAG_I2C_INSTANCE, AK8975_MAG_I2C_ADDRESS, AK8975_MAG_REG_STATUS2, 1, &status);
if (!ack) { if (!ack) {
return false; return false;
} }
@ -152,6 +152,6 @@ bool ak8975Read(int16_t *magData)
magData[Z] = -(int16_t)(buf[5] << 8 | buf[4]) * 4; magData[Z] = -(int16_t)(buf[5] << 8 | buf[4]) * 4;
ack = i2cWrite(MAG_I2C_INSTANCE, AK8975_MAG_I2C_ADDRESS, AK8975_MAG_REG_CNTL, 0x01); // start reading again ack = i2cWrite(MAG_I2C_INSTANCE, AK8975_MAG_I2C_ADDRESS, AK8975_MAG_REG_CNTL, 0x01); // start reading again
return true; return true;
} }

View file

@ -204,7 +204,7 @@ bool hmc5883lDetect(mag_t* mag, const hmc5883Config_t *hmc5883ConfigToUse)
hmc5883Config = hmc5883ConfigToUse; hmc5883Config = hmc5883ConfigToUse;
ack = i2cRead(MAG_I2C_INSTANCE, MAG_ADDRESS, 0x0A, 1, &sig); ack = i2cRead(MAG_I2C_INSTANCE, MAG_ADDRESS, 0x0A, 1, &sig);
if (!ack || sig != 'H') if (!ack || sig != 'H')
return false; return false;
@ -241,15 +241,15 @@ void hmc5883lInit(void)
} }
delay(50); delay(50);
i2cWrite(MAG_I2C_INSTANCE, MAG_ADDRESS, HMC58X3_R_CONFA, 0x010 + HMC_POS_BIAS); // Reg A DOR = 0x010 + MS1, MS0 set to pos bias i2cWrite(MAG_I2C_INSTANCE, MAG_ADDRESS, HMC58X3_R_CONFA, 0x010 + HMC_POS_BIAS); // Reg A DOR = 0x010 + MS1, MS0 set to pos bias
// Note that the very first measurement after a gain change maintains the same gain as the previous setting. // Note that the very first measurement after a gain change maintains the same gain as the previous setting.
// The new gain setting is effective from the second measurement and on. // The new gain setting is effective from the second measurement and on.
i2cWrite(MAG_I2C_INSTANCE, MAG_ADDRESS, HMC58X3_R_CONFB, 0x60); // Set the Gain to 2.5Ga (7:5->011) i2cWrite(MAG_I2C_INSTANCE, MAG_ADDRESS, HMC58X3_R_CONFB, 0x60); // Set the Gain to 2.5Ga (7:5->011)
delay(100); delay(100);
hmc5883lRead(magADC); hmc5883lRead(magADC);
for (i = 0; i < 10; i++) { // Collect 10 samples for (i = 0; i < 10; i++) { // Collect 10 samples
i2cWrite(MAG_I2C_INSTANCE, MAG_ADDRESS, HMC58X3_R_MODE, 1); i2cWrite(MAG_I2C_INSTANCE, MAG_ADDRESS, HMC58X3_R_MODE, 1);
delay(50); delay(50);
hmc5883lRead(magADC); // Get the raw values in case the scales have already been changed. hmc5883lRead(magADC); // Get the raw values in case the scales have already been changed.
@ -267,9 +267,9 @@ void hmc5883lInit(void)
} }
// Apply the negative bias. (Same gain) // Apply the negative bias. (Same gain)
i2cWrite(MAG_I2C_INSTANCE, MAG_ADDRESS, HMC58X3_R_CONFA, 0x010 + HMC_NEG_BIAS); // Reg A DOR = 0x010 + MS1, MS0 set to negative bias. i2cWrite(MAG_I2C_INSTANCE, MAG_ADDRESS, HMC58X3_R_CONFA, 0x010 + HMC_NEG_BIAS); // Reg A DOR = 0x010 + MS1, MS0 set to negative bias.
for (i = 0; i < 10; i++) { for (i = 0; i < 10; i++) {
i2cWrite(MAG_I2C_INSTANCE, MAG_ADDRESS, HMC58X3_R_MODE, 1); i2cWrite(MAG_I2C_INSTANCE, MAG_ADDRESS, HMC58X3_R_MODE, 1);
delay(50); delay(50);
hmc5883lRead(magADC); // Get the raw values in case the scales have already been changed. hmc5883lRead(magADC); // Get the raw values in case the scales have already been changed.
@ -291,9 +291,9 @@ void hmc5883lInit(void)
magGain[Z] = fabsf(660.0f * HMC58X3_Z_SELF_TEST_GAUSS * 2.0f * 10.0f / xyz_total[Z]); magGain[Z] = fabsf(660.0f * HMC58X3_Z_SELF_TEST_GAUSS * 2.0f * 10.0f / xyz_total[Z]);
// leave test mode // leave test mode
i2cWrite(MAG_I2C_INSTANCE, MAG_ADDRESS, HMC58X3_R_CONFA, 0x70); // Configuration Register A -- 0 11 100 00 num samples: 8 ; output rate: 15Hz ; normal measurement mode i2cWrite(MAG_I2C_INSTANCE, MAG_ADDRESS, HMC58X3_R_CONFA, 0x70); // Configuration Register A -- 0 11 100 00 num samples: 8 ; output rate: 15Hz ; normal measurement mode
i2cWrite(MAG_I2C_INSTANCE, MAG_ADDRESS, HMC58X3_R_CONFB, 0x20); // Configuration Register B -- 001 00000 configuration gain 1.3Ga i2cWrite(MAG_I2C_INSTANCE, MAG_ADDRESS, HMC58X3_R_CONFB, 0x20); // Configuration Register B -- 001 00000 configuration gain 1.3Ga
i2cWrite(MAG_I2C_INSTANCE, MAG_ADDRESS, HMC58X3_R_MODE, 0x00); // Mode register -- 000000 00 continuous Conversion Mode i2cWrite(MAG_I2C_INSTANCE, MAG_ADDRESS, HMC58X3_R_MODE, 0x00); // Mode register -- 000000 00 continuous Conversion Mode
delay(100); delay(100);
if (!bret) { // Something went wrong so get a best guess if (!bret) { // Something went wrong so get a best guess
@ -309,7 +309,7 @@ bool hmc5883lRead(int16_t *magData)
{ {
uint8_t buf[6]; uint8_t buf[6];
bool ack = i2cRead(MAG_I2C_INSTANCE, MAG_ADDRESS, MAG_DATA_REGISTER, 6, buf); bool ack = i2cRead(MAG_I2C_INSTANCE, MAG_ADDRESS, MAG_DATA_REGISTER, 6, buf);
if (!ack) { if (!ack) {
return false; return false;
} }

View file

@ -32,7 +32,7 @@ static dmaHandlers_t dmaHandlers;
void dmaNoOpHandler(DMA_Stream_TypeDef *stream) void dmaNoOpHandler(DMA_Stream_TypeDef *stream)
{ {
UNUSED(stream); UNUSED(stream);
} }
void DMA1_Stream2_IRQHandler(void) void DMA1_Stream2_IRQHandler(void)

View file

@ -95,7 +95,7 @@ static void m25p16_writeEnable()
static uint8_t m25p16_readStatus() static uint8_t m25p16_readStatus()
{ {
uint8_t command[2] = {M25P16_INSTRUCTION_READ_STATUS_REG, 0}; uint8_t command[2] = { M25P16_INSTRUCTION_READ_STATUS_REG, 0 };
uint8_t in[2]; uint8_t in[2];
ENABLE_M25P16; ENABLE_M25P16;
@ -134,7 +134,7 @@ bool m25p16_waitForReady(uint32_t timeoutMillis)
*/ */
static bool m25p16_readIdentification() static bool m25p16_readIdentification()
{ {
uint8_t out[] = { M25P16_INSTRUCTION_RDID, 0, 0, 0}; uint8_t out[] = { M25P16_INSTRUCTION_RDID, 0, 0, 0 };
uint8_t in[4]; uint8_t in[4];
uint32_t chipID; uint32_t chipID;
@ -210,7 +210,7 @@ bool m25p16_init()
#ifndef M25P16_SPI_SHARED #ifndef M25P16_SPI_SHARED
//Maximum speed for standard READ command is 20mHz, other commands tolerate 25mHz //Maximum speed for standard READ command is 20mHz, other commands tolerate 25mHz
spiSetDivisor(M25P16_SPI_INSTANCE, SPI_18MHZ_CLOCK_DIVIDER); spiSetDivisor(M25P16_SPI_INSTANCE, SPI_CLOCK_FAST);
#endif #endif
return m25p16_readIdentification(); return m25p16_readIdentification();

View file

@ -31,15 +31,15 @@ static const IO_t pin = DEFIO_IO(INVERTER);
void initInverter(void) void initInverter(void)
{ {
IOInit(pin, OWNER_SYSTEM, RESOURCE_OUTPUT); IOInit(pin, OWNER_SYSTEM, RESOURCE_OUTPUT);
IOConfigGPIO(pin, IOCFG_OUT_PP); IOConfigGPIO(pin, IOCFG_OUT_PP);
inverterSet(false); inverterSet(false);
} }
void inverterSet(bool on) void inverterSet(bool on)
{ {
IOWrite(pin, on); IOWrite(pin, on);
} }
#endif #endif

View file

@ -55,11 +55,11 @@ uint8_t max7456_send(uint8_t add, uint8_t data) {
} }
void max7456_init(uint8_t video_system) { void max7456_init(uint8_t video_system)
{
uint8_t max_screen_rows; uint8_t max_screen_rows;
uint8_t srdata = 0; uint8_t srdata = 0;
uint16_t x; uint16_t x;
char buf[LINE];
#ifdef MAX7456_SPI_CS_PIN #ifdef MAX7456_SPI_CS_PIN
max7456CsPin = IOGetByTag(IO_TAG(MAX7456_SPI_CS_PIN)); max7456CsPin = IOGetByTag(IO_TAG(MAX7456_SPI_CS_PIN));
@ -68,7 +68,7 @@ void max7456_init(uint8_t video_system) {
IOConfigGPIO(max7456CsPin, SPI_IO_CS_CFG); IOConfigGPIO(max7456CsPin, SPI_IO_CS_CFG);
//Minimum spi clock period for max7456 is 100ns (10Mhz) //Minimum spi clock period for max7456 is 100ns (10Mhz)
spiSetDivisor(MAX7456_SPI_INSTANCE, SPI_9MHZ_CLOCK_DIVIDER); spiSetDivisor(MAX7456_SPI_INSTANCE, SPI_CLOCK_STANDARD);
delay(1000); delay(1000);
// force soft reset on Max7456 // force soft reset on Max7456
@ -77,10 +77,10 @@ void max7456_init(uint8_t video_system) {
delay(100); delay(100);
srdata = max7456_send(0xA0, 0xFF); srdata = max7456_send(0xA0, 0xFF);
if ((0x01 & srdata) == 0x01){ //PAL if ((0x01 & srdata) == 0x01) { //PAL
video_signal_type = VIDEO_MODE_PAL; video_signal_type = VIDEO_MODE_PAL;
} }
else if((0x02 & srdata) == 0x02){ //NTSC else if ((0x02 & srdata) == 0x02) { //NTSC
video_signal_type = VIDEO_MODE_NTSC; video_signal_type = VIDEO_MODE_NTSC;
} }

View file

@ -31,7 +31,7 @@
#include "pwm_rx.h" #include "pwm_rx.h"
#include "pwm_mapping.h" #include "pwm_mapping.h"
void pwmBrushedMotorConfig(const timerHardware_t *timerHardware, uint8_t motorIndex, uint16_t motorPwmRate, uint16_t idlePulse); void pwmBrushedMotorConfig(const timerHardware_t *timerHardware, uint8_t motorIndex, uint16_t motorPwmRate);
void pwmBrushlessMotorConfig(const timerHardware_t *timerHardware, uint8_t motorIndex, uint16_t motorPwmRate, uint16_t idlePulse); void pwmBrushlessMotorConfig(const timerHardware_t *timerHardware, uint8_t motorIndex, uint16_t motorPwmRate, uint16_t idlePulse);
void pwmFastPwmMotorConfig(const timerHardware_t *timerHardware, uint8_t motorIndex, uint8_t fastPwmProtocolType, uint16_t motorPwmRate, uint16_t idlePulse); void pwmFastPwmMotorConfig(const timerHardware_t *timerHardware, uint8_t motorIndex, uint8_t fastPwmProtocolType, uint16_t motorPwmRate, uint16_t idlePulse);
void pwmServoConfig(const timerHardware_t *timerHardware, uint8_t servoIndex, uint16_t servoPwmRate, uint16_t servoCenterPulse); void pwmServoConfig(const timerHardware_t *timerHardware, uint8_t servoIndex, uint16_t servoPwmRate, uint16_t servoCenterPulse);
@ -306,7 +306,7 @@ pwmOutputConfiguration_t *pwmInit(drv_pwm_config_t *init)
if (type == MAP_TO_PPM_INPUT) { if (type == MAP_TO_PPM_INPUT) {
#if defined(SPARKY) || defined(ALIENFLIGHTF3) #if defined(SPARKY) || defined(ALIENFLIGHTF3)
if (init->useFastPwm || init->pwmProtocolType == PWM_TYPE_BRUSHED) { if (init->useFastPwm || init->pwmProtocolType == PWM_TYPE_BRUSHED) {
ppmAvoidPWMTimerClash(timerHardwarePtr, TIM2); ppmAvoidPWMTimerClash(timerHardwarePtr, TIM2);
} }
#endif #endif
@ -327,7 +327,7 @@ pwmOutputConfiguration_t *pwmInit(drv_pwm_config_t *init)
pwmFastPwmMotorConfig(timerHardwarePtr, pwmOutputConfiguration.motorCount, init->pwmProtocolType, init->motorPwmRate, init->idlePulse); pwmFastPwmMotorConfig(timerHardwarePtr, pwmOutputConfiguration.motorCount, init->pwmProtocolType, init->motorPwmRate, init->idlePulse);
pwmOutputConfiguration.portConfigurations[pwmOutputConfiguration.outputCount].flags = PWM_PF_MOTOR | PWM_PF_OUTPUT_PROTOCOL_ONESHOT|PWM_PF_OUTPUT_PROTOCOL_PWM ; pwmOutputConfiguration.portConfigurations[pwmOutputConfiguration.outputCount].flags = PWM_PF_MOTOR | PWM_PF_OUTPUT_PROTOCOL_ONESHOT|PWM_PF_OUTPUT_PROTOCOL_PWM ;
} else if (init->pwmProtocolType == PWM_TYPE_BRUSHED) { } else if (init->pwmProtocolType == PWM_TYPE_BRUSHED) {
pwmBrushedMotorConfig(timerHardwarePtr, pwmOutputConfiguration.motorCount, init->motorPwmRate, init->idlePulse); pwmBrushedMotorConfig(timerHardwarePtr, pwmOutputConfiguration.motorCount, init->motorPwmRate);
pwmOutputConfiguration.portConfigurations[pwmOutputConfiguration.outputCount].flags = PWM_PF_MOTOR | PWM_PF_MOTOR_MODE_BRUSHED | PWM_PF_OUTPUT_PROTOCOL_PWM; pwmOutputConfiguration.portConfigurations[pwmOutputConfiguration.outputCount].flags = PWM_PF_MOTOR | PWM_PF_MOTOR_MODE_BRUSHED | PWM_PF_OUTPUT_PROTOCOL_PWM;
} else { } else {
pwmBrushlessMotorConfig(timerHardwarePtr, pwmOutputConfiguration.motorCount, init->motorPwmRate, init->idlePulse); pwmBrushlessMotorConfig(timerHardwarePtr, pwmOutputConfiguration.motorCount, init->motorPwmRate, init->idlePulse);

View file

@ -30,17 +30,14 @@
#error Invalid motor/servo/port configuration #error Invalid motor/servo/port configuration
#endif #endif
#define PULSE_1MS (1000) // 1ms pulse width #define PULSE_1MS (1000) // 1ms pulse width
#define MAX_INPUTS 8 #define MAX_INPUTS 8
#define PWM_TIMER_MHZ 1 #define PWM_TIMER_MHZ 1
#define PWM_BRUSHED_TIMER_MHZ 8 #define PWM_BRUSHED_TIMER_MHZ 24
#define MULTISHOT_TIMER_MHZ 72 #define MULTISHOT_TIMER_MHZ 72
#define ONESHOT42_TIMER_MHZ 24 #define ONESHOT42_TIMER_MHZ 24
#define ONESHOT125_TIMER_MHZ 8 #define ONESHOT125_TIMER_MHZ 8
typedef struct sonarIOConfig_s { typedef struct sonarIOConfig_s {
ioTag_t triggerTag; ioTag_t triggerTag;
@ -81,19 +78,19 @@ typedef struct drv_pwm_config_s {
} drv_pwm_config_t; } drv_pwm_config_t;
enum { enum {
MAP_TO_PPM_INPUT = 1, MAP_TO_PPM_INPUT = 1,
MAP_TO_PWM_INPUT, MAP_TO_PWM_INPUT,
MAP_TO_MOTOR_OUTPUT, MAP_TO_MOTOR_OUTPUT,
MAP_TO_SERVO_OUTPUT, MAP_TO_SERVO_OUTPUT,
}; };
typedef enum { typedef enum {
PWM_PF_NONE = 0, PWM_PF_NONE = 0,
PWM_PF_MOTOR = (1 << 0), PWM_PF_MOTOR = (1 << 0),
PWM_PF_SERVO = (1 << 1), PWM_PF_SERVO = (1 << 1),
PWM_PF_MOTOR_MODE_BRUSHED = (1 << 2), PWM_PF_MOTOR_MODE_BRUSHED = (1 << 2),
PWM_PF_OUTPUT_PROTOCOL_PWM = (1 << 3), PWM_PF_OUTPUT_PROTOCOL_PWM = (1 << 3),
PWM_PF_OUTPUT_PROTOCOL_ONESHOT = (1 << 4) PWM_PF_OUTPUT_PROTOCOL_ONESHOT = (1 << 4)
} pwmPortFlags_e; } pwmPortFlags_e;
enum {PWM_INVERTED = 1}; enum {PWM_INVERTED = 1};

