1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-17 21:35:44 +03:00

First-cut of a refactored failsafe system.

* fixes issue where indicators would flash when SBus RX entered failsafe
mode.
* fixes bug where turning off a TX for an SBus RX would instantly disarm
when using a switch to arm when the channel went outside the arming
range.
* introduces failsafe phases to make the system more understandable.
* allows the system to ask if rxSignalIsBeing received for all RX
systems: PPM/PWM/SerialRX/MSP.  Also works when a serial data signal is
still being received but the data stream indicates a failsafe condition
- e.g.  SBus failsafe flags.
* failsafe settings are no-longer per-profile.

Untested: Sumd/Sumh/XBus/MSP (!)
Tested: SBus X8R, Lemon RX Sat, X8R in PWM, Spektrum PPM.
This commit is contained in:
Dominic Clifton 2015-04-15 22:45:02 +01:00
parent 37e551db11
commit c8c0c85656
14 changed files with 260 additions and 145 deletions

View file

@ -138,7 +138,7 @@ profile_t *currentProfile;
static uint8_t currentControlRateProfileIndex = 0; static uint8_t currentControlRateProfileIndex = 0;
controlRateConfig_t *currentControlRateProfile; controlRateConfig_t *currentControlRateProfile;
static const uint8_t EEPROM_CONF_VERSION = 95; static const uint8_t EEPROM_CONF_VERSION = 96;
static void resetAccelerometerTrims(flightDynamicsTrims_t *accelerometerTrims) static void resetAccelerometerTrims(flightDynamicsTrims_t *accelerometerTrims)
{ {
@ -407,6 +407,9 @@ static void resetConf(void)
masterConfig.rxConfig.midrc = 1500; masterConfig.rxConfig.midrc = 1500;
masterConfig.rxConfig.mincheck = 1100; masterConfig.rxConfig.mincheck = 1100;
masterConfig.rxConfig.maxcheck = 1900; masterConfig.rxConfig.maxcheck = 1900;
masterConfig.rxConfig.rx_min_usec = 985; // any of first 4 channels below this value will trigger failsafe
masterConfig.rxConfig.rx_max_usec = 2115; // any of first 4 channels above this value will trigger failsafe
masterConfig.rxConfig.rssi_channel = 0; masterConfig.rxConfig.rssi_channel = 0;
masterConfig.rxConfig.rssi_scale = RSSI_SCALE_DEFAULT; masterConfig.rxConfig.rssi_scale = RSSI_SCALE_DEFAULT;
@ -474,11 +477,9 @@ static void resetConf(void)
currentProfile->throttle_correction_angle = 800; // could be 80.0 deg with atlhold or 45.0 for fpv currentProfile->throttle_correction_angle = 800; // could be 80.0 deg with atlhold or 45.0 for fpv
// Failsafe Variables // Failsafe Variables
currentProfile->failsafeConfig.failsafe_delay = 10; // 1sec masterConfig.failsafeConfig.failsafe_delay = 10; // 1sec
currentProfile->failsafeConfig.failsafe_off_delay = 200; // 20sec masterConfig.failsafeConfig.failsafe_off_delay = 200; // 20sec
currentProfile->failsafeConfig.failsafe_throttle = 1000; // default throttle off. masterConfig.failsafeConfig.failsafe_throttle = 1000; // default throttle off.
currentProfile->failsafeConfig.failsafe_min_usec = 985; // any of first 4 channels below this value will trigger failsafe
currentProfile->failsafeConfig.failsafe_max_usec = 2115; // any of first 4 channels above this value will trigger failsafe
#ifdef USE_SERVOS #ifdef USE_SERVOS
// servos // servos
@ -671,7 +672,7 @@ void activateConfig(void)
gpsUsePIDs(&currentProfile->pidProfile); gpsUsePIDs(&currentProfile->pidProfile);
#endif #endif
useFailsafeConfig(&currentProfile->failsafeConfig); useFailsafeConfig(&masterConfig.failsafeConfig);
setAccelerationTrims(&masterConfig.accZero); setAccelerationTrims(&masterConfig.accZero);
mixerUseConfigs( mixerUseConfigs(