View file

@ -170,12 +170,11 @@ void pwmCompleteOneshotMotorUpdate(uint8_t motorCount)
uint8_t index; uint8_t index;
TIM_TypeDef *lastTimerPtr = NULL; TIM_TypeDef *lastTimerPtr = NULL;
for(index = 0; index < motorCount; index++){ for (index = 0; index < motorCount; index++) {
// Force the timer to overflow if it's the first motor to output, or if we change timers // Force the timer to overflow if it's the first motor to output, or if we change timers
if(motors[index]->tim != lastTimerPtr){ if (motors[index]->tim != lastTimerPtr) {
lastTimerPtr = motors[index]->tim; lastTimerPtr = motors[index]->tim;
timerForceOverflow(motors[index]->tim); timerForceOverflow(motors[index]->tim);
} }
@ -185,10 +184,10 @@ void pwmCompleteOneshotMotorUpdate(uint8_t motorCount)
} }
} }
void pwmBrushedMotorConfig(const timerHardware_t *timerHardware, uint8_t motorIndex, uint16_t motorPwmRate, uint16_t idlePulse) void pwmBrushedMotorConfig(const timerHardware_t *timerHardware, uint8_t motorIndex, uint16_t motorPwmRate)
{ {
uint32_t hz = PWM_BRUSHED_TIMER_MHZ * 1000000; uint32_t hz = PWM_BRUSHED_TIMER_MHZ * 1000000;
motors[motorIndex] = pwmOutConfig(timerHardware, PWM_BRUSHED_TIMER_MHZ, hz / motorPwmRate, idlePulse); motors[motorIndex] = pwmOutConfig(timerHardware, PWM_BRUSHED_TIMER_MHZ, hz / motorPwmRate, 0);
motors[motorIndex]->pwmWritePtr = pwmWriteBrushed; motors[motorIndex]->pwmWritePtr = pwmWriteBrushed;
} }

View file

@ -339,8 +339,8 @@ static void pwmEdgeCallback(timerCCHandlerRec_t *cbRec, captureCompare_t capture
static void pwmGPIOConfig(ioTag_t pin, ioConfig_t mode) static void pwmGPIOConfig(ioTag_t pin, ioConfig_t mode)
{ {
IOInit(IOGetByTag(pin), OWNER_PWMINPUT, RESOURCE_INPUT); IOInit(IOGetByTag(pin), OWNER_PWMINPUT, RESOURCE_INPUT);
IOConfigGPIO(IOGetByTag(pin), mode); IOConfigGPIO(IOGetByTag(pin), mode);
} }
void pwmICConfig(TIM_TypeDef *tim, uint8_t channel, uint16_t polarity) void pwmICConfig(TIM_TypeDef *tim, uint8_t channel, uint16_t polarity)

View file

@ -23,7 +23,9 @@ typedef enum {
OWNER_FLASH, OWNER_FLASH,
OWNER_USB, OWNER_USB,
OWNER_BEEPER, OWNER_BEEPER,
OWNER_OSD OWNER_OSD,
OWNER_BARO,
OWNER_TOTAL_COUNT
} resourceOwner_t; } resourceOwner_t;
// Currently TIMER should be shared resource (softserial dualtimer and timerqueue needs to allocate timer channel, but pin can be used for other function) // Currently TIMER should be shared resource (softserial dualtimer and timerqueue needs to allocate timer channel, but pin can be used for other function)

View file

@ -56,7 +56,7 @@ void serialWriteBuf(serialPort_t *instance, uint8_t *data, int count)
} }
} }
uint8_t serialRxBytesWaiting(serialPort_t *instance) uint32_t serialRxBytesWaiting(serialPort_t *instance)
{ {
return instance->vTable->serialTotalRxWaiting(instance); return instance->vTable->serialTotalRxWaiting(instance);
} }

View file

@ -62,7 +62,7 @@ typedef struct serialPort_s {
struct serialPortVTable { struct serialPortVTable {
void (*serialWrite)(serialPort_t *instance, uint8_t ch); void (*serialWrite)(serialPort_t *instance, uint8_t ch);
uint8_t (*serialTotalRxWaiting)(serialPort_t *instance); uint32_t (*serialTotalRxWaiting)(serialPort_t *instance);
uint8_t (*serialTotalTxFree)(serialPort_t *instance); uint8_t (*serialTotalTxFree)(serialPort_t *instance);
uint8_t (*serialRead)(serialPort_t *instance); uint8_t (*serialRead)(serialPort_t *instance);
@ -81,7 +81,7 @@ struct serialPortVTable {
}; };
void serialWrite(serialPort_t *instance, uint8_t ch); void serialWrite(serialPort_t *instance, uint8_t ch);
uint8_t serialRxBytesWaiting(serialPort_t *instance); uint32_t serialRxBytesWaiting(serialPort_t *instance);
uint8_t serialTxBytesFree(serialPort_t *instance); uint8_t serialTxBytesFree(serialPort_t *instance);
void serialWriteBuf(serialPort_t *instance, uint8_t *data, int count); void serialWriteBuf(serialPort_t *instance, uint8_t *data, int count);
uint8_t serialRead(serialPort_t *instance); uint8_t serialRead(serialPort_t *instance);

View file

@ -96,7 +96,7 @@ void setTxSignal(softSerial_t *softSerial, uint8_t state)
if (state) { if (state) {
IOHi(softSerial->txIO); IOHi(softSerial->txIO);
} else { } else {
IOLo(softSerial->txIO); IOLo(softSerial->txIO);
} }
} }
@ -408,7 +408,7 @@ void onSerialRxPinChange(timerCCHandlerRec_t *cbRec, captureCompare_t capture)
} }
} }
uint8_t softSerialRxBytesWaiting(serialPort_t *instance) uint32_t softSerialRxBytesWaiting(serialPort_t *instance)
{ {
if ((instance->mode & MODE_RX) == 0) { if ((instance->mode & MODE_RX) == 0) {
return 0; return 0;

View file

@ -28,7 +28,7 @@ serialPort_t *openSoftSerial(softSerialPortIndex_e portIndex, serialReceiveCallb
// serialPort API // serialPort API
void softSerialWriteByte(serialPort_t *instance, uint8_t ch); void softSerialWriteByte(serialPort_t *instance, uint8_t ch);
uint8_t softSerialRxBytesWaiting(serialPort_t *instance); uint32_t softSerialRxBytesWaiting(serialPort_t *instance);
uint8_t softSerialTxBytesFree(serialPort_t *instance); uint8_t softSerialTxBytesFree(serialPort_t *instance);
uint8_t softSerialReadByte(serialPort_t *instance); uint8_t softSerialReadByte(serialPort_t *instance);
void softSerialSetBaudRate(serialPort_t *s, uint32_t baudRate); void softSerialSetBaudRate(serialPort_t *s, uint32_t baudRate);

View file

@ -165,7 +165,7 @@ serialPort_t *uartOpen(USART_TypeDef *USARTx, serialReceiveCallbackPtr callback,
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte; DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
#endif #endif
DMA_InitStructure.DMA_BufferSize = s->port.rxBufferSize; DMA_InitStructure.DMA_BufferSize = s->port.rxBufferSize;
#ifdef STM32F4 #ifdef STM32F4
DMA_InitStructure.DMA_Channel = s->rxDMAChannel; DMA_InitStructure.DMA_Channel = s->rxDMAChannel;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory; DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory;
@ -176,7 +176,7 @@ serialPort_t *uartOpen(USART_TypeDef *USARTx, serialReceiveCallbackPtr callback,
DMA_Cmd(s->rxDMAStream, ENABLE); DMA_Cmd(s->rxDMAStream, ENABLE);
USART_DMACmd(s->USARTx, USART_DMAReq_Rx, ENABLE); USART_DMACmd(s->USARTx, USART_DMAReq_Rx, ENABLE);
s->rxDMAPos = DMA_GetCurrDataCounter(s->rxDMAStream); s->rxDMAPos = DMA_GetCurrDataCounter(s->rxDMAStream);
#else #else
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)s->port.rxBuffer; DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)s->port.rxBuffer;
@ -228,7 +228,7 @@ serialPort_t *uartOpen(USART_TypeDef *USARTx, serialReceiveCallbackPtr callback,
DMA_Init(s->txDMAStream, &DMA_InitStructure); DMA_Init(s->txDMAStream, &DMA_InitStructure);
DMA_ITConfig(s->txDMAStream, DMA_IT_TC | DMA_IT_FE | DMA_IT_TE | DMA_IT_DME, ENABLE); DMA_ITConfig(s->txDMAStream, DMA_IT_TC | DMA_IT_FE | DMA_IT_TE | DMA_IT_DME, ENABLE);
DMA_SetCurrDataCounter(s->txDMAStream, 0); DMA_SetCurrDataCounter(s->txDMAStream, 0);
#else #else
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST; DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST;
DMA_InitStructure.DMA_Mode = DMA_Mode_Normal; DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
DMA_DeInit(s->txDMAChannel); DMA_DeInit(s->txDMAChannel);
@ -292,7 +292,7 @@ void uartStartTxDMA(uartPort_t *s)
#endif #endif
} }
uint8_t uartTotalRxBytesWaiting(serialPort_t *instance) uint32_t uartTotalRxBytesWaiting(serialPort_t *instance)
{ {
uartPort_t *s = (uartPort_t*)instance; uartPort_t *s = (uartPort_t*)instance;
#ifdef STM32F4 #ifdef STM32F4

View file

@ -38,15 +38,15 @@
typedef struct { typedef struct {
serialPort_t port; serialPort_t port;
#ifdef STM32F4 #ifdef STM32F4
DMA_Stream_TypeDef *rxDMAStream; DMA_Stream_TypeDef *rxDMAStream;
DMA_Stream_TypeDef *txDMAStream; DMA_Stream_TypeDef *txDMAStream;
uint32_t rxDMAChannel; uint32_t rxDMAChannel;
uint32_t txDMAChannel; uint32_t txDMAChannel;
#else #else
DMA_Channel_TypeDef *rxDMAChannel; DMA_Channel_TypeDef *rxDMAChannel;
DMA_Channel_TypeDef *txDMAChannel; DMA_Channel_TypeDef *txDMAChannel;
#endif #endif
uint32_t rxDMAIrq; uint32_t rxDMAIrq;
@ -65,7 +65,7 @@ serialPort_t *uartOpen(USART_TypeDef *USARTx, serialReceiveCallbackPtr callback,
// serialPort API // serialPort API
void uartWrite(serialPort_t *instance, uint8_t ch); void uartWrite(serialPort_t *instance, uint8_t ch);
uint8_t uartTotalRxBytesWaiting(serialPort_t *instance); uint32_t uartTotalRxBytesWaiting(serialPort_t *instance);
uint8_t uartTotalTxBytesFree(serialPort_t *instance); uint8_t uartTotalTxBytesFree(serialPort_t *instance);
uint8_t uartRead(serialPort_t *instance); uint8_t uartRead(serialPort_t *instance);
void uartSetBaudRate(serialPort_t *s, uint32_t baudRate); void uartSetBaudRate(serialPort_t *s, uint32_t baudRate);

View file

@ -365,22 +365,22 @@ void DMA2_Stream7_IRQHandler(void)
uartPort_t *s = &(uartHardwareMap[UARTDEV_1]->port); uartPort_t *s = &(uartHardwareMap[UARTDEV_1]->port);
if(DMA_GetITStatus(s->txDMAStream,DMA_IT_TCIF7)) if(DMA_GetITStatus(s->txDMAStream,DMA_IT_TCIF7))
{ {
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_TCIF7); DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_TCIF7);
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_HTIF7); DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_HTIF7);
if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_FEIF7)==SET) if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_FEIF7)==SET)
{ {
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_FEIF7); DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_FEIF7);
} }
handleUsartTxDma(s); handleUsartTxDma(s);
}
if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_TEIF7)==SET)
{
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_TEIF7);
}
if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_DMEIF7)==SET)
{
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_DMEIF7);
} }
if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_TEIF7)==SET)
{
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_TEIF7);
}
if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_DMEIF7)==SET)
{
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_DMEIF7);
}
} }
// USART1 Rx/Tx IRQ Handler // USART1 Rx/Tx IRQ Handler
@ -402,30 +402,30 @@ uartPort_t *serialUSART2(uint32_t baudRate, portMode_t mode, portOptions_t optio
void DMA1_Stream6_IRQHandler(void) void DMA1_Stream6_IRQHandler(void)
{ {
uartPort_t *s = &(uartHardwareMap[UARTDEV_2]->port); uartPort_t *s = &(uartHardwareMap[UARTDEV_2]->port);
if(DMA_GetITStatus(s->txDMAStream,DMA_IT_TCIF6)) if(DMA_GetITStatus(s->txDMAStream,DMA_IT_TCIF6))
{ {
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_TCIF6); DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_TCIF6);
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_HTIF6); DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_HTIF6);
if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_FEIF6)==SET) if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_FEIF6)==SET)
{ {
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_FEIF6); DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_FEIF6);
} }
handleUsartTxDma(s); handleUsartTxDma(s);
} }
if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_TEIF6)==SET) if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_TEIF6)==SET)
{ {
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_TEIF6); DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_TEIF6);
} }
if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_DMEIF6)==SET) if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_DMEIF6)==SET)
{ {
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_DMEIF6); DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_DMEIF6);
} }
} }
void USART2_IRQHandler(void) void USART2_IRQHandler(void)
{ {
uartPort_t *s = &(uartHardwareMap[UARTDEV_2]->port); uartPort_t *s = &(uartHardwareMap[UARTDEV_2]->port);
usartIrqHandler(s); usartIrqHandler(s);
} }
#endif #endif
@ -442,22 +442,22 @@ void DMA1_Stream3_IRQHandler(void)
uartPort_t *s = &(uartHardwareMap[UARTDEV_3]->port); uartPort_t *s = &(uartHardwareMap[UARTDEV_3]->port);
if(DMA_GetITStatus(s->txDMAStream,DMA_IT_TCIF3)) if(DMA_GetITStatus(s->txDMAStream,DMA_IT_TCIF3))
{ {
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_TCIF3); DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_TCIF3);
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_HTIF3); DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_HTIF3);
if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_FEIF3)==SET) if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_FEIF3)==SET)
{ {
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_FEIF3); DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_FEIF3);
} }
handleUsartTxDma(s); handleUsartTxDma(s);
}
if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_TEIF3)==SET)
{
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_TEIF3);
}
if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_DMEIF3)==SET)
{
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_DMEIF3);
} }
if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_TEIF3)==SET)
{
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_TEIF3);
}
if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_DMEIF3)==SET)
{
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_DMEIF3);
}
} }
void USART3_IRQHandler(void) void USART3_IRQHandler(void)
@ -480,22 +480,22 @@ void DMA1_Stream4_IRQHandler(void)
uartPort_t *s = &(uartHardwareMap[UARTDEV_4]->port); uartPort_t *s = &(uartHardwareMap[UARTDEV_4]->port);
if(DMA_GetITStatus(s->txDMAStream,DMA_IT_TCIF4)) if(DMA_GetITStatus(s->txDMAStream,DMA_IT_TCIF4))
{ {
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_TCIF4); DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_TCIF4);
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_HTIF4); DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_HTIF4);
if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_FEIF4)==SET) if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_FEIF4)==SET)
{ {
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_FEIF4); DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_FEIF4);
} }
handleUsartTxDma(s); handleUsartTxDma(s);
}
if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_TEIF4)==SET)
{
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_TEIF4);
}
if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_DMEIF4)==SET)
{
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_DMEIF4);
} }
if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_TEIF4)==SET)
{
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_TEIF4);
}
if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_DMEIF4)==SET)
{
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_DMEIF4);
}
} }
void UART4_IRQHandler(void) void UART4_IRQHandler(void)
@ -518,22 +518,22 @@ void DMA1_Stream7_IRQHandler(void)
uartPort_t *s = &(uartHardwareMap[UARTDEV_5]->port); uartPort_t *s = &(uartHardwareMap[UARTDEV_5]->port);
if(DMA_GetITStatus(s->txDMAStream,DMA_IT_TCIF7)) if(DMA_GetITStatus(s->txDMAStream,DMA_IT_TCIF7))
{ {
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_TCIF7); DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_TCIF7);
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_HTIF7); DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_HTIF7);
if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_FEIF7)==SET) if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_FEIF7)==SET)
{ {
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_FEIF7); DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_FEIF7);
} }
handleUsartTxDma(s); handleUsartTxDma(s);
}
if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_TEIF7)==SET)
{
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_TEIF7);
}
if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_DMEIF7)==SET)
{
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_DMEIF7);
} }
if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_TEIF7)==SET)
{
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_TEIF7);
}
if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_DMEIF7)==SET)
{
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_DMEIF7);
}
} }
void UART5_IRQHandler(void) void UART5_IRQHandler(void)
@ -556,22 +556,22 @@ void DMA2_Stream6_IRQHandler(void)
uartPort_t *s = &(uartHardwareMap[UARTDEV_6]->port); uartPort_t *s = &(uartHardwareMap[UARTDEV_6]->port);
if(DMA_GetITStatus(s->txDMAStream,DMA_IT_TCIF6)) if(DMA_GetITStatus(s->txDMAStream,DMA_IT_TCIF6))
{ {
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_TCIF6); DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_TCIF6);
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_HTIF6); DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_HTIF6);
if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_FEIF6)==SET) if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_FEIF6)==SET)
{ {
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_FEIF6); DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_FEIF6);
} }
handleUsartTxDma(s); handleUsartTxDma(s);
}
if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_TEIF6)==SET)
{
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_TEIF6);
}
if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_DMEIF6)==SET)
{
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_DMEIF6);
} }
if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_TEIF6)==SET)
{
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_TEIF6);
}
if(DMA_GetFlagStatus(s->txDMAStream,DMA_IT_DMEIF6)==SET)
{
DMA_ClearITPendingBit(s->txDMAStream,DMA_IT_DMEIF6);
}
} }
void USART6_IRQHandler(void) void USART6_IRQHandler(void)