View file

@ -61,6 +61,8 @@ typedef struct master_t {
rxConfig_t rxConfig; rxConfig_t rxConfig;
inputFilteringMode_e inputFilteringMode; // Use hardware input filtering, e.g. for OrangeRX PPM/PWM receivers. inputFilteringMode_e inputFilteringMode; // Use hardware input filtering, e.g. for OrangeRX PPM/PWM receivers.
failsafeConfig_t failsafeConfig;
uint8_t retarded_arm; // allow disarm/arm on throttle down + roll left/right uint8_t retarded_arm; // allow disarm/arm on throttle down + roll left/right
uint8_t disarm_kill_switch; // allow disarm via AUX switch regardless of throttle value uint8_t disarm_kill_switch; // allow disarm via AUX switch regardless of throttle value
uint8_t auto_disarm_delay; // allow automatically disarming multicopters after auto_disarm_delay seconds of zero throttle. Disabled when 0 uint8_t auto_disarm_delay; // allow automatically disarming multicopters after auto_disarm_delay seconds of zero throttle. Disabled when 0

View file

@ -54,9 +54,6 @@ typedef struct profile_s {
gimbalConfig_t gimbalConfig; gimbalConfig_t gimbalConfig;
#endif #endif
// Failsafe related configuration
failsafeConfig_t failsafeConfig;
#ifdef GPS #ifdef GPS
gpsProfile_t gpsProfile; gpsProfile_t gpsProfile;
#endif #endif