View file

@ -66,11 +66,11 @@ static bool isUsbVcpTransmitBufferEmpty(serialPort_t *instance)
return true; return true;
} }
static uint8_t usbVcpAvailable(serialPort_t *instance) static uint32_t usbVcpAvailable(serialPort_t *instance)
{ {
UNUSED(instance); UNUSED(instance);
return receiveLength & 0xFF; // FIXME use uint32_t return type everywhere return receiveLength;
} }
static uint8_t usbVcpRead(serialPort_t *instance) static uint8_t usbVcpRead(serialPort_t *instance)
@ -117,10 +117,11 @@ static bool usbVcpFlush(vcpPort_t *port)
if (count == 0) { if (count == 0) {
return true; return true;
} }
if (!usbIsConnected() || !usbIsConfigured()) { if (!usbIsConnected() || !usbIsConfigured()) {
return false; return false;
} }
uint32_t txed; uint32_t txed;
uint32_t start = millis(); uint32_t start = millis();
@ -147,7 +148,7 @@ static void usbVcpBeginWrite(serialPort_t *instance)
port->buffering = true; port->buffering = true;
} }
uint8_t usbTxBytesFree() uint8_t usbTxBytesFree()
{ {
// Because we block upon transmit and don't buffer bytes, our "buffer" capacity is effectively unlimited. // Because we block upon transmit and don't buffer bytes, our "buffer" capacity is effectively unlimited.
return 255; return 255;
@ -182,12 +183,12 @@ serialPort_t *usbVcpOpen(void)
#ifdef STM32F4 #ifdef STM32F4
IOInit(IOGetByTag(IO_TAG(PA11)), OWNER_USB, RESOURCE_IO); IOInit(IOGetByTag(IO_TAG(PA11)), OWNER_USB, RESOURCE_IO);
IOInit(IOGetByTag(IO_TAG(PA12)), OWNER_USB, RESOURCE_IO); IOInit(IOGetByTag(IO_TAG(PA12)), OWNER_USB, RESOURCE_IO);
USBD_Init(&USB_OTG_dev, USB_OTG_FS_CORE_ID, &USR_desc, &USBD_CDC_cb, &USR_cb); USBD_Init(&USB_OTG_dev, USB_OTG_FS_CORE_ID, &USR_desc, &USBD_CDC_cb, &USR_cb);
#else #else
Set_System(); Set_System();
Set_USBClock(); Set_USBClock();
USB_Interrupts_Config(); USB_Interrupts_Config();
USB_Init(); USB_Init();
#endif #endif
s = &vcpPort; s = &vcpPort;

View file

@ -92,9 +92,9 @@ void hcsr04_init(sonarRange_t *sonarRange)
IOConfigGPIO(echoIO, IOCFG_IN_FLOATING); IOConfigGPIO(echoIO, IOCFG_IN_FLOATING);
#ifdef USE_EXTI #ifdef USE_EXTI
EXTIHandlerInit(&hcsr04_extiCallbackRec, hcsr04_extiHandler); EXTIHandlerInit(&hcsr04_extiCallbackRec, hcsr04_extiHandler);
EXTIConfig(echoIO, &hcsr04_extiCallbackRec, NVIC_PRIO_SONAR_EXTI, EXTI_Trigger_Rising_Falling); // TODO - priority! EXTIConfig(echoIO, &hcsr04_extiCallbackRec, NVIC_PRIO_SONAR_EXTI, EXTI_Trigger_Rising_Falling); // TODO - priority!
EXTIEnable(echoIO, true); EXTIEnable(echoIO, true);
#endif #endif
lastMeasurementAt = millis() - 60; // force 1st measurement in hcsr04_get_distance() lastMeasurementAt = millis() - 60; // force 1st measurement in hcsr04_get_distance()

View file

@ -39,31 +39,31 @@ static bool beeperInverted = false;
void systemBeep(bool onoff) void systemBeep(bool onoff)
{ {
#ifndef BEEPER #ifndef BEEPER
UNUSED(onoff); UNUSED(onoff);
#else #else
IOWrite(beeperIO, beeperInverted ? onoff : !onoff); IOWrite(beeperIO, beeperInverted ? onoff : !onoff);
#endif #endif
} }
void systemBeepToggle(void) void systemBeepToggle(void)
{ {
#ifdef BEEPER #ifdef BEEPER
IOToggle(beeperIO); IOToggle(beeperIO);
#endif #endif
} }
void beeperInit(const beeperConfig_t *config) void beeperInit(const beeperConfig_t *config)
{ {
#ifndef BEEPER #ifndef BEEPER
UNUSED(config); UNUSED(config);
#else #else
beeperIO = IOGetByTag(config->ioTag); beeperIO = IOGetByTag(config->ioTag);
beeperInverted = config->isInverted; beeperInverted = config->isInverted;
if (beeperIO) { if (beeperIO) {
IOInit(beeperIO, OWNER_BEEPER, RESOURCE_OUTPUT); IOInit(beeperIO, OWNER_BEEPER, RESOURCE_OUTPUT);
IOConfigGPIO(beeperIO, config->isOD ? IOCFG_OUT_OD : IOCFG_OUT_PP); IOConfigGPIO(beeperIO, config->isOD ? IOCFG_OUT_OD : IOCFG_OUT_PP);
} }
systemBeep(false); systemBeep(false);
#endif #endif
} }

View file

@ -30,9 +30,9 @@
#endif #endif
typedef struct beeperConfig_s { typedef struct beeperConfig_s {
ioTag_t ioTag; ioTag_t ioTag;
unsigned isInverted : 1; unsigned isInverted : 1;
unsigned isOD : 1; unsigned isOD : 1;
} beeperConfig_t; } beeperConfig_t;
void systemBeep(bool on); void systemBeep(bool on);

View file

@ -25,13 +25,13 @@ uint32_t micros(void);
uint32_t millis(void); uint32_t millis(void);
typedef enum { typedef enum {
FAILURE_DEVELOPER = 0, FAILURE_DEVELOPER = 0,
FAILURE_MISSING_ACC, FAILURE_MISSING_ACC,
FAILURE_ACC_INIT, FAILURE_ACC_INIT,
FAILURE_ACC_INCOMPATIBLE, FAILURE_ACC_INCOMPATIBLE,
FAILURE_INVALID_EEPROM_CONTENTS, FAILURE_INVALID_EEPROM_CONTENTS,
FAILURE_FLASH_WRITE_FAILED, FAILURE_FLASH_WRITE_FAILED,
FAILURE_GYRO_INIT_FAILED FAILURE_GYRO_INIT_FAILED
} failureMode_e; } failureMode_e;
// failure // failure

View file

@ -45,8 +45,8 @@ void systemReset(void)
if (mpuConfiguration.reset) if (mpuConfiguration.reset)
mpuConfiguration.reset(); mpuConfiguration.reset();
__disable_irq(); __disable_irq();
NVIC_SystemReset(); NVIC_SystemReset();
} }
void systemResetToBootloader(void) void systemResetToBootloader(void)
@ -54,10 +54,10 @@ void systemResetToBootloader(void)
if (mpuConfiguration.reset) if (mpuConfiguration.reset)
mpuConfiguration.reset(); mpuConfiguration.reset();
*((uint32_t *)0x2001FFFC) = 0xDEADBEEF; // 128KB SRAM STM32F4XX *((uint32_t *)0x2001FFFC) = 0xDEADBEEF; // 128KB SRAM STM32F4XX
__disable_irq(); __disable_irq();
NVIC_SystemReset(); NVIC_SystemReset();
} }
void enableGPIOPowerUsageAndNoiseReductions(void) void enableGPIOPowerUsageAndNoiseReductions(void)
@ -82,7 +82,7 @@ void enableGPIOPowerUsageAndNoiseReductions(void)
RCC_AHB1Periph_BKPSRAM | RCC_AHB1Periph_BKPSRAM |
RCC_AHB1Periph_DMA1 | RCC_AHB1Periph_DMA1 |
RCC_AHB1Periph_DMA2 | RCC_AHB1Periph_DMA2 |
0, ENABLE 0, ENABLE
); );
RCC_AHB2PeriphClockCmd(0, ENABLE); RCC_AHB2PeriphClockCmd(0, ENABLE);
@ -172,25 +172,25 @@ void systemInit(void)
SetSysClock(); SetSysClock();
// Configure NVIC preempt/priority groups // Configure NVIC preempt/priority groups
NVIC_PriorityGroupConfig(NVIC_PRIORITY_GROUPING); NVIC_PriorityGroupConfig(NVIC_PRIORITY_GROUPING);
// cache RCC->CSR value to use it in isMPUSoftreset() and others // cache RCC->CSR value to use it in isMPUSoftreset() and others
cachedRccCsrValue = RCC->CSR; cachedRccCsrValue = RCC->CSR;
/* Accounts for OP Bootloader, set the Vector Table base address as specified in .ld file */ /* Accounts for OP Bootloader, set the Vector Table base address as specified in .ld file */
extern void *isr_vector_table_base; extern void *isr_vector_table_base;
NVIC_SetVectorTable((uint32_t)&isr_vector_table_base, 0x0); NVIC_SetVectorTable((uint32_t)&isr_vector_table_base, 0x0);
RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_OTG_FS, DISABLE); RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_OTG_FS, DISABLE);
RCC_ClearFlag(); RCC_ClearFlag();
enableGPIOPowerUsageAndNoiseReductions(); enableGPIOPowerUsageAndNoiseReductions();
// Init cycle counter // Init cycle counter
cycleCounterInit(); cycleCounterInit();
memset(extiHandlerConfigs, 0x00, sizeof(extiHandlerConfigs)); memset(extiHandlerConfigs, 0x00, sizeof(extiHandlerConfigs));
// SysTick // SysTick
SysTick_Config(SystemCoreClock / 1000); SysTick_Config(SystemCoreClock / 1000);
} }

View file

@ -17,7 +17,6 @@
#include <stdbool.h> #include <stdbool.h>
#include <stdint.h> #include <stdint.h>
#include <stdlib.h>
#include <string.h> #include <string.h>
#include "platform.h" #include "platform.h"
@ -26,7 +25,6 @@
#include "nvic.h" #include "nvic.h"
#include "gpio.h"
#include "gpio.h" #include "gpio.h"
#include "rcc.h" #include "rcc.h"
#include "system.h" #include "system.h"
@ -148,7 +146,7 @@ rccPeriphTag_t timerRCC(TIM_TypeDef *tim)
for (uint8_t i = 0; i < HARDWARE_TIMER_DEFINITION_COUNT; i++) { for (uint8_t i = 0; i < HARDWARE_TIMER_DEFINITION_COUNT; i++) {
if (timerDefinitions[i].TIMx == tim) { if (timerDefinitions[i].TIMx == tim) {
return timerDefinitions[i].rcc; return timerDefinitions[i].rcc;
} }
} }
return 0; return 0;
} }
@ -190,7 +188,7 @@ void configTimeBase(TIM_TypeDef *tim, uint16_t period, uint8_t mhz)
#else #else
TIM_TimeBaseStructure.TIM_Prescaler = (SystemCoreClock / ((uint32_t)mhz * 1000000)) - 1; TIM_TimeBaseStructure.TIM_Prescaler = (SystemCoreClock / ((uint32_t)mhz * 1000000)) - 1;
#endif #endif
TIM_TimeBaseStructure.TIM_ClockDivision = 0; TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(tim, &TIM_TimeBaseStructure); TIM_TimeBaseInit(tim, &TIM_TimeBaseStructure);
@ -660,7 +658,7 @@ void timerInit(void)
IOConfigGPIOAF(IOGetByTag(timerHardwarePtr->tag), timerHardwarePtr->ioMode, timerHardwarePtr->alternateFunction); IOConfigGPIOAF(IOGetByTag(timerHardwarePtr->tag), timerHardwarePtr->ioMode, timerHardwarePtr->alternateFunction);
} }
#endif #endif
// initialize timer channel structures // initialize timer channel structures
for(int i = 0; i < USABLE_TIMER_CHANNEL_COUNT; i++) { for(int i = 0; i < USABLE_TIMER_CHANNEL_COUNT; i++) {
timerChannelInfo[i].type = TYPE_FREE; timerChannelInfo[i].type = TYPE_FREE;

View file

@ -47,9 +47,10 @@ typedef uint32_t timCCER_t;
typedef uint32_t timSR_t; typedef uint32_t timSR_t;
typedef uint32_t timCNT_t; typedef uint32_t timCNT_t;
#else #else
# error "Unknown CPU defined" #error "Unknown CPU defined"
#endif #endif
// use different types from capture and overflow - multiple overflow handlers are implemented as linked list // use different types from capture and overflow - multiple overflow handlers are implemented as linked list
struct timerCCHandlerRec_s; struct timerCCHandlerRec_s;
struct timerOvrHandlerRec_s; struct timerOvrHandlerRec_s;

View file

@ -68,8 +68,7 @@ void TIM_SelectOCxM_NoDisable(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint32_t
tmp = (uint32_t) TIMx; tmp = (uint32_t) TIMx;
tmp += CCMR_OFFSET; tmp += CCMR_OFFSET;
if((TIM_Channel == TIM_Channel_1) ||(TIM_Channel == TIM_Channel_3)) if ((TIM_Channel == TIM_Channel_1) || (TIM_Channel == TIM_Channel_3)) {
{
tmp += (TIM_Channel>>1); tmp += (TIM_Channel>>1);
/* Reset the OCxM bits in the CCMRx register */ /* Reset the OCxM bits in the CCMRx register */
@ -77,9 +76,7 @@ void TIM_SelectOCxM_NoDisable(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint32_t
/* Configure the OCxM bits in the CCMRx register */ /* Configure the OCxM bits in the CCMRx register */
*(__IO uint32_t *) tmp |= TIM_OCMode; *(__IO uint32_t *) tmp |= TIM_OCMode;
} } else {
else
{
tmp += (uint32_t)(TIM_Channel - (uint32_t)4)>> (uint32_t)1; tmp += (uint32_t)(TIM_Channel - (uint32_t)4)>> (uint32_t)1;
/* Reset the OCxM bits in the CCMRx register */ /* Reset the OCxM bits in the CCMRx register */

View file

@ -133,7 +133,7 @@ static uint32_t reverse32(uint32_t in)
bool rtc6705Init(void) bool rtc6705Init(void)
{ {
DISABLE_RTC6705; DISABLE_RTC6705;
spiSetDivisor(RTC6705_SPI_INSTANCE, SPI_0_5625MHZ_CLOCK_DIVIDER); spiSetDivisor(RTC6705_SPI_INSTANCE, SPI_CLOCK_SLOW);
return rtc6705IsReady(); return rtc6705IsReady();
} }