View file

@ -44,9 +44,10 @@ static failsafeConfig_t *failsafeConfig;
static rxConfig_t *rxConfig; static rxConfig_t *rxConfig;
void failsafeReset(void) static void failsafeReset(void)
{ {
failsafeState.counter = 0; failsafeState.counter = 0;
failsafeState.phase = FAILSAFE_IDLE;
} }
/* /*
@ -63,27 +64,39 @@ failsafeState_t* failsafeInit(rxConfig_t *intialRxConfig)
rxConfig = intialRxConfig; rxConfig = intialRxConfig;
failsafeState.events = 0; failsafeState.events = 0;
failsafeState.enabled = false; failsafeState.monitoring = false;
return &failsafeState; return &failsafeState;
} }
bool failsafeIsIdle(void) failsafePhase_e failsafePhase()
{ {
return failsafeState.counter == 0; return failsafeState.phase;
} }
bool failsafeIsEnabled(void) #define MAX_COUNTER_VALUE_WHEN_RX_IS_RECEIVED_AFTER_RX_CYCLE 1
bool failsafeIsReceivingRxData(void)
{ {
return failsafeState.enabled; return failsafeState.counter <= MAX_COUNTER_VALUE_WHEN_RX_IS_RECEIVED_AFTER_RX_CYCLE;
} }
void failsafeEnable(void) bool failsafeIsMonitoring(void)
{ {
failsafeState.enabled = true; return failsafeState.monitoring;
} }
bool failsafeHasTimerElapsed(void) bool failsafeIsActive(void)
{
return failsafeState.active;
}
void failsafeStartMonitoring(void)
{
failsafeState.monitoring = true;
}
static bool failsafeHasTimerElapsed(void)
{ {
return failsafeState.counter > (5 * failsafeConfig->failsafe_delay); return failsafeState.counter > (5 * failsafeConfig->failsafe_delay);
} }
@ -93,19 +106,28 @@ bool failsafeShouldForceLanding(bool armed)
return failsafeHasTimerElapsed() && armed; return failsafeHasTimerElapsed() && armed;
} }
bool failsafeShouldHaveCausedLandingByNow(void) static bool failsafeShouldHaveCausedLandingByNow(void)
{ {
return failsafeState.counter > 5 * (failsafeConfig->failsafe_delay + failsafeConfig->failsafe_off_delay); return failsafeState.counter > 5 * (failsafeConfig->failsafe_delay + failsafeConfig->failsafe_off_delay);
} }
static void failsafeAvoidRearm(void) static void failsafeActivate(void)
{ {
// This will prevent the automatic rearm if failsafe shuts it down and prevents failsafeState.active = true;
// to restart accidently by just reconnect to the tx - you will have to switch off first to rearm failsafeState.phase = FAILSAFE_LANDING;
ENABLE_ARMING_FLAG(PREVENT_ARMING);
failsafeState.events++;
} }
static void failsafeOnValidDataReceived(void) static void failsafeApplyControlInput(void)
{
for (int i = 0; i < 3; i++) {
rcData[i] = rxConfig->midrc;
}
rcData[THROTTLE] = failsafeConfig->failsafe_throttle;
}
void failsafeOnValidDataReceived(void)
{ {
if (failsafeState.counter > 20) if (failsafeState.counter > 20)
failsafeState.counter -= 20; failsafeState.counter -= 20;
@ -115,58 +137,57 @@ static void failsafeOnValidDataReceived(void)
void failsafeUpdateState(void) void failsafeUpdateState(void)
{ {
uint8_t i; bool receivingRxData = failsafeIsReceivingRxData();
bool armed = ARMING_FLAG(ARMED);
if (!failsafeHasTimerElapsed()) { if (receivingRxData) {
return; failsafeState.phase = FAILSAFE_IDLE;
failsafeState.active = false;
} }
if (!failsafeIsEnabled()) { switch (failsafeState.phase) {
failsafeReset(); case FAILSAFE_IDLE:
return; if (!receivingRxData && armed) {
failsafeState.phase = FAILSAFE_RX_LOSS_DETECTED;
}
break;
case FAILSAFE_RX_LOSS_DETECTED:
if (failsafeShouldForceLanding(armed)) {
// Stabilize, and set Throttle to specified level
failsafeActivate();
}
break;
case FAILSAFE_LANDING:
if (armed) {
failsafeApplyControlInput();
}
if (failsafeShouldHaveCausedLandingByNow() || !armed) {
failsafeState.phase = FAILSAFE_LANDED;
failsafeState.active = false;
mwDisarm();
}
break;
case FAILSAFE_LANDED:
// This will prevent the automatic rearm if failsafe shuts it down and prevents
// to restart accidently by just reconnect to the tx - you will have to switch off first to rearm
ENABLE_ARMING_FLAG(PREVENT_ARMING);
break;
default:
break;
} }
if (failsafeShouldForceLanding(ARMING_FLAG(ARMED))) { // Stabilize, and set Throttle to specified level
failsafeAvoidRearm();
for (i = 0; i < 3; i++) {
rcData[i] = rxConfig->midrc; // after specified guard time after RC signal is lost (in 0.1sec)
}
rcData[THROTTLE] = failsafeConfig->failsafe_throttle;
failsafeState.events++;
}
if (failsafeShouldHaveCausedLandingByNow() || !ARMING_FLAG(ARMED)) {
mwDisarm();
}
} }
/** /**
* Should be called once each time RX data is processed by the system. * Should be called once when RX data is processed by the system.
*/ */
void failsafeOnRxCycle(void) void failsafeOnRxCycleStarted(void)
{ {
failsafeState.counter++; failsafeState.counter++;
} }
#define REQUIRED_CHANNEL_MASK 0x0F // first 4 channels
// pulse duration is in micro seconds (usec)
void failsafeCheckPulse(uint8_t channel, uint16_t pulseDuration)
{
static uint8_t goodChannelMask = 0;
if (channel < 4 &&
pulseDuration > failsafeConfig->failsafe_min_usec &&
pulseDuration < failsafeConfig->failsafe_max_usec
) {
// if signal is valid - mark channel as OK
goodChannelMask |= (1 << channel);
}
if (goodChannelMask == REQUIRED_CHANNEL_MASK) {
goodChannelMask = 0;
failsafeOnValidDataReceived();
}
}