View file

@ -463,7 +463,7 @@ static const char * const lookupTableSuperExpoYaw[] = {
"OFF", "ON", "ALWAYS" "OFF", "ON", "ALWAYS"
}; };
static const char * const lookupTableFastPwm[] = { static const char * const lookupTablePwmProtocol[] = {
"OFF", "ONESHOT125", "ONESHOT42", "MULTISHOT", "BRUSHED" "OFF", "ONESHOT125", "ONESHOT42", "MULTISHOT", "BRUSHED"
}; };
@ -525,7 +525,7 @@ static const lookupTableEntry_t lookupTables[] = {
{ lookupTableMagHardware, sizeof(lookupTableMagHardware) / sizeof(char *) }, { lookupTableMagHardware, sizeof(lookupTableMagHardware) / sizeof(char *) },
{ lookupTableDebug, sizeof(lookupTableDebug) / sizeof(char *) }, { lookupTableDebug, sizeof(lookupTableDebug) / sizeof(char *) },
{ lookupTableSuperExpoYaw, sizeof(lookupTableSuperExpoYaw) / sizeof(char *) }, { lookupTableSuperExpoYaw, sizeof(lookupTableSuperExpoYaw) / sizeof(char *) },
{ lookupTableFastPwm, sizeof(lookupTableFastPwm) / sizeof(char *) }, { lookupTablePwmProtocol, sizeof(lookupTablePwmProtocol) / sizeof(char *) },
{ lookupDeltaMethod, sizeof(lookupDeltaMethod) / sizeof(char *) }, { lookupDeltaMethod, sizeof(lookupDeltaMethod) / sizeof(char *) },
#ifdef OSD #ifdef OSD
{ lookupTableOsdType, sizeof(lookupTableOsdType) / sizeof(char *) }, { lookupTableOsdType, sizeof(lookupTableOsdType) / sizeof(char *) },
@ -1902,10 +1902,11 @@ static void dumpValues(uint16_t valueSection)
cliPrintf("set %s = ", valueTable[i].name); cliPrintf("set %s = ", valueTable[i].name);
cliPrintVar(value, 0); cliPrintVar(value, 0);
cliPrint("\r\n"); cliPrint("\r\n");
#ifdef STM32F4 #ifdef USE_SLOW_SERIAL_CLI
delayMicroseconds(1000); delay(2);
#endif #endif
} }
} }
@ -1979,6 +1980,9 @@ static void cliDump(char *cmdline)
if (yaw < 0) if (yaw < 0)
cliWrite(' '); cliWrite(' ');
cliPrintf("%s\r\n", ftoa(yaw, buf)); cliPrintf("%s\r\n", ftoa(yaw, buf));
#ifdef USE_SLOW_SERIAL_CLI
delay(2);
#endif
} }
#ifdef USE_SERVOS #ifdef USE_SERVOS
@ -2000,6 +2004,10 @@ static void cliDump(char *cmdline)
masterConfig.customServoMixer[i].max, masterConfig.customServoMixer[i].max,
masterConfig.customServoMixer[i].box masterConfig.customServoMixer[i].box
); );
#ifdef USE_SLOW_SERIAL_CLI
delay(2);
#endif
} }
#endif #endif
@ -2012,12 +2020,18 @@ static void cliDump(char *cmdline)
if (featureNames[i] == NULL) if (featureNames[i] == NULL)
break; break;
cliPrintf("feature -%s\r\n", featureNames[i]); cliPrintf("feature -%s\r\n", featureNames[i]);
#ifdef USE_SLOW_SERIAL_CLI
delay(2);
#endif
} }
for (i = 0; ; i++) { // reenable what we want. for (i = 0; ; i++) { // reenable what we want.
if (featureNames[i] == NULL) if (featureNames[i] == NULL)
break; break;
if (mask & (1 << i)) if (mask & (1 << i))
cliPrintf("feature %s\r\n", featureNames[i]); cliPrintf("feature %s\r\n", featureNames[i]);
#ifdef USE_SLOW_SERIAL_CLI
delay(2);
#endif
} }
@ -2077,6 +2091,9 @@ static void cliDump(char *cmdline)
for (channel = 0; channel < INPUT_SOURCE_COUNT; channel++) { for (channel = 0; channel < INPUT_SOURCE_COUNT; channel++) {
if (servoDirection(i, channel) < 0) { if (servoDirection(i, channel) < 0) {
cliPrintf("smix reverse %d %d r\r\n", i , channel); cliPrintf("smix reverse %d %d r\r\n", i , channel);
#ifdef USE_SLOW_SERIAL_CLI
delay(2);
#endif
} }
} }
} }
@ -2109,6 +2126,9 @@ static void cliDump(char *cmdline)
changeControlRateProfile(currentRateIndex); changeControlRateProfile(currentRateIndex);
cliRateProfile(""); cliRateProfile("");
#ifdef USE_SLOW_SERIAL_CLI
delay(2);
#endif
} }
cliPrint("\r\n# restore original profile selection\r\n"); cliPrint("\r\n# restore original profile selection\r\n");
@ -2133,7 +2153,8 @@ static void cliDump(char *cmdline)
} }
} }
void cliDumpProfile(uint8_t profileIndex) { void cliDumpProfile(uint8_t profileIndex)
{
if (profileIndex >= MAX_PROFILE_COUNT) // Faulty values if (profileIndex >= MAX_PROFILE_COUNT) // Faulty values
return; return;
@ -2148,7 +2169,8 @@ void cliDumpProfile(uint8_t profileIndex) {
cliRateProfile(""); cliRateProfile("");
} }
void cliDumpRateProfile(uint8_t rateProfileIndex) { void cliDumpRateProfile(uint8_t rateProfileIndex)
{
if (rateProfileIndex >= MAX_RATEPROFILES) // Faulty values if (rateProfileIndex >= MAX_RATEPROFILES) // Faulty values
return; return;
@ -2541,12 +2563,12 @@ static void cliRateProfile(char *cmdline) {
} }
} }
static void cliReboot(void) { static void cliReboot(void)
{
cliPrint("\r\nRebooting"); cliPrint("\r\nRebooting");
bufWriterFlush(cliWriter); bufWriterFlush(cliWriter);
waitForSerialPortToFinishTransmitting(cliPort); waitForSerialPortToFinishTransmitting(cliPort);
stopMotors(); stopMotors();
handleOneshotFeatureChangeOnRestart();
systemReset(); systemReset();
} }
@ -2653,7 +2675,7 @@ static void cliPrintVarRange(const clivalue_t *var)
{ {
switch (var->type & VALUE_MODE_MASK) { switch (var->type & VALUE_MODE_MASK) {
case (MODE_DIRECT): { case (MODE_DIRECT): {
cliPrintf("Allowed range: %d - %d\n", var->config.minmax.min, var->config.minmax.max); cliPrintf("Allowed range: %d - %d\r\n", var->config.minmax.min, var->config.minmax.max);
} }
break; break;
case (MODE_LOOKUP): { case (MODE_LOOKUP): {
@ -2665,7 +2687,7 @@ static void cliPrintVarRange(const clivalue_t *var)
cliPrint(","); cliPrint(",");
cliPrintf(" %s", tableEntry->values[i]); cliPrintf(" %s", tableEntry->values[i]);
} }
cliPrint("\n"); cliPrint("\r\n");
} }
break; break;
} }
@ -2717,6 +2739,10 @@ static void cliSet(char *cmdline)
cliPrintf("%s = ", valueTable[i].name); cliPrintf("%s = ", valueTable[i].name);
cliPrintVar(val, len); // when len is 1 (when * is passed as argument), it will print min/max values as well, for gui cliPrintVar(val, len); // when len is 1 (when * is passed as argument), it will print min/max values as well, for gui
cliPrint("\r\n"); cliPrint("\r\n");
#ifdef USE_SLOW_SERIAL_CLI
delay(2);
#endif
} }
} else if ((eqptr = strstr(cmdline, "=")) != NULL) { } else if ((eqptr = strstr(cmdline, "=")) != NULL) {
// has equals // has equals
@ -2891,14 +2917,14 @@ static void cliTasks(char *cmdline)
subTaskFrequency = (uint16_t)(1.0f / ((float)cycleTime * 0.000001f)); subTaskFrequency = (uint16_t)(1.0f / ((float)cycleTime * 0.000001f));
if (masterConfig.pid_process_denom > 1) { if (masterConfig.pid_process_denom > 1) {
taskFrequency = subTaskFrequency / masterConfig.pid_process_denom; taskFrequency = subTaskFrequency / masterConfig.pid_process_denom;
cliPrintf("%d - (%s) ", taskId, taskInfo.taskName); cliPrintf("%02d - (%s) ", taskId, taskInfo.taskName);
} else { } else {
taskFrequency = subTaskFrequency; taskFrequency = subTaskFrequency;
cliPrintf("%d - (%s/%s) ", taskId, taskInfo.subTaskName, taskInfo.taskName); cliPrintf("%02d - (%s/%s) ", taskId, taskInfo.subTaskName, taskInfo.taskName);
} }
} else { } else {
taskFrequency = (uint16_t)(1.0f / ((float)taskInfo.latestDeltaTime * 0.000001f)); taskFrequency = (uint16_t)(1.0f / ((float)taskInfo.latestDeltaTime * 0.000001f));
cliPrintf("%d - (%s) ", taskId, taskInfo.taskName); cliPrintf("%02d - (%s) ", taskId, taskInfo.taskName);
} }
cliPrintf("max: %dus, avg: %dus, rate: %dhz, total: ", taskInfo.maxExecutionTime, taskInfo.averageExecutionTime, taskFrequency); cliPrintf("max: %dus, avg: %dus, rate: %dhz, total: ", taskInfo.maxExecutionTime, taskInfo.averageExecutionTime, taskFrequency);
@ -2909,7 +2935,7 @@ static void cliTasks(char *cmdline)
cliPrintf("%dms", taskTotalTime); cliPrintf("%dms", taskTotalTime);
} }
if (taskId == TASK_GYROPID && masterConfig.pid_process_denom > 1) cliPrintf("\r\n- - (%s) rate: %dhz", taskInfo.subTaskName, subTaskFrequency); if (taskId == TASK_GYROPID && masterConfig.pid_process_denom > 1) cliPrintf("\r\n - - (%s) rate: %dhz", taskInfo.subTaskName, subTaskFrequency);
cliPrintf("\r\n", taskTotalTime); cliPrintf("\r\n", taskTotalTime);
} }
} }
@ -3038,7 +3064,7 @@ void cliProcess(void)
} }
} }
const char * const ownerNames[] = { const char * const ownerNames[OWNER_TOTAL_COUNT] = {
"FREE", "FREE",
"PWM IN", "PWM IN",
"PPM IN", "PPM IN",
@ -3060,6 +3086,8 @@ const char * const ownerNames[] = {
"FLASH", "FLASH",
"USB", "USB",
"BEEPER", "BEEPER",
"OSD",
"BARO",
}; };
static void cliResource(char *cmdline) static void cliResource(char *cmdline)

View file

@ -1272,11 +1272,10 @@ static bool processOutCommand(uint8_t cmdMSP)
serialize16(currentProfile->pidProfile.yaw_lpf_hz); serialize16(currentProfile->pidProfile.yaw_lpf_hz);
break; break;
case MSP_ADVANCED_TUNING: case MSP_ADVANCED_TUNING:
headSerialReply(4 * 2 + 2); headSerialReply(3 * 2 + 2);
serialize16(currentProfile->pidProfile.rollPitchItermIgnoreRate); serialize16(currentProfile->pidProfile.rollPitchItermIgnoreRate);
serialize16(currentProfile->pidProfile.yawItermIgnoreRate); serialize16(currentProfile->pidProfile.yawItermIgnoreRate);
serialize16(currentProfile->pidProfile.yaw_p_limit); serialize16(currentProfile->pidProfile.yaw_p_limit);
serialize16(masterConfig.rxConfig.airModeActivateThreshold);
serialize8(currentProfile->pidProfile.deltaMethod); serialize8(currentProfile->pidProfile.deltaMethod);
serialize8(masterConfig.batteryConfig.vbatPidCompensation); serialize8(masterConfig.batteryConfig.vbatPidCompensation);
break; break;
@ -1516,7 +1515,7 @@ static bool processInCommand(void)
break; break;
case MSP_SET_RESET_CURR_PID: case MSP_SET_RESET_CURR_PID:
//resetPidProfile(&currentProfile->pidProfile); resetPidProfile(&currentProfile->pidProfile);
break; break;
case MSP_SET_SENSOR_ALIGNMENT: case MSP_SET_SENSOR_ALIGNMENT:
@ -1857,6 +1856,7 @@ static bool processInCommand(void)
currentProfile->pidProfile.yawItermIgnoreRate = read16(); currentProfile->pidProfile.yawItermIgnoreRate = read16();
currentProfile->pidProfile.yaw_p_limit = read16(); currentProfile->pidProfile.yaw_p_limit = read16();
currentProfile->pidProfile.deltaMethod = read8(); currentProfile->pidProfile.deltaMethod = read8();
masterConfig.batteryConfig.vbatPidCompensation = read8();
break; break;
case MSP_SET_SPECIAL_PARAMETERS: case MSP_SET_SPECIAL_PARAMETERS:
currentControlRateProfile->rcYawRate8 = read8(); currentControlRateProfile->rcYawRate8 = read8();
@ -1969,7 +1969,6 @@ void mspProcess(void)
if (isRebootScheduled) { if (isRebootScheduled) {
waitForSerialPortToFinishTransmitting(candidatePort->port); waitForSerialPortToFinishTransmitting(candidatePort->port);
stopMotors(); stopMotors();
handleOneshotFeatureChangeOnRestart();
// On real flight controllers, systemReset() will do a soft reset of the device, // On real flight controllers, systemReset() will do a soft reset of the device,
// reloading the program. But to support offline testing this flag needs to be // reloading the program. But to support offline testing this flag needs to be
// cleared so that the software doesn't continuously attempt to reboot itself. // cleared so that the software doesn't continuously attempt to reboot itself.

View file

@ -17,11 +17,11 @@
#include <stdbool.h> #include <stdbool.h>
#include <stdint.h> #include <stdint.h>
#include <stdlib.h>
#include <string.h> #include <string.h>
#include <math.h> #include <math.h>
#include "platform.h" #include "platform.h"
#include "common/axis.h" #include "common/axis.h"
#include "common/color.h" #include "common/color.h"
#include "common/maths.h" #include "common/maths.h"
@ -153,9 +153,6 @@ static uint8_t systemState = SYSTEM_STATE_INITIALISING;
void init(void) void init(void)
{ {
uint8_t i;
drv_pwm_config_t pwm_params;
printfSupportInit(); printfSupportInit();
initEEPROM(); initEEPROM();
@ -260,6 +257,7 @@ void init(void)
mixerInit(masterConfig.mixerMode, masterConfig.customMotorMixer); mixerInit(masterConfig.mixerMode, masterConfig.customMotorMixer);
#endif #endif
drv_pwm_config_t pwm_params;
memset(&pwm_params, 0, sizeof(pwm_params)); memset(&pwm_params, 0, sizeof(pwm_params));
#ifdef SONAR #ifdef SONAR
@ -314,7 +312,7 @@ void init(void)
} }
bool use_unsyncedPwm = masterConfig.use_unsyncedPwm; bool use_unsyncedPwm = masterConfig.use_unsyncedPwm;
// Configurator feature abused for enabling Fast PWM // Configurator feature abused for enabling Fast PWM
pwm_params.useFastPwm = (masterConfig.motor_pwm_protocol != PWM_TYPE_CONVENTIONAL && masterConfig.motor_pwm_protocol != PWM_TYPE_BRUSHED); pwm_params.useFastPwm = (masterConfig.motor_pwm_protocol != PWM_TYPE_CONVENTIONAL && masterConfig.motor_pwm_protocol != PWM_TYPE_BRUSHED);
pwm_params.pwmProtocolType = masterConfig.motor_pwm_protocol; pwm_params.pwmProtocolType = masterConfig.motor_pwm_protocol;
@ -322,7 +320,9 @@ void init(void)
pwm_params.idlePulse = masterConfig.escAndServoConfig.mincommand; pwm_params.idlePulse = masterConfig.escAndServoConfig.mincommand;
if (feature(FEATURE_3D)) if (feature(FEATURE_3D))
pwm_params.idlePulse = masterConfig.flight3DConfig.neutral3d; pwm_params.idlePulse = masterConfig.flight3DConfig.neutral3d;
if (masterConfig.motor_pwm_protocol == PWM_TYPE_BRUSHED) { if (masterConfig.motor_pwm_protocol == PWM_TYPE_BRUSHED) {
featureClear(FEATURE_3D);
pwm_params.idlePulse = 0; // brushed motors pwm_params.idlePulse = 0; // brushed motors
use_unsyncedPwm = false; use_unsyncedPwm = false;
} }
@ -331,13 +331,17 @@ void init(void)
#endif #endif
pwmRxInit(masterConfig.inputFilteringMode); pwmRxInit(masterConfig.inputFilteringMode);
// pwmInit() needs to be called as soon as possible for ESC compatibility reasons
pwmOutputConfiguration_t *pwmOutputConfiguration = pwmInit(&pwm_params); pwmOutputConfiguration_t *pwmOutputConfiguration = pwmInit(&pwm_params);
mixerUsePWMOutputConfiguration(pwmOutputConfiguration, use_unsyncedPwm); mixerUsePWMOutputConfiguration(pwmOutputConfiguration, use_unsyncedPwm);
/*
// TODO is this needed here? enables at the end
if (!feature(FEATURE_ONESHOT125)) if (!feature(FEATURE_ONESHOT125))
motorControlEnable = true; motorControlEnable = true;
*/
systemState |= SYSTEM_STATE_MOTORS_READY; systemState |= SYSTEM_STATE_MOTORS_READY;
#ifdef BEEPER #ifdef BEEPER
@ -483,12 +487,12 @@ void init(void)
#endif #endif
if (!sensorsAutodetect(&masterConfig.sensorAlignmentConfig, if (!sensorsAutodetect(&masterConfig.sensorAlignmentConfig,
masterConfig.acc_hardware, masterConfig.acc_hardware,
masterConfig.mag_hardware, masterConfig.mag_hardware,
masterConfig.baro_hardware, masterConfig.baro_hardware,
masterConfig.mag_declination, masterConfig.mag_declination,
masterConfig.gyro_lpf, masterConfig.gyro_lpf,
masterConfig.gyro_sync_denom)) { masterConfig.gyro_sync_denom)) {
// if gyro was not detected due to whatever reason, we give up now. // if gyro was not detected due to whatever reason, we give up now.
failureMode(FAILURE_MISSING_ACC); failureMode(FAILURE_MISSING_ACC);
} }
@ -499,7 +503,7 @@ void init(void)
LED0_OFF; LED0_OFF;
LED2_OFF; LED2_OFF;
for (i = 0; i < 10; i++) { for (int i = 0; i < 10; i++) {
LED1_TOGGLE; LED1_TOGGLE;
LED0_TOGGLE; LED0_TOGGLE;
delay(25); delay(25);
@ -683,7 +687,7 @@ void processLoopback(void) {
#define processLoopback() #define processLoopback()
#endif #endif
void main_init(void) void main_init(void)
{ {
init(); init();
@ -724,7 +728,7 @@ void main_init(void)
#endif #endif
#ifdef MAG #ifdef MAG
setTaskEnabled(TASK_COMPASS, sensors(SENSOR_MAG)); setTaskEnabled(TASK_COMPASS, sensors(SENSOR_MAG));
#ifdef SPRACINGF3EVO #if defined(USE_SPI) && defined(USE_MAG_AK8963)
// fixme temporary solution for AK6983 via slave I2C on MPU9250 // fixme temporary solution for AK6983 via slave I2C on MPU9250
rescheduleTask(TASK_COMPASS, 1000000 / 40); rescheduleTask(TASK_COMPASS, 1000000 / 40);
#endif #endif

View file

@ -185,7 +185,7 @@ float calculateRate(int axis, int16_t rc) {
} }
return constrainf(angleRate, -8190.0f, 8190.0f); // Rate limit protection return constrainf(angleRate, -8190.0f, 8190.0f); // Rate limit protection
} }
void processRcCommand(void) void processRcCommand(void)
@ -698,6 +698,8 @@ void subTaskMainSubprocesses(void) {
#endif #endif
#if defined(BARO) || defined(SONAR) #if defined(BARO) || defined(SONAR)
// updateRcCommands sets rcCommand, which is needed by updateAltHoldState and updateSonarAltHoldState
updateRcCommands();
if (sensors(SENSOR_BARO) || sensors(SENSOR_SONAR)) { if (sensors(SENSOR_BARO) || sensors(SENSOR_SONAR)) {
if (FLIGHT_MODE(BARO_MODE) || FLIGHT_MODE(SONAR_MODE)) { if (FLIGHT_MODE(BARO_MODE) || FLIGHT_MODE(SONAR_MODE)) {
applyAltHold(&masterConfig.airplaneConfig); applyAltHold(&masterConfig.airplaneConfig);
@ -776,7 +778,7 @@ void subTaskMotorUpdate(void)
uint8_t setPidUpdateCountDown(void) { uint8_t setPidUpdateCountDown(void) {
if (masterConfig.gyro_soft_lpf_hz) { if (masterConfig.gyro_soft_lpf_hz) {
return masterConfig.pid_process_denom - 1; return masterConfig.pid_process_denom - 1;
} else { } else {
return 1; return 1;
} }
@ -878,8 +880,10 @@ void taskUpdateRxMain(void)
processRx(); processRx();
isRXDataNew = true; isRXDataNew = true;
#if !defined(BARO) && !defined(SONAR)
// updateRcCommands sets rcCommand, which is needed by updateAltHoldState and updateSonarAltHoldState // updateRcCommands sets rcCommand, which is needed by updateAltHoldState and updateSonarAltHoldState
updateRcCommands(); updateRcCommands();
#endif
updateLEDs(); updateLEDs();
#ifdef BARO #ifdef BARO

View file

@ -45,7 +45,7 @@ acc_t acc; // acc access functions
sensor_align_e accAlign = 0; sensor_align_e accAlign = 0;
uint32_t accTargetLooptime; uint32_t accTargetLooptime;
uint16_t calibratingA = 0; // the calibration is done is the main loop. Calibrating decreases at each cycle down to 0, then we enter in a normal mode. static uint16_t calibratingA = 0; // the calibration is done is the main loop. Calibrating decreases at each cycle down to 0, then we enter in a normal mode.
extern uint16_t InflightcalibratingA; extern uint16_t InflightcalibratingA;
extern bool AccInflightCalibrationArmed; extern bool AccInflightCalibrationArmed;

View file

@ -20,6 +20,10 @@
#include <math.h> #include <math.h>
#include "platform.h" #include "platform.h"
int32_t BaroAlt = 0;
#ifdef BARO
#include "common/maths.h" #include "common/maths.h"
#include "drivers/barometer.h" #include "drivers/barometer.h"
@ -32,9 +36,6 @@ baro_t baro; // barometer access functions
uint16_t calibratingB = 0; // baro calibration = get new ground pressure value uint16_t calibratingB = 0; // baro calibration = get new ground pressure value
int32_t baroPressure = 0; int32_t baroPressure = 0;
int32_t baroTemperature = 0; int32_t baroTemperature = 0;
int32_t BaroAlt = 0;
#ifdef BARO
static int32_t baroGroundAltitude = 0; static int32_t baroGroundAltitude = 0;
static int32_t baroGroundPressure = 0; static int32_t baroGroundPressure = 0;

View file

@ -40,12 +40,14 @@
#endif #endif
mag_t mag; // mag access functions mag_t mag; // mag access functions
int32_t magADC[XYZ_AXIS_COUNT];
sensor_align_e magAlign = 0;
#ifdef MAG
extern uint32_t currentTime; // FIXME dependency on global variable, pass it in instead. extern uint32_t currentTime; // FIXME dependency on global variable, pass it in instead.
int32_t magADC[XYZ_AXIS_COUNT]; static int16_t magADCRaw[XYZ_AXIS_COUNT];
sensor_align_e magAlign = 0;
#ifdef MAG
static uint8_t magInit = 0; static uint8_t magInit = 0;
void compassInit(void) void compassInit(void)
@ -57,27 +59,19 @@ void compassInit(void)
magInit = 1; magInit = 1;
} }
#define COMPASS_UPDATE_FREQUENCY_10HZ (1000 * 100)
void updateCompass(flightDynamicsTrims_t *magZero) void updateCompass(flightDynamicsTrims_t *magZero)
{ {
static uint32_t nextUpdateAt, tCal = 0; static uint32_t tCal = 0;
static flightDynamicsTrims_t magZeroTempMin; static flightDynamicsTrims_t magZeroTempMin;
static flightDynamicsTrims_t magZeroTempMax; static flightDynamicsTrims_t magZeroTempMax;
int16_t magADCRaw[XYZ_AXIS_COUNT];
uint32_t axis; uint32_t axis;
if ((int32_t)(currentTime - nextUpdateAt) < 0)
return;
nextUpdateAt = currentTime + COMPASS_UPDATE_FREQUENCY_10HZ;
mag.read(magADCRaw); mag.read(magADCRaw);
for (axis = 0; axis < XYZ_AXIS_COUNT; axis++) magADC[axis] = magADCRaw[axis]; for (axis = 0; axis < XYZ_AXIS_COUNT; axis++) magADC[axis] = magADCRaw[axis]; // int32_t copy to work with
alignSensors(magADC, magADC, magAlign); alignSensors(magADC, magADC, magAlign);
if (STATE(CALIBRATE_MAG)) { if (STATE(CALIBRATE_MAG)) {
tCal = nextUpdateAt; tCal = currentTime;
for (axis = 0; axis < 3; axis++) { for (axis = 0; axis < 3; axis++) {
magZero->raw[axis] = 0; magZero->raw[axis] = 0;
magZeroTempMin.raw[axis] = magADC[axis]; magZeroTempMin.raw[axis] = magADC[axis];
@ -93,7 +87,7 @@ void updateCompass(flightDynamicsTrims_t *magZero)
} }
if (tCal != 0) { if (tCal != 0) {
if ((nextUpdateAt - tCal) < 30000000) { // 30s: you have 30s to turn the multi in all directions if ((currentTime - tCal) < 30000000) { // 30s: you have 30s to turn the multi in all directions
LED0_TOGGLE; LED0_TOGGLE;
for (axis = 0; axis < 3; axis++) { for (axis = 0; axis < 3; axis++) {
if (magADC[axis] < magZeroTempMin.raw[axis]) if (magADC[axis] < magZeroTempMin.raw[axis])

View file

@ -56,7 +56,7 @@ void useGyroConfig(gyroConfig_t *gyroConfigToUse, float gyro_lpf_hz)
} }
void initGyroFilterCoefficients(void) { void initGyroFilterCoefficients(void) {
int axis; int axis;
if (gyroLpfCutFreq && targetLooptime) { /* Initialisation needs to happen once samplingrate is known */ if (gyroLpfCutFreq && targetLooptime) { /* Initialisation needs to happen once samplingrate is known */
for (axis = 0; axis < 3; axis++) BiQuadNewLpf(gyroLpfCutFreq, &gyroFilterState[axis], targetLooptime); for (axis = 0; axis < 3; axis++) BiQuadNewLpf(gyroLpfCutFreq, &gyroFilterState[axis], targetLooptime);
gyroFilterStateIsSet = true; gyroFilterStateIsSet = true;
@ -137,8 +137,8 @@ static void applyGyroZero(void)
void gyroUpdate(void) void gyroUpdate(void)
{ {
int16_t gyroADCRaw[XYZ_AXIS_COUNT]; int16_t gyroADCRaw[XYZ_AXIS_COUNT];
int axis; int axis;
// range: +/- 8192; +/- 2000 deg/sec // range: +/- 8192; +/- 2000 deg/sec
if (!gyro.read(gyroADCRaw)) { if (!gyro.read(gyroADCRaw)) {
@ -161,10 +161,12 @@ void gyroUpdate(void)
if (gyroLpfCutFreq) { if (gyroLpfCutFreq) {
if (!gyroFilterStateIsSet) initGyroFilterCoefficients(); /* initialise filter coefficients */ if (!gyroFilterStateIsSet) initGyroFilterCoefficients(); /* initialise filter coefficients */
if (gyroFilterStateIsSet) { for (axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
for (axis = 0; axis < XYZ_AXIS_COUNT; axis++){ if (gyroFilterStateIsSet) {
gyroADCf[axis] = applyBiQuadFilter((float) gyroADC[axis], &gyroFilterState[axis]); gyroADCf[axis] = applyBiQuadFilter((float) gyroADC[axis], &gyroFilterState[axis]);
gyroADC[axis] = lrintf(gyroADCf[axis]); gyroADC[axis] = lrintf(gyroADCf[axis]);
} else {
gyroADCf[axis] = gyroADC[axis]; // Otherwise float pid controller will not have gyro input when filter disabled
} }
} }
} }

View file

@ -216,7 +216,7 @@ bool detectGyro(void)
; // fallthrough ; // fallthrough
case GYRO_MPU6500: case GYRO_MPU6500:
#ifdef USE_GYRO_MPU6500 #if defined(USE_GYRO_MPU6500) || defined(USE_GYRO_SPI_MPU6500)
#ifdef USE_GYRO_SPI_MPU6500 #ifdef USE_GYRO_SPI_MPU6500
if (mpu6500GyroDetect(&gyro) || mpu6500SpiGyroDetect(&gyro)) if (mpu6500GyroDetect(&gyro) || mpu6500SpiGyroDetect(&gyro))
#else #else
@ -361,7 +361,7 @@ retry:
#endif #endif
; // fallthrough ; // fallthrough
case ACC_MPU6500: case ACC_MPU6500:
#ifdef USE_ACC_MPU6500 #if defined(USE_ACC_MPU6500) || defined(USE_ACC_SPI_MPU6500)
#ifdef USE_ACC_SPI_MPU6500 #ifdef USE_ACC_SPI_MPU6500
if (mpu6500AccDetect(&acc) || mpu6500SpiAccDetect(&acc)) if (mpu6500AccDetect(&acc) || mpu6500SpiAccDetect(&acc))
#else #else

View file

@ -39,7 +39,7 @@ static IO_t HWDetectPin = IO_NONE;
void detectHardwareRevision(void) void detectHardwareRevision(void)
{ {
HWDetectPin = IOGetByTag(IO_TAG(HW_PIN)); HWDetectPin = IOGetByTag(IO_TAG(HW_PIN));
IOInit(HWDetectPin, OWNER_SYSTEM, RESOURCE_INPUT); IOInit(HWDetectPin, OWNER_SYSTEM, RESOURCE_INPUT);
IOConfigGPIO(HWDetectPin, IOCFG_IPU); IOConfigGPIO(HWDetectPin, IOCFG_IPU);
@ -74,4 +74,4 @@ const extiConfig_t *selectMPUIntExtiConfigByHardwareRevision(void)
else { else {
return &alienFlightF3V2MPUIntExtiConfig; return &alienFlightF3V2MPUIntExtiConfig;
} }
} }

View file

@ -45,7 +45,6 @@
// Using MPU6050 for the moment. // Using MPU6050 for the moment.
#define GYRO #define GYRO
#define USE_GYRO_MPU6050 #define USE_GYRO_MPU6050
#define USE_GYRO_MPU6500
#define USE_GYRO_SPI_MPU6500 #define USE_GYRO_SPI_MPU6500
#define GYRO_MPU6050_ALIGN CW270_DEG #define GYRO_MPU6050_ALIGN CW270_DEG
@ -53,7 +52,6 @@
#define ACC #define ACC
#define USE_ACC_MPU6050 #define USE_ACC_MPU6050
#define USE_ACC_MPU6500
#define USE_ACC_SPI_MPU6500 #define USE_ACC_SPI_MPU6500
#define ACC_MPU6050_ALIGN CW270_DEG #define ACC_MPU6050_ALIGN CW270_DEG
@ -100,8 +98,8 @@
#define USE_I2C #define USE_I2C
#define I2C_DEVICE (I2CDEV_2) // SDA (PA10/AF4), SCL (PA9/AF4) #define I2C_DEVICE (I2CDEV_2) // SDA (PA10/AF4), SCL (PA9/AF4)
#define I2C2_SCL_PIN PA9 #define I2C2_SCL PA9
#define I2C2_SDA_PIN PA10 #define I2C2_SDA PA10
// SPI3 // SPI3
// PA15 38 SPI3_NSS // PA15 38 SPI3_NSS
@ -118,14 +116,8 @@
#define USE_ADC #define USE_ADC
#define ADC_INSTANCE ADC2 #define ADC_INSTANCE ADC2
#define ADC_DMA_CHANNEL DMA2_Channel1
#define ADC_AHB_PERIPHERAL RCC_AHBPeriph_DMA2
//#define BOARD_HAS_VOLTAGE_DIVIDER //#define BOARD_HAS_VOLTAGE_DIVIDER
#define VBAT_ADC_PIN PA4
#define VBAT_ADC_GPIO GPIOA
#define VBAT_ADC_GPIO_PIN GPIO_Pin_4
#define VBAT_ADC_CHANNEL ADC_Channel_1
// alternative defaults for AlienFlight F3 target // alternative defaults for AlienFlight F3 target
#define ALIENFLIGHT #define ALIENFLIGHT
@ -139,8 +131,8 @@
#define BINDPLUG_PIN PB12 #define BINDPLUG_PIN PB12
#define BRUSHED_MOTORS #define BRUSHED_MOTORS
#define DEFAULT_RX_FEATURE FEATURE_RX_PPM #define DEFAULT_RX_FEATURE FEATURE_RX_SERIAL
#define DEFAULT_FEATURES (FEATURE_RX_SERIAL | FEATURE_MOTOR_STOP) #define DEFAULT_FEATURES FEATURE_MOTOR_STOP
#define USE_SERIAL_4WAY_BLHELI_INTERFACE #define USE_SERIAL_4WAY_BLHELI_INTERFACE

View file

@ -76,8 +76,8 @@ const timerHardware_t timerHardware[USABLE_TIMER_CHANNEL_COUNT] = {
{ TIM1, IO_TAG(PA8), TIM_Channel_1, TIM1_CC_IRQn, 0, IOCFG_AF_PP, GPIO_AF_TIM1, 0}, // PWM1 - PA8 RC1 { TIM1, IO_TAG(PA8), TIM_Channel_1, TIM1_CC_IRQn, 0, IOCFG_AF_PP, GPIO_AF_TIM1, 0}, // PWM1 - PA8 RC1
{ TIM1, IO_TAG(PB0), TIM_Channel_2, TIM1_CC_IRQn, 0, IOCFG_AF_PP, GPIO_AF_TIM1, 0}, // PWM2 - PB0 RC2 { TIM1, IO_TAG(PB0), TIM_Channel_2, TIM1_CC_IRQn, 0, IOCFG_AF_PP, GPIO_AF_TIM1, 0}, // PWM2 - PB0 RC2
{ TIM1, IO_TAG(PB1), TIM_Channel_3, TIM1_CC_IRQn, 0, IOCFG_AF_PP, GPIO_AF_TIM1, 0}, // PWM3 - PB1 RC3 { TIM1, IO_TAG(PB1), TIM_Channel_3, TIM1_CC_IRQn, 0, IOCFG_AF_PP, GPIO_AF_TIM1, 0}, // PWM3 - PB1 RC3
{ TIM8, IO_TAG(PB14),TIM_Channel_2, TIM8_CC_IRQn, 0, IOCFG_AF_PP, GPIO_AF_TIM8, 0}, // PWM4 - PA14 RC4 { TIM8, IO_TAG(PB14),TIM_Channel_2, TIM8_CC_IRQn, 0, IOCFG_AF_PP, GPIO_AF_TIM8, 0}, // PWM4 - PA14 RC4
{ TIM8, IO_TAG(PB15),TIM_Channel_3, TIM8_CC_IRQn, 0, IOCFG_AF_PP, GPIO_AF_TIM8, 0}, // PWM5 - PA15 RC5 { TIM8, IO_TAG(PB15),TIM_Channel_3, TIM8_CC_IRQn, 0, IOCFG_AF_PP, GPIO_AF_TIM8, 0}, // PWM5 - PA15 RC5
{ TIM4, IO_TAG(PB8), TIM_Channel_3, TIM4_IRQn, 1, IOCFG_AF_PP, GPIO_AF_TIM4, 0}, // PWM6 - PB8 OUT1 { TIM4, IO_TAG(PB8), TIM_Channel_3, TIM4_IRQn, 1, IOCFG_AF_PP, GPIO_AF_TIM4, 0}, // PWM6 - PB8 OUT1
{ TIM4, IO_TAG(PB9), TIM_Channel_4, TIM4_IRQn, 1, IOCFG_AF_PP, GPIO_AF_TIM4, 0}, // PWM7 - PB9 OUT2 { TIM4, IO_TAG(PB9), TIM_Channel_4, TIM4_IRQn, 1, IOCFG_AF_PP, GPIO_AF_TIM4, 0}, // PWM7 - PB9 OUT2

View file

@ -19,11 +19,6 @@
#define TARGET_BOARD_IDENTIFIER "AFF4" #define TARGET_BOARD_IDENTIFIER "AFF4"
#define CONFIG_START_FLASH_ADDRESS (0x08080000) //0x08080000 to 0x080A0000 (FLASH_Sector_8) #define CONFIG_START_FLASH_ADDRESS (0x08080000) //0x08080000 to 0x080A0000 (FLASH_Sector_8)
#define CONFIG_SERIALRX_PROVIDER SERIALRX_SPEKTRUM2048
#define CONFIG_BLACKBOX_DEVICE BLACKBOX_DEVICE_SDCARD
#define CONFIG_FEATURE_RX_SERIAL
#define CONFIG_MSP_PORT 1
#define CONFIG_RX_SERIAL_PORT 2
#define USBD_PRODUCT_STRING "AlienFlight F4" #define USBD_PRODUCT_STRING "AlienFlight F4"
@ -45,22 +40,14 @@
#define MPU6500_CS_PIN PA4 #define MPU6500_CS_PIN PA4
#define MPU6500_SPI_INSTANCE SPI1 #define MPU6500_SPI_INSTANCE SPI1
#define MPU9250_CS_PIN PA4
#define MPU9250_SPI_INSTANCE SPI1
#define ACC #define ACC
#define USE_ACC_SPI_MPU6500 #define USE_ACC_SPI_MPU6500
#define USE_ACC_SPI_MPU9250
#define ACC_MPU6500_ALIGN CW270_DEG #define ACC_MPU6500_ALIGN CW270_DEG
#define ACC_MPU9250_ALIGN CW270_DEG
#define GYRO #define GYRO
#define USE_GYRO_SPI_MPU6500 #define USE_GYRO_SPI_MPU6500
#define USE_GYRO_SPI_MPU9250
#define GYRO_MPU6500_ALIGN CW270_DEG #define GYRO_MPU6500_ALIGN CW270_DEG
#define GYRO_MPU9250_ALIGN CW270_DEG
#define MAG #define MAG
#define USE_MAG_HMC5883 #define USE_MAG_HMC5883
@ -152,18 +139,10 @@
#define USE_ADC #define USE_ADC
//#define BOARD_HAS_VOLTAGE_DIVIDER //#define BOARD_HAS_VOLTAGE_DIVIDER
#define VBAT_ADC_PIN PC0 #define VBAT_ADC_PIN PC0
#define VBAT_ADC_CHANNEL ADC_Channel_1
#define CURRENT_METER_ADC_PIN PC1 #define CURRENT_METER_ADC_PIN PC1
#define CURRENT_METER_ADC_CHANNEL ADC_Channel_0
#define RSSI_ADC_PIN PC4 #define RSSI_ADC_PIN PC4
#define RSSI_ADC_CHANNEL ADC_Channel_4
#define EXTERNAL1_ADC_GPIO_PIN PC5 #define EXTERNAL1_ADC_GPIO_PIN PC5
#define EXTERNAL1_ADC_CHANNEL ADC_Channel_5
// LED strip configuration using RC5 pin. // LED strip configuration using RC5 pin.
//#define LED_STRIP //#define LED_STRIP
@ -191,9 +170,11 @@
// Hardware bind plug at PB2 (Pin 28) // Hardware bind plug at PB2 (Pin 28)
#define BINDPLUG_PIN PB2 #define BINDPLUG_PIN PB2
#define ENABLE_BLACKBOX_LOGGING_ON_SDCARD_BY_DEFAULT
#define BRUSHED_MOTORS #define BRUSHED_MOTORS
#define DEFAULT_RX_FEATURE FEATURE_RX_PPM #define DEFAULT_RX_FEATURE FEATURE_RX_SERIAL
#define DEFAULT_FEATURES (FEATURE_RX_SERIAL | FEATURE_MOTOR_STOP) #define DEFAULT_FEATURES (FEATURE_MOTOR_STOP | FEATURE_BLACKBOX)
#define USE_SERIAL_4WAY_BLHELI_INTERFACE #define USE_SERIAL_4WAY_BLHELI_INTERFACE

View file

@ -4,7 +4,6 @@ FEATURES += SDCARD VCP
TARGET_SRC = \ TARGET_SRC = \
drivers/accgyro_mpu6500.c \ drivers/accgyro_mpu6500.c \
drivers/accgyro_spi_mpu6500.c \ drivers/accgyro_spi_mpu6500.c \
drivers/accgyro_spi_mpu9250.c \
drivers/barometer_bmp280.c \ drivers/barometer_bmp280.c \
drivers/barometer_ms5611.c \ drivers/barometer_ms5611.c \
drivers/compass_ak8963.c \ drivers/compass_ak8963.c \

View file

@ -19,19 +19,14 @@
#define TARGET_BOARD_IDENTIFIER "BJF4" #define TARGET_BOARD_IDENTIFIER "BJF4"
#define CONFIG_START_FLASH_ADDRESS (0x08080000) //0x08080000 to 0x080A0000 (FLASH_Sector_8) #define CONFIG_START_FLASH_ADDRESS (0x08080000) //0x08080000 to 0x080A0000 (FLASH_Sector_8)
#define CONFIG_SERIALRX_PROVIDER SERIALRX_SBUS
#define CONFIG_BLACKBOX_DEVICE BLACKBOX_DEVICE_SDCARD
#define CONFIG_FEATURE_RX_SERIAL
#define CONFIG_FEATURE_ONESHOT125
#define CONFIG_RX_SERIAL_PORT 3
#define USBD_PRODUCT_STRING "BlueJayF4" #define USBD_PRODUCT_STRING "BlueJayF4"
#define BOARD_HAS_VOLTAGE_DIVIDER #define BOARD_HAS_VOLTAGE_DIVIDER
#define USE_EXTI #define USE_EXTI
#define INVERTER PB15 #define INVERTER PB15
#define INVERTER_USART USART6 #define INVERTER_USART USART6
#define BEEPER PB7 #define BEEPER PB7
#define BEEPER_INVERTED #define BEEPER_INVERTED
@ -133,14 +128,17 @@
#define SPI3_MOSI_PIN PC12 #define SPI3_MOSI_PIN PC12
#define USE_I2C #define USE_I2C
#define I2C_DEVICE (I2CDEV_1) #define I2C_DEVICE (I2CDEV_1)
#define USE_I2C_PULLUP #define USE_I2C_PULLUP
#define USE_ADC #define USE_ADC
#define VBAT_ADC_PIN PC3 #define VBAT_ADC_PIN PC3
#define VBAT_ADC_CHANNEL ADC_Channel_13
#define ENABLE_BLACKBOX_LOGGING_ON_SDCARD_BY_DEFAULT
#define DEFAULT_RX_FEATURE FEATURE_RX_PPM #define DEFAULT_RX_FEATURE FEATURE_RX_PPM
#define DEFAULT_FEATURES FEATURE_BLACKBOX
#define USE_SERIAL_4WAY_BLHELI_INTERFACE #define USE_SERIAL_4WAY_BLHELI_INTERFACE
#define TARGET_IO_PORTA 0xffff #define TARGET_IO_PORTA 0xffff

View file

@ -28,12 +28,12 @@ const uint16_t multiPWM[] = {
PWM4 | (MAP_TO_PWM_INPUT << 8), PWM4 | (MAP_TO_PWM_INPUT << 8),
PWM5 | (MAP_TO_PWM_INPUT << 8), PWM5 | (MAP_TO_PWM_INPUT << 8),
PWM6 | (MAP_TO_PWM_INPUT << 8), // input #6 PWM6 | (MAP_TO_PWM_INPUT << 8), // input #6
PWM7 | (MAP_TO_MOTOR_OUTPUT << 8), // motor #1 or servo #1 (swap to servo if needed) PWM7 | (MAP_TO_MOTOR_OUTPUT << 8), // motor #1 or servo #1 (swap to servo if needed)
PWM8 | (MAP_TO_MOTOR_OUTPUT << 8), // motor #2 or servo #2 (swap to servo if needed) PWM8 | (MAP_TO_MOTOR_OUTPUT << 8), // motor #2 or servo #2 (swap to servo if needed)
PWM9 | (MAP_TO_MOTOR_OUTPUT << 8), // motor #1 or #3 PWM9 | (MAP_TO_MOTOR_OUTPUT << 8), // motor #1 or #3
PWM10 | (MAP_TO_MOTOR_OUTPUT << 8), PWM10 | (MAP_TO_MOTOR_OUTPUT << 8),
PWM11 | (MAP_TO_MOTOR_OUTPUT << 8), PWM11 | (MAP_TO_MOTOR_OUTPUT << 8),
PWM12 | (MAP_TO_MOTOR_OUTPUT << 8), // motor #4 or #6 PWM12 | (MAP_TO_MOTOR_OUTPUT << 8), // motor #4 or #6
0xFFFF 0xFFFF
}; };
@ -59,26 +59,26 @@ const uint16_t airPWM[] = {
PWM4 | (MAP_TO_PWM_INPUT << 8), PWM4 | (MAP_TO_PWM_INPUT << 8),
PWM5 | (MAP_TO_PWM_INPUT << 8), PWM5 | (MAP_TO_PWM_INPUT << 8),
PWM6 | (MAP_TO_PWM_INPUT << 8), // input #6 PWM6 | (MAP_TO_PWM_INPUT << 8), // input #6
PWM7 | (MAP_TO_MOTOR_OUTPUT << 8), // motor #1 PWM7 | (MAP_TO_MOTOR_OUTPUT << 8), // motor #1
PWM8 | (MAP_TO_MOTOR_OUTPUT << 8), // motor #2 PWM8 | (MAP_TO_MOTOR_OUTPUT << 8), // motor #2
PWM9 | (MAP_TO_SERVO_OUTPUT << 8), // servo #1 PWM9 | (MAP_TO_SERVO_OUTPUT << 8), // servo #1
PWM10 | (MAP_TO_SERVO_OUTPUT << 8), // servo #2 PWM10 | (MAP_TO_SERVO_OUTPUT << 8), // servo #2
PWM11 | (MAP_TO_SERVO_OUTPUT << 8), // servo #3 PWM11 | (MAP_TO_SERVO_OUTPUT << 8), // servo #3
PWM12 | (MAP_TO_SERVO_OUTPUT << 8), // servo #4 PWM12 | (MAP_TO_SERVO_OUTPUT << 8), // servo #4
0xFFFF 0xFFFF
}; };
const uint16_t multiPPM_BP6[] = { const uint16_t multiPPM_BP6[] = {
PWM6 | (MAP_TO_PPM_INPUT << 8), // PPM input PWM6 | (MAP_TO_PPM_INPUT << 8), // PPM input
PWM7 | (MAP_TO_MOTOR_OUTPUT << 8), // motor #1 PWM7 | (MAP_TO_MOTOR_OUTPUT << 8), // motor #1
PWM8 | (MAP_TO_MOTOR_OUTPUT << 8), // motor #2 PWM8 | (MAP_TO_MOTOR_OUTPUT << 8), // motor #2
PWM9 | (MAP_TO_MOTOR_OUTPUT << 8), // motor #3 PWM9 | (MAP_TO_MOTOR_OUTPUT << 8), // motor #3
PWM10 | (MAP_TO_MOTOR_OUTPUT << 8), // motor #4 PWM10 | (MAP_TO_MOTOR_OUTPUT << 8), // motor #4
PWM11 | (MAP_TO_MOTOR_OUTPUT << 8), PWM11 | (MAP_TO_MOTOR_OUTPUT << 8),
PWM2 | (MAP_TO_MOTOR_OUTPUT << 8), // Swap to servo if needed PWM2 | (MAP_TO_MOTOR_OUTPUT << 8), // Swap to servo if needed
PWM3 | (MAP_TO_MOTOR_OUTPUT << 8), // Swap to servo if needed PWM3 | (MAP_TO_MOTOR_OUTPUT << 8), // Swap to servo if needed
PWM4 | (MAP_TO_MOTOR_OUTPUT << 8), // Swap to servo if needed PWM4 | (MAP_TO_MOTOR_OUTPUT << 8), // Swap to servo if needed
PWM5 | (MAP_TO_MOTOR_OUTPUT << 8), // Swap to servo if needed PWM5 | (MAP_TO_MOTOR_OUTPUT << 8), // Swap to servo if needed
0xFFFF 0xFFFF
}; };
@ -89,9 +89,9 @@ const uint16_t multiPWM_BP6[] = {
PWM4 | (MAP_TO_PWM_INPUT << 8), PWM4 | (MAP_TO_PWM_INPUT << 8),
PWM5 | (MAP_TO_PWM_INPUT << 8), PWM5 | (MAP_TO_PWM_INPUT << 8),
PWM6 | (MAP_TO_PWM_INPUT << 8), // input #6 PWM6 | (MAP_TO_PWM_INPUT << 8), // input #6
PWM7 | (MAP_TO_MOTOR_OUTPUT << 8), // motor #1 or servo #1 (swap to servo if needed) PWM7 | (MAP_TO_MOTOR_OUTPUT << 8), // motor #1 or servo #1 (swap to servo if needed)
PWM8 | (MAP_TO_MOTOR_OUTPUT << 8), // motor #2 or servo #2 (swap to servo if needed) PWM8 | (MAP_TO_MOTOR_OUTPUT << 8), // motor #2 or servo #2 (swap to servo if needed)
PWM9 | (MAP_TO_MOTOR_OUTPUT << 8), // motor #1 or #3 PWM9 | (MAP_TO_MOTOR_OUTPUT << 8), // motor #1 or #3
PWM10 | (MAP_TO_MOTOR_OUTPUT << 8), PWM10 | (MAP_TO_MOTOR_OUTPUT << 8),
PWM11 | (MAP_TO_MOTOR_OUTPUT << 8), PWM11 | (MAP_TO_MOTOR_OUTPUT << 8),
0xFFFF 0xFFFF
@ -118,11 +118,11 @@ const uint16_t airPWM_BP6[] = {
PWM4 | (MAP_TO_PWM_INPUT << 8), PWM4 | (MAP_TO_PWM_INPUT << 8),
PWM5 | (MAP_TO_PWM_INPUT << 8), PWM5 | (MAP_TO_PWM_INPUT << 8),
PWM6 | (MAP_TO_PWM_INPUT << 8), // input #6 PWM6 | (MAP_TO_PWM_INPUT << 8), // input #6
PWM7 | (MAP_TO_MOTOR_OUTPUT << 8), // motor #1 PWM7 | (MAP_TO_MOTOR_OUTPUT << 8), // motor #1
PWM8 | (MAP_TO_MOTOR_OUTPUT << 8), // motor #2 PWM8 | (MAP_TO_MOTOR_OUTPUT << 8), // motor #2
PWM9 | (MAP_TO_SERVO_OUTPUT << 8), // servo #1 PWM9 | (MAP_TO_SERVO_OUTPUT << 8), // servo #1
PWM10 | (MAP_TO_SERVO_OUTPUT << 8), // servo #2 PWM10 | (MAP_TO_SERVO_OUTPUT << 8), // servo #2
PWM11 | (MAP_TO_SERVO_OUTPUT << 8), // servo #3 PWM11 | (MAP_TO_SERVO_OUTPUT << 8), // servo #3
0xFFFF 0xFFFF
}; };

View file

@ -92,21 +92,12 @@
#define I2C_DEVICE (I2CDEV_2) // Flex port - SCL/PB10, SDA/PB11 #define I2C_DEVICE (I2CDEV_2) // Flex port - SCL/PB10, SDA/PB11
#define USE_ADC #define USE_ADC
#define CURRENT_METER_ADC_PIN PB1
#define CURRENT_METER_ADC_GPIO GPIOB #define VBAT_ADC_PIN PA0
#define CURRENT_METER_ADC_GPIO_PIN GPIO_Pin_1 #define RSSI_ADC_PIN PB0
#define CURRENT_METER_ADC_CHANNEL ADC_Channel_9
#define VBAT_ADC_GPIO GPIOA
#define VBAT_ADC_GPIO_PIN GPIO_Pin_0
#define VBAT_ADC_CHANNEL ADC_Channel_0
#define RSSI_ADC_GPIO GPIOB
#define RSSI_ADC_GPIO_PIN GPIO_Pin_0
#define RSSI_ADC_CHANNEL ADC_Channel_8
#define LED_STRIP #define LED_STRIP
#define LED_STRIP_TIMER TIM3 #define LED_STRIP_TIMER TIM3
#define WS2811_DMA_TC_FLAG DMA1_FLAG_TC6 #define WS2811_DMA_TC_FLAG DMA1_FLAG_TC6
#define WS2811_DMA_HANDLER_IDENTIFER DMA1_CH6_HANDLER #define WS2811_DMA_HANDLER_IDENTIFER DMA1_CH6_HANDLER

View file

@ -101,26 +101,11 @@
#define I2C_DEVICE (I2CDEV_1) #define I2C_DEVICE (I2CDEV_1)
#define USE_ADC #define USE_ADC
#define ADC_INSTANCE ADC1 #define ADC_INSTANCE ADC1
#define ADC_AHB_PERIPHERAL RCC_AHBPeriph_DMA1 #define VBAT_ADC_PIN PC0
#define ADC_DMA_CHANNEL DMA1_Channel1 #define CURRENT_METER_ADC_PIN PC1
#define RSSI_ADC_PIN PC2
#define VBAT_ADC_GPIO GPIOC #define EXTERNAL1_ADC_PIN PC3
#define VBAT_ADC_GPIO_PIN GPIO_Pin_0
#define VBAT_ADC_CHANNEL ADC_Channel_6
#define CURRENT_METER_ADC_GPIO GPIOC
#define CURRENT_METER_ADC_GPIO_PIN GPIO_Pin_1
#define CURRENT_METER_ADC_CHANNEL ADC_Channel_7
#define RSSI_ADC_GPIO GPIOC
#define RSSI_ADC_GPIO_PIN GPIO_Pin_2
#define RSSI_ADC_CHANNEL ADC_Channel_8
#define EXTERNAL1_ADC_GPIO GPIOC
#define EXTERNAL1_ADC_GPIO_PIN GPIO_Pin_3
#define EXTERNAL1_ADC_CHANNEL ADC_Channel_9
// IO - assuming 303 in 64pin package, TODO // IO - assuming 303 in 64pin package, TODO
#define TARGET_IO_PORTA 0xffff #define TARGET_IO_PORTA 0xffff

View file

@ -55,5 +55,5 @@ void updateHardwareRevision(void)
const extiConfig_t *selectMPUIntExtiConfigByHardwareRevision(void) const extiConfig_t *selectMPUIntExtiConfigByHardwareRevision(void)
{ {
return NULL; return NULL;
} }

View file

@ -1545,7 +1545,6 @@ void taskBstMasterProcess(void)
bstMasterWriteLoop(); bstMasterWriteLoop();
if (isRebootScheduled) { if (isRebootScheduled) {
stopMotors(); stopMotors();
handleOneshotFeatureChangeOnRestart();
systemReset(); systemReset();
} }
resetBstChecker(); resetBstChecker();
@ -1555,12 +1554,14 @@ void taskBstMasterProcess(void)
static uint8_t masterWriteBufferPointer; static uint8_t masterWriteBufferPointer;
static uint8_t masterWriteData[DATA_BUFFER_SIZE]; static uint8_t masterWriteData[DATA_BUFFER_SIZE];
static void bstMasterStartBuffer(uint8_t address) { static void bstMasterStartBuffer(uint8_t address)
{
masterWriteData[0] = address; masterWriteData[0] = address;
masterWriteBufferPointer = 2; masterWriteBufferPointer = 2;
} }
static void bstMasterWrite8(uint8_t data) { static void bstMasterWrite8(uint8_t data)
{
masterWriteData[masterWriteBufferPointer++] = data; masterWriteData[masterWriteBufferPointer++] = data;
masterWriteData[1] = masterWriteBufferPointer; masterWriteData[1] = masterWriteBufferPointer;
} }

View file

@ -34,7 +34,7 @@
#define MPU6500_CS_PIN PA4 #define MPU6500_CS_PIN PA4
#define MPU6500_SPI_INSTANCE SPI1 #define MPU6500_SPI_INSTANCE SPI1
#define MPU6000_CS_PIN PA4 #define MPU6000_CS_PIN PA4
#define MPU6000_SPI_INSTANCE SPI1 #define MPU6000_SPI_INSTANCE SPI1
#define USE_SPI #define USE_SPI
@ -103,16 +103,8 @@
#define USE_I2C #define USE_I2C
#define I2C_DEVICE (I2CDEV_2) #define I2C_DEVICE (I2CDEV_2)
#define I2C2_SCL_GPIO GPIOA #define I2C2_SCL_PIN PA9
#define I2C2_SCL_GPIO_AF GPIO_AF_4 #define I2C2_SDA_PIN PA10
#define I2C2_SCL_PIN GPIO_Pin_9
#define I2C2_SCL_PIN_SOURCE GPIO_PinSource9
#define I2C2_SCL_CLK_SOURCE RCC_AHBPeriph_GPIOA
#define I2C2_SDA_GPIO GPIOA
#define I2C2_SDA_GPIO_AF GPIO_AF_4
#define I2C2_SDA_PIN GPIO_Pin_10
#define I2C2_SDA_PIN_SOURCE GPIO_PinSource10
#define I2C2_SDA_CLK_SOURCE RCC_AHBPeriph_GPIOA
#define USE_BST #define USE_BST
#define BST_DEVICE (BSTDEV_1) #define BST_DEVICE (BSTDEV_1)
@ -120,32 +112,17 @@
#define BST_CRC_POLYNOM 0xD5 #define BST_CRC_POLYNOM 0xD5
#define USE_ADC #define USE_ADC
#define ADC_INSTANCE ADC1 #define ADC_INSTANCE ADC1
#define ADC_AHB_PERIPHERAL RCC_AHBPeriph_DMA1
#define ADC_DMA_CHANNEL DMA1_Channel1
#define BOARD_HAS_VOLTAGE_DIVIDER #define BOARD_HAS_VOLTAGE_DIVIDER
#define VBAT_ADC_GPIO GPIOC #define VBAT_ADC_PIN PC0
#define VBAT_ADC_GPIO_PIN GPIO_Pin_0 #define CURRENT_METER_ADC_PIN PC1
#define VBAT_ADC_CHANNEL ADC_Channel_6 #define RSSI_ADC_PIN PC2
#define EXTERNAL1_ADC_PIN PC3
#define CURRENT_METER_ADC_GPIO GPIOC
#define CURRENT_METER_ADC_GPIO_PIN GPIO_Pin_1
#define CURRENT_METER_ADC_CHANNEL ADC_Channel_7
#define RSSI_ADC_GPIO GPIOC
#define RSSI_ADC_GPIO_PIN GPIO_Pin_2
#define RSSI_ADC_CHANNEL ADC_Channel_8
#define EXTERNAL1_ADC_GPIO GPIOC
#define EXTERNAL1_ADC_GPIO_PIN GPIO_Pin_3
#define EXTERNAL1_ADC_CHANNEL ADC_Channel_9
#define LED_STRIP #define LED_STRIP
#define USE_COLIBTI_RACE_LED_DEFAULT_CONFIG #define USE_COLIBTI_RACE_LED_DEFAULT_CONFIG
#define LED_STRIP_TIMER TIM16 #define LED_STRIP_TIMER TIM16
#define WS2811_GPIO GPIOA #define WS2811_GPIO GPIOA
#define WS2811_GPIO_AHB_PERIPHERAL RCC_AHBPeriph_GPIOA #define WS2811_GPIO_AHB_PERIPHERAL RCC_AHBPeriph_GPIOA

View file

@ -34,44 +34,29 @@
#define BEEPER_INVERTED #define BEEPER_INVERTED
// tqfp48 pin 3 // tqfp48 pin 3
#define MPU6500_CS_GPIO_CLK_PERIPHERAL RCC_AHBPeriph_GPIOC
#define MPU6500_CS_GPIO GPIOC
#define MPU6500_CS_PIN PC14 #define MPU6500_CS_PIN PC14
#define MPU6500_SPI_INSTANCE SPI1 #define MPU6500_SPI_INSTANCE SPI1
// tqfp48 pin 25 // tqfp48 pin 25
#define BMP280_CS_GPIO_CLK_PERIPHERAL RCC_AHBPeriph_GPIOB #define BMP280_CS_PIN PB12
#define BMP280_CS_GPIO GPIOB
#define BMP280_CS_PIN GPIO_Pin_12
#define BMP280_SPI_INSTANCE SPI2 #define BMP280_SPI_INSTANCE SPI2
#define USE_SPI #define USE_SPI
#define USE_SPI_DEVICE_1 #define USE_SPI_DEVICE_1
#define USE_SPI_DEVICE_2 #define USE_SPI_DEVICE_2
#define SPI1_GPIO GPIOB
#define SPI1_GPIO_PERIPHERAL RCC_AHBPeriph_GPIOB
// tqfp48 pin 39 // tqfp48 pin 39
#define SPI1_SCK_PIN PB3 #define SPI1_SCK_PIN PB3
#define SPI1_SCK_PIN_SOURCE GPIO_PinSource3
// tqfp48 pin 40 // tqfp48 pin 40
#define SPI1_MISO_PIN PB4 #define SPI1_MISO_PIN PB4
#define SPI1_MISO_PIN_SOURCE GPIO_PinSource4
// tqfp48 pin 41 // tqfp48 pin 41
#define SPI1_MOSI_PIN PB5 #define SPI1_MOSI_PIN PB5
#define SPI1_MOSI_PIN_SOURCE GPIO_PinSource5
#define SPI2_GPIO GPIOB
#define SPI2_GPIO_PERIPHERAL RCC_AHBPeriph_GPIOB
// tqfp48 pin 26 // tqfp48 pin 26
#define SPI2_SCK_PIN PB13 #define SPI2_SCK_PIN PB13
#define SPI2_SCK_PIN_SOURCE GPIO_PinSource13
// tqfp48 pin 27 // tqfp48 pin 27
#define SPI2_MISO_PIN PB14 #define SPI2_MISO_PIN PB14
#define SPI2_MISO_PIN_SOURCE GPIO_PinSource14
// tqfp48 pin 28 // tqfp48 pin 28
#define SPI2_MOSI_PIN PB15 #define SPI2_MOSI_PIN PB15
#define SPI2_MOSI_PIN_SOURCE GPIO_PinSource15
#define USE_FLASHFS #define USE_FLASHFS
#define USE_FLASH_M25P16 #define USE_FLASH_M25P16
@ -139,20 +124,9 @@
#define USE_ADC #define USE_ADC
#define BOARD_HAS_VOLTAGE_DIVIDER #define BOARD_HAS_VOLTAGE_DIVIDER
#define ADC_INSTANCE ADC2 #define ADC_INSTANCE ADC2
#define ADC_AHB_PERIPHERAL RCC_AHBPeriph_DMA2 #define VBAT_ADC_PIN PA4
#define ADC_DMA_CHANNEL DMA2_Channel1 #define CURRENT_METER_ADC_PIN PA5
// tqfp48 pin 14
#define VBAT_ADC_GPIO GPIOA
#define VBAT_ADC_GPIO_PIN GPIO_Pin_4
#define VBAT_ADC_CHANNEL ADC_Channel_1
// tqfp48 pin 15
#define CURRENT_METER_ADC_GPIO GPIOA
#define CURRENT_METER_ADC_GPIO_PIN GPIO_Pin_5
#define CURRENT_METER_ADC_CHANNEL ADC_Channel_2
// mpu_int definition in sensors/initialisation.c // mpu_int definition in sensors/initialisation.c
#define USE_EXTI #define USE_EXTI

View file

@ -97,22 +97,10 @@
// #define SOFT_I2C_PB67 // #define SOFT_I2C_PB67
#define USE_ADC #define USE_ADC
#define CURRENT_METER_ADC_PIN PB1
#define CURRENT_METER_ADC_GPIO GPIOB #define VBAT_ADC_PIN PA4
#define CURRENT_METER_ADC_GPIO_PIN GPIO_Pin_1 #define RSSI_ADC_PIN PA1
#define CURRENT_METER_ADC_CHANNEL ADC_Channel_9 #define EXTERNAL1_ADC_PIN PA5
#define VBAT_ADC_GPIO GPIOA
#define VBAT_ADC_GPIO_PIN GPIO_Pin_4
#define VBAT_ADC_CHANNEL ADC_Channel_4
#define RSSI_ADC_GPIO GPIOA
#define RSSI_ADC_GPIO_PIN GPIO_Pin_1
#define RSSI_ADC_CHANNEL ADC_Channel_1
#define EXTERNAL1_ADC_GPIO GPIOA
#define EXTERNAL1_ADC_GPIO_PIN GPIO_Pin_5
#define EXTERNAL1_ADC_CHANNEL ADC_Channel_5
//#define LED_STRIP //#define LED_STRIP
#define LED_STRIP_TIMER TIM3 #define LED_STRIP_TIMER TIM3

View file

@ -11,6 +11,7 @@ TARGET_SRC = \
drivers/accgyro_mpu.c \ drivers/accgyro_mpu.c \
drivers/accgyro_mpu3050.c \ drivers/accgyro_mpu3050.c \
drivers/accgyro_mpu6050.c \ drivers/accgyro_mpu6050.c \
drivers/accgyro_mpu6500.c \
drivers/accgyro_spi_mpu6000.c \ drivers/accgyro_spi_mpu6000.c \
drivers/accgyro_spi_mpu6500.c \ drivers/accgyro_spi_mpu6500.c \
drivers/barometer_bmp085.c \ drivers/barometer_bmp085.c \

View file

@ -25,9 +25,9 @@
#define USE_EXTI #define USE_EXTI
#define CONFIG_PREFER_ACC_ON #define CONFIG_PREFER_ACC_ON
#define LED0 PC14 #define LED0 PC14
#define BEEPER PC15 #define BEEPER PC15
#define BEEPER_INVERTED #define BEEPER_INVERTED
#define EXTI_CALLBACK_HANDLER_COUNT 2 // MPU INT, SDCardDetect #define EXTI_CALLBACK_HANDLER_COUNT 2 // MPU INT, SDCardDetect
@ -150,25 +150,13 @@
#define USE_ADC #define USE_ADC
#define BOARD_HAS_VOLTAGE_DIVIDER #define BOARD_HAS_VOLTAGE_DIVIDER
#define ADC_INSTANCE ADC1 #define ADC_INSTANCE ADC1
#define ADC_DMA_CHANNEL DMA1_Channel1 #define VBAT_ADC_PIN PA0
#define ADC_AHB_PERIPHERAL RCC_AHBPeriph_DMA1 #define RSSI_ADC_PIN PA1
#define CURRENT_METER_ADC_PIN PA2
#define VBAT_ADC_GPIO GPIOA
#define VBAT_ADC_GPIO_PIN GPIO_Pin_0
#define VBAT_ADC_CHANNEL ADC_Channel_1
#define RSSI_ADC_GPIO GPIOA
#define RSSI_ADC_GPIO_PIN GPIO_Pin_1
#define RSSI_ADC_CHANNEL ADC_Channel_2
#define CURRENT_METER_ADC_GPIO GPIOA
#define CURRENT_METER_ADC_GPIO_PIN GPIO_Pin_2
#define CURRENT_METER_ADC_CHANNEL ADC_Channel_3
#define LED_STRIP #define LED_STRIP
#define LED_STRIP_TIMER TIM1 #define LED_STRIP_TIMER TIM1
#define USE_LED_STRIP_ON_DMA1_CHANNEL2 #define USE_LED_STRIP_ON_DMA1_CHANNEL2
#define WS2811_GPIO GPIOA #define WS2811_GPIO GPIOA
@ -200,7 +188,7 @@
#define TARGET_IO_PORTB 0xffff #define TARGET_IO_PORTB 0xffff
#define TARGET_IO_PORTC 0xffff #define TARGET_IO_PORTC 0xffff
#define TARGET_IO_PORTD 0xffff #define TARGET_IO_PORTD 0xffff
#define TARGET_IO_PORTF (BIT(4)) #define TARGET_IO_PORTF (BIT(4))
#define USED_TIMERS (TIM_N(1) | TIM_N(2) | TIM_N(3) | TIM_N(4) | TIM_N(16) |TIM_N(17)) #define USED_TIMERS (TIM_N(1) | TIM_N(2) | TIM_N(3) | TIM_N(4) | TIM_N(16) |TIM_N(17))

View file

@ -144,15 +144,9 @@
#define USE_ADC #define USE_ADC
#define BOARD_HAS_VOLTAGE_DIVIDER #define BOARD_HAS_VOLTAGE_DIVIDER
#define VBAT_ADC_PIN PC1
#define VBAT_ADC_PIN PC1 #define RSSI_ADC_GPIO_PIN PC2
#define VBAT_ADC_CHANNEL ADC_Channel_11
#define RSSI_ADC_GPIO_PIN PC2
#define RSSI_ADC_CHANNEL ADC_Channel_12
#define CURRENT_METER_ADC_PIN PC3 #define CURRENT_METER_ADC_PIN PC3
#define CURRENT_METER_ADC_CHANNEL ADC_Channel_13
#define DEFAULT_RX_FEATURE FEATURE_RX_PPM #define DEFAULT_RX_FEATURE FEATURE_RX_PPM

View file

@ -80,33 +80,19 @@
#define USE_SPI #define USE_SPI
#define USE_SPI_DEVICE_2 // PB12,13,14,15 on AF5 #define USE_SPI_DEVICE_2 // PB12,13,14,15 on AF5
#define M25P16_CS_GPIO GPIOB
#define M25P16_CS_PIN PB12 #define M25P16_CS_PIN PB12
#define M25P16_SPI_INSTANCE SPI2 #define M25P16_SPI_INSTANCE SPI2
#define USE_ADC #define USE_ADC
#define BOARD_HAS_VOLTAGE_DIVIDER #define BOARD_HAS_VOLTAGE_DIVIDER
#define ADC_INSTANCE ADC2 #define ADC_INSTANCE ADC2
#define ADC_DMA_CHANNEL DMA2_Channel1 #define VBAT_ADC_PIN PA4
#define ADC_AHB_PERIPHERAL RCC_AHBPeriph_DMA2 #define CURRENT_METER_ADC_PIN PA5
#define RSSI_ADC_PIN PB2
#define VBAT_ADC_GPIO GPIOA
#define VBAT_ADC_GPIO_PIN GPIO_Pin_4
#define VBAT_ADC_CHANNEL ADC_Channel_1
#define CURRENT_METER_ADC_GPIO GPIOA
#define CURRENT_METER_ADC_GPIO_PIN GPIO_Pin_5
#define CURRENT_METER_ADC_CHANNEL ADC_Channel_2
#define RSSI_ADC_GPIO GPIOB
#define RSSI_ADC_GPIO_PIN GPIO_Pin_2
#define RSSI_ADC_CHANNEL ADC_Channel_12
#define SPEKTRUM_BIND #define SPEKTRUM_BIND
// USART3, // USART3,
#define BIND_PIN PB11 #define BIND_PIN PB11
#define USE_SERIAL_4WAY_BLHELI_INTERFACE #define USE_SERIAL_4WAY_BLHELI_INTERFACE
/* /*

View file

@ -72,23 +72,11 @@
#define USE_I2C #define USE_I2C
#define I2C_DEVICE (I2CDEV_1) // PB6/SCL, PB7/SDA #define I2C_DEVICE (I2CDEV_1) // PB6/SCL, PB7/SDA
//#define USE_ADC
#define ADC_INSTANCE ADC2 #define ADC_INSTANCE ADC2
#define ADC_DMA_CHANNEL DMA2_Channel1 #define VBAT_ADC_PIN PA4
#define ADC_AHB_PERIPHERAL RCC_AHBPeriph_DMA2 #define CURRENT_METER_ADC_PIN PA5
#define RSSI_ADC_PIN PB2
#define VBAT_ADC_GPIO GPIOA
#define VBAT_ADC_GPIO_PIN GPIO_Pin_4
#define VBAT_ADC_CHANNEL ADC_Channel_1
#define CURRENT_METER_ADC_GPIO GPIOA
#define CURRENT_METER_ADC_GPIO_PIN GPIO_Pin_5
#define CURRENT_METER_ADC_CHANNEL ADC_Channel_2
#define RSSI_ADC_GPIO GPIOB
#define RSSI_ADC_GPIO_PIN GPIO_Pin_2
#define RSSI_ADC_CHANNEL ADC_Channel_12
#define SPEKTRUM_BIND #define SPEKTRUM_BIND
@ -98,6 +86,6 @@
#define TARGET_IO_PORTB 0xffff #define TARGET_IO_PORTB 0xffff
#define TARGET_IO_PORTC 0xffff #define TARGET_IO_PORTC 0xffff
#define TARGET_IO_PORTD 0xffff #define TARGET_IO_PORTD 0xffff
#define TARGET_IO_PORTF (BIT(4)) #define TARGET_IO_PORTF (BIT(4))
#define USED_TIMERS (TIM_N(1) | TIM_N(2) | TIM_N(3) | TIM_N(4) | TIM_N(8) | TIM_N(15) | TIM_N(16) | TIM_N(17)) #define USED_TIMERS (TIM_N(1) | TIM_N(2) | TIM_N(3) | TIM_N(4) | TIM_N(8) | TIM_N(15) | TIM_N(16) | TIM_N(17))

View file

@ -26,12 +26,12 @@ const uint16_t multiPWM[] = {
PWM3 | (MAP_TO_MOTOR_OUTPUT << 8), PWM3 | (MAP_TO_MOTOR_OUTPUT << 8),
PWM4 | (MAP_TO_MOTOR_OUTPUT << 8), PWM4 | (MAP_TO_MOTOR_OUTPUT << 8),
PWM5 | (MAP_TO_MOTOR_OUTPUT << 8), PWM5 | (MAP_TO_MOTOR_OUTPUT << 8),
PWM6 | (MAP_TO_MOTOR_OUTPUT << 8), // Swap to servo if needed PWM6 | (MAP_TO_MOTOR_OUTPUT << 8), // Swap to servo if needed
PWM7 | (MAP_TO_MOTOR_OUTPUT << 8), // Swap to servo if needed PWM7 | (MAP_TO_MOTOR_OUTPUT << 8), // Swap to servo if needed
PWM8 | (MAP_TO_MOTOR_OUTPUT << 8), // Swap to servo if needed PWM8 | (MAP_TO_MOTOR_OUTPUT << 8), // Swap to servo if needed
PWM9 | (MAP_TO_MOTOR_OUTPUT << 8), // Swap to servo if needed PWM9 | (MAP_TO_MOTOR_OUTPUT << 8), // Swap to servo if needed
PWM10 | (MAP_TO_MOTOR_OUTPUT << 8), // Swap to servo if needed PWM10 | (MAP_TO_MOTOR_OUTPUT << 8), // Swap to servo if needed
PWM11 | (MAP_TO_MOTOR_OUTPUT << 8), // Swap to servo if needed PWM11 | (MAP_TO_MOTOR_OUTPUT << 8), // Swap to servo if needed
0xFFFF 0xFFFF
}; };

View file

@ -88,30 +88,14 @@
#define I2C_DEVICE (I2CDEV_2) #define I2C_DEVICE (I2CDEV_2)
#define USE_ADC #define USE_ADC
#define ADC_INSTANCE ADC1 #define ADC_INSTANCE ADC1
#define ADC_AHB_PERIPHERAL RCC_AHBPeriph_DMA1 #define VBAT_ADC_PIN PC0
#define ADC_DMA_CHANNEL DMA1_Channel1 #define CURRENT_METER_ADC_PIN PC1
#define RSSI_ADC_PIN PC2
#define VBAT_ADC_GPIO GPIOC #define EXTERNAL1_ADC_PIN PC3
#define VBAT_ADC_GPIO_PIN GPIO_Pin_0
#define VBAT_ADC_CHANNEL ADC_Channel_6
#define CURRENT_METER_ADC_GPIO GPIOC
#define CURRENT_METER_ADC_GPIO_PIN GPIO_Pin_1
#define CURRENT_METER_ADC_CHANNEL ADC_Channel_7
#define RSSI_ADC_GPIO GPIOC
#define RSSI_ADC_GPIO_PIN GPIO_Pin_2
#define RSSI_ADC_CHANNEL ADC_Channel_8
#define EXTERNAL1_ADC_GPIO GPIOC
#define EXTERNAL1_ADC_GPIO_PIN GPIO_Pin_3
#define EXTERNAL1_ADC_CHANNEL ADC_Channel_9
#define LED_STRIP #define LED_STRIP
#define LED_STRIP_TIMER TIM16
#define LED_STRIP_TIMER TIM16
#define WS2811_GPIO GPIOA #define WS2811_GPIO GPIOA
#define WS2811_GPIO_AHB_PERIPHERAL RCC_AHBPeriph_GPIOA #define WS2811_GPIO_AHB_PERIPHERAL RCC_AHBPeriph_GPIOA

View file

@ -119,22 +119,10 @@
#define USE_ADC #define USE_ADC
#define BOARD_HAS_VOLTAGE_DIVIDER #define BOARD_HAS_VOLTAGE_DIVIDER
#define ADC_INSTANCE ADC2 #define ADC_INSTANCE ADC2
#define ADC_DMA_CHANNEL DMA2_Channel1 #define VBAT_ADC_PIN PA5
#define ADC_AHB_PERIPHERAL RCC_AHBPeriph_DMA2 //#define CURRENT_METER_ADC_PIN PA5
#define RSSI_ADC_PIN PB2
#define VBAT_ADC_GPIO GPIOA
#define VBAT_ADC_GPIO_PIN GPIO_Pin_5
#define VBAT_ADC_CHANNEL ADC_Channel_2
//#define CURRENT_METER_ADC_GPIO GPIOA
//#define CURRENT_METER_ADC_GPIO_PIN GPIO_Pin_5
//#define CURRENT_METER_ADC_CHANNEL ADC_Channel_2
#define RSSI_ADC_GPIO GPIOB
#define RSSI_ADC_GPIO_PIN GPIO_Pin_2
#define RSSI_ADC_CHANNEL ADC_Channel_12
#define LED_STRIP #define LED_STRIP
#if 1 #if 1

View file

@ -33,8 +33,8 @@
#define BARO_XCLR_PIN PC13 #define BARO_XCLR_PIN PC13
#define BARO_EOC_PIN PC14 #define BARO_EOC_PIN PC14
#define INVERTER PB2 // PB2 (BOOT1) abused as inverter select GPIO #define INVERTER PB2 // PB2 (BOOT1) abused as inverter select GPIO
#define INVERTER_USART USART2 #define INVERTER_USART USART2
#define USE_EXTI #define USE_EXTI
@ -147,26 +147,14 @@
// #define SOFT_I2C_PB67 // #define SOFT_I2C_PB67
#define USE_ADC #define USE_ADC
#define CURRENT_METER_ADC_PIN PB1
#define CURRENT_METER_ADC_GPIO GPIOB #define VBAT_ADC_PIN PA4
#define CURRENT_METER_ADC_GPIO_PIN GPIO_Pin_1 #define RSSI_ADC_PIN PA1
#define CURRENT_METER_ADC_CHANNEL ADC_Channel_9 #define EXTERNAL1_ADC_PIN PA5
#define VBAT_ADC_GPIO GPIOA
#define VBAT_ADC_GPIO_PIN GPIO_Pin_4
#define VBAT_ADC_CHANNEL ADC_Channel_4
#define RSSI_ADC_GPIO GPIOA
#define RSSI_ADC_GPIO_PIN GPIO_Pin_1
#define RSSI_ADC_CHANNEL ADC_Channel_1
#define EXTERNAL1_ADC_GPIO GPIOA
#define EXTERNAL1_ADC_GPIO_PIN GPIO_Pin_5
#define EXTERNAL1_ADC_CHANNEL ADC_Channel_5
#define LED_STRIP #define LED_STRIP
#define LED_STRIP_TIMER TIM3 #define LED_STRIP_TIMER TIM3
#define WS2811_DMA_TC_FLAG DMA1_FLAG_TC6 #define WS2811_DMA_TC_FLAG DMA1_FLAG_TC6
#define WS2811_DMA_HANDLER_IDENTIFER DMA1_CH6_HANDLER #define WS2811_DMA_HANDLER_IDENTIFER DMA1_CH6_HANDLER

View file

@ -83,22 +83,10 @@
// #define SOFT_I2C_PB67 // #define SOFT_I2C_PB67
#define USE_ADC #define USE_ADC
#define CURRENT_METER_ADC_PIN PB1
#define CURRENT_METER_ADC_GPIO GPIOB #define VBAT_ADC_PIN PA4
#define CURRENT_METER_ADC_GPIO_PIN GPIO_Pin_1 #define RSSI_ADC_PIN PA1
#define CURRENT_METER_ADC_CHANNEL ADC_Channel_9 #define EXTERNAL1_ADC_PIN PA5
#define VBAT_ADC_GPIO GPIOA
#define VBAT_ADC_GPIO_PIN GPIO_Pin_4
#define VBAT_ADC_CHANNEL ADC_Channel_4
#define RSSI_ADC_GPIO GPIOA
#define RSSI_ADC_GPIO_PIN GPIO_Pin_1
#define RSSI_ADC_CHANNEL ADC_Channel_1
#define EXTERNAL1_ADC_GPIO GPIOA
#define EXTERNAL1_ADC_GPIO_PIN GPIO_Pin_5
#define EXTERNAL1_ADC_CHANNEL ADC_Channel_5
//#define LED_STRIP //#define LED_STRIP
//#define LED_STRIP_TIMER TIM3 //#define LED_STRIP_TIMER TIM3

View file

@ -159,26 +159,14 @@
#define USE_ADC #define USE_ADC
#define BOARD_HAS_VOLTAGE_DIVIDER #define BOARD_HAS_VOLTAGE_DIVIDER
#define ADC_INSTANCE ADC2 #define ADC_INSTANCE ADC2
#define ADC_DMA_CHANNEL DMA2_Channel1 #define VBAT_ADC_PIN PA4
#define ADC_AHB_PERIPHERAL RCC_AHBPeriph_DMA2 #define CURRENT_METER_ADC_PIN PA5
#define RSSI_ADC_PIN PB2
#define VBAT_ADC_GPIO GPIOA
#define VBAT_ADC_GPIO_PIN GPIO_Pin_4
#define VBAT_ADC_CHANNEL ADC_Channel_1
#define CURRENT_METER_ADC_GPIO GPIOA
#define CURRENT_METER_ADC_GPIO_PIN GPIO_Pin_5
#define CURRENT_METER_ADC_CHANNEL ADC_Channel_2
#define RSSI_ADC_GPIO GPIOB
#define RSSI_ADC_GPIO_PIN GPIO_Pin_2
#define RSSI_ADC_CHANNEL ADC_Channel_12
#define LED_STRIP #define LED_STRIP
#define LED_STRIP_TIMER TIM1 #define LED_STRIP_TIMER TIM1
#define WS2811_GPIO GPIOA #define WS2811_GPIO GPIOA
#define WS2811_GPIO_AHB_PERIPHERAL RCC_AHBPeriph_GPIOA #define WS2811_GPIO_AHB_PERIPHERAL RCC_AHBPeriph_GPIOA
@ -210,6 +198,7 @@
#define ENABLE_BLACKBOX_LOGGING_ON_SDCARD_BY_DEFAULT #define ENABLE_BLACKBOX_LOGGING_ON_SDCARD_BY_DEFAULT
#define DEFAULT_RX_FEATURE FEATURE_RX_PPM #define DEFAULT_RX_FEATURE FEATURE_RX_PPM
#define DEFAULT_FEATURES FEATURE_BLACKBOX
#define BUTTONS #define BUTTONS
#define BUTTON_A_PORT GPIOB #define BUTTON_A_PORT GPIOB

View file

@ -87,26 +87,14 @@
#define USE_ADC #define USE_ADC
#define BOARD_HAS_VOLTAGE_DIVIDER #define BOARD_HAS_VOLTAGE_DIVIDER
#define ADC_INSTANCE ADC2 #define ADC_INSTANCE ADC2
#define ADC_DMA_CHANNEL DMA2_Channel1 #define CURRENT_METER_ADC_PIN PA2
#define ADC_AHB_PERIPHERAL RCC_AHBPeriph_DMA2 #define VBAT_ADC_PIN PA5
#define RSSI_ADC_PIN PB2
#define CURRENT_METER_ADC_GPIO GPIOA
#define CURRENT_METER_ADC_GPIO_PIN GPIO_Pin_2
#define CURRENT_METER_ADC_CHANNEL ADC_Channel_3
#define VBAT_ADC_GPIO GPIOA
#define VBAT_ADC_GPIO_PIN GPIO_Pin_5
#define VBAT_ADC_CHANNEL ADC_Channel_2
#define RSSI_ADC_GPIO GPIOB
#define RSSI_ADC_GPIO_PIN GPIO_Pin_2
#define RSSI_ADC_CHANNEL ADC_Channel_12
#define LED_STRIP #define LED_STRIP
#if 1 #if 1
#define LED_STRIP_TIMER TIM16 #define LED_STRIP_TIMER TIM16
#define USE_LED_STRIP_ON_DMA1_CHANNEL3 #define USE_LED_STRIP_ON_DMA1_CHANNEL3
#define WS2811_GPIO GPIOB #define WS2811_GPIO GPIOB

View file

@ -38,22 +38,17 @@
#define USE_SPI_DEVICE_2 #define USE_SPI_DEVICE_2
#define PORT103R_SPI_INSTANCE SPI2 #define PORT103R_SPI_INSTANCE SPI2
#define PORT103R_SPI_CS_GPIO GPIOB
#define PORT103R_SPI_CS_PIN PB12 #define PORT103R_SPI_CS_PIN PB12
// We either have this 16mbit flash chip on SPI or the MPU6500 acc/gyro depending on board revision: // We either have this 16mbit flash chip on SPI or the MPU6500 acc/gyro depending on board revision:
#define M25P16_CS_GPIO PORT103R_SPI_CS_GPIO
#define M25P16_CS_PIN PORT103R_SPI_CS_PIN #define M25P16_CS_PIN PORT103R_SPI_CS_PIN
#define M25P16_SPI_INSTANCE PORT103R_SPI_INSTANCE #define M25P16_SPI_INSTANCE PORT103R_SPI_INSTANCE
#define MPU6000_CS_GPIO PORT103R_SPI_CS_GPIO
#define MPU6000_CS_PIN PORT103R_SPI_CS_PIN #define MPU6000_CS_PIN PORT103R_SPI_CS_PIN
#define MPU6000_SPI_INSTANCE PORT103R_SPI_INSTANCE #define MPU6000_SPI_INSTANCE PORT103R_SPI_INSTANCE
#define MPU6500_CS_GPIO PORT103R_SPI_CS_GPIO
#define MPU6500_CS_PIN PORT103R_SPI_CS_PIN #define MPU6500_CS_PIN PORT103R_SPI_CS_PIN
#define MPU6500_SPI_INSTANCE PORT103R_SPI_INSTANCE #define MPU6500_SPI_INSTANCE PORT103R_SPI_INSTANCE
#define MPU6500_CS_GPIO_CLK_PERIPHERAL RCC_APB2Periph_GPIOB
#define GYRO #define GYRO
#define USE_FAKE_GYRO #define USE_FAKE_GYRO
@ -115,22 +110,10 @@
// #define SOFT_I2C_PB67 // #define SOFT_I2C_PB67
#define USE_ADC #define USE_ADC
#define CURRENT_METER_ADC_PIN PB1
#define CURRENT_METER_ADC_GPIO GPIOB #define VBAT_ADC_PIN PA4
#define CURRENT_METER_ADC_GPIO_PIN GPIO_Pin_1 #define RSSI_ADC_PIN PA1
#define CURRENT_METER_ADC_CHANNEL ADC_Channel_9 #define EXTERNAL1_ADC_PIN PA5
#define VBAT_ADC_GPIO GPIOA
#define VBAT_ADC_GPIO_PIN GPIO_Pin_4
#define VBAT_ADC_CHANNEL ADC_Channel_4
#define RSSI_ADC_GPIO GPIOA
#define RSSI_ADC_GPIO_PIN GPIO_Pin_1
#define RSSI_ADC_CHANNEL ADC_Channel_1
#define EXTERNAL1_ADC_GPIO GPIOA
#define EXTERNAL1_ADC_GPIO_PIN GPIO_Pin_5
#define EXTERNAL1_ADC_CHANNEL ADC_Channel_5
//#define LED_STRIP //#define LED_STRIP
//#define LED_STRIP_TIMER TIM3 //#define LED_STRIP_TIMER TIM3

View file

@ -11,6 +11,7 @@ TARGET_SRC = \
drivers/accgyro_mpu.c \ drivers/accgyro_mpu.c \
drivers/accgyro_mpu3050.c \ drivers/accgyro_mpu3050.c \
drivers/accgyro_mpu6050.c \ drivers/accgyro_mpu6050.c \
drivers/accgyro_mpu6500.c \
drivers/accgyro_spi_mpu6000.c \ drivers/accgyro_spi_mpu6000.c \
drivers/accgyro_spi_mpu6500.c \ drivers/accgyro_spi_mpu6500.c \
drivers/barometer_bmp085.c \ drivers/barometer_bmp085.c \

View file

@ -20,23 +20,17 @@
#define TARGET_BOARD_IDENTIFIER "REVO" #define TARGET_BOARD_IDENTIFIER "REVO"
#define CONFIG_START_FLASH_ADDRESS (0x08080000) //0x08080000 to 0x080A0000 (FLASH_Sector_8) #define CONFIG_START_FLASH_ADDRESS (0x08080000) //0x08080000 to 0x080A0000 (FLASH_Sector_8)
#define CONFIG_SERIALRX_PROVIDER SERIALRX_SBUS
#define CONFIG_BLACKBOX_DEVICE BLACKBOX_DEVICE_FLASH
#define CONFIG_FEATURE_RX_SERIAL
#define CONFIG_FEATURE_ONESHOT125
#define CONFIG_MSP_PORT 2
#define CONFIG_RX_SERIAL_PORT 1
#define USBD_PRODUCT_STRING "Revolution" #define USBD_PRODUCT_STRING "Revolution"
#ifdef OPBL #ifdef OPBL
#define USBD_SERIALNUMBER_STRING "0x8020000" #define USBD_SERIALNUMBER_STRING "0x8020000"
#endif #endif
#define LED0 PB5 #define LED0 PB5
#define LED1 PB4 #define LED1 PB4
#define BEEPER PB4 #define BEEPER PB4
#define INVERTER PC0 // PC0 used as inverter select GPIO #define INVERTER PC0 // PC0 used as inverter select GPIO
#define INVERTER_USART USART1 #define INVERTER_USART USART1
#define MPU6000_CS_PIN PA4 #define MPU6000_CS_PIN PA4
#define MPU6000_SPI_INSTANCE SPI1 #define MPU6000_SPI_INSTANCE SPI1
@ -110,14 +104,10 @@
#define USE_ADC #define USE_ADC
#define CURRENT_METER_ADC_PIN PC1 #define CURRENT_METER_ADC_PIN PC1
#define CURRENT_METER_ADC_CHANNEL ADC_Channel_11 #define VBAT_ADC_PIN PC2
#define RSSI_ADC_GPIO_PIN PA0
#define VBAT_ADC_PIN PC2
#define VBAT_ADC_CHANNEL ADC_Channel_12
#define RSSI_ADC_GPIO_PIN PA0
#define RSSI_ADC_CHANNEL ADC_Channel_0
#define SENSORS_SET (SENSOR_ACC) #define SENSORS_SET (SENSOR_ACC)
//#define LED_STRIP //#define LED_STRIP

Some files were not shown because too many files have changed in this diff Show more