View file

@ -23,30 +23,37 @@ typedef struct failsafeConfig_s {
uint8_t failsafe_delay; // Guard time for failsafe activation after signal lost. 1 step = 0.1sec - 1sec in example (10) uint8_t failsafe_delay; // Guard time for failsafe activation after signal lost. 1 step = 0.1sec - 1sec in example (10)
uint8_t failsafe_off_delay; // Time for Landing before motors stop in 0.1sec. 1 step = 0.1sec - 20sec in example (200) uint8_t failsafe_off_delay; // Time for Landing before motors stop in 0.1sec. 1 step = 0.1sec - 20sec in example (200)
uint16_t failsafe_throttle; // Throttle level used for landing - specify value between 1000..2000 (pwm pulse width for slightly below hover). center throttle = 1500. uint16_t failsafe_throttle; // Throttle level used for landing - specify value between 1000..2000 (pwm pulse width for slightly below hover). center throttle = 1500.
uint16_t failsafe_min_usec;
uint16_t failsafe_max_usec;
} failsafeConfig_t; } failsafeConfig_t;
typedef enum {
FAILSAFE_IDLE = 0,
FAILSAFE_RX_LOSS_DETECTED,
FAILSAFE_LANDING,
FAILSAFE_LANDED
} failsafePhase_e;
typedef struct failsafeState_s { typedef struct failsafeState_s {
int16_t counter; int16_t counter;
int16_t events; int16_t events;
bool enabled; bool monitoring;
bool active;
failsafePhase_e phase;
} failsafeState_t; } failsafeState_t;
void useFailsafeConfig(failsafeConfig_t *failsafeConfigToUse); void useFailsafeConfig(failsafeConfig_t *failsafeConfigToUse);
void failsafeEnable(void); void failsafeStartMonitoring(void);
void failsafeOnRxCycle(void);
void failsafeCheckPulse(uint8_t channel, uint16_t pulseDuration);
void failsafeUpdateState(void); void failsafeUpdateState(void);
void failsafeReset(void); failsafePhase_e failsafePhase();
bool failsafeIsMonitoring(void);
bool failsafeIsActive(void);
bool failsafeIsReceivingRxData(void);
void failsafeOnValidDataReceived(void);
void failsafeOnRxCycleStarted(void);
bool failsafeIsEnabled(void);
bool failsafeIsIdle(void);
bool failsafeHasTimerElapsed(void);
bool failsafeShouldForceLanding(bool armed);
bool failsafeShouldHaveCausedLandingByNow(void);

View file

@ -49,9 +49,9 @@ static void beep_code(char first, char second, char third, char pause);
static uint8_t toggleBeep = 0; static uint8_t toggleBeep = 0;
typedef enum { typedef enum {
FAILSAFE_IDLE = 0, FAILSAFE_WARNING_NONE = 0,
FAILSAFE_LANDING, FAILSAFE_WARNING_LANDING,
FAILSAFE_FIND_ME FAILSAFE_WARNING_FIND_ME
} failsafeBeeperWarnings_e; } failsafeBeeperWarnings_e;
void beepcodeInit(void) void beepcodeInit(void)
@ -64,7 +64,7 @@ void beepcodeUpdateState(batteryState_e batteryState)
#ifdef GPS #ifdef GPS
static uint8_t warn_noGPSfix = 0; static uint8_t warn_noGPSfix = 0;
#endif #endif
static failsafeBeeperWarnings_e warn_failsafe = FAILSAFE_IDLE; static failsafeBeeperWarnings_e warn_failsafe = FAILSAFE_WARNING_NONE;
//===================== BeeperOn via rcOptions ===================== //===================== BeeperOn via rcOptions =====================
if (IS_RC_MODE_ACTIVE(BOXBEEPERON)) { // unconditional beeper on via AUXn switch if (IS_RC_MODE_ACTIVE(BOXBEEPERON)) { // unconditional beeper on via AUXn switch
@ -74,20 +74,19 @@ void beepcodeUpdateState(batteryState_e batteryState)
} }
//===================== Beeps for failsafe ===================== //===================== Beeps for failsafe =====================
if (feature(FEATURE_FAILSAFE)) { if (feature(FEATURE_FAILSAFE)) {
if (failsafeShouldForceLanding(ARMING_FLAG(ARMED))) { switch (failsafePhase()) {
warn_failsafe = FAILSAFE_LANDING; case FAILSAFE_LANDING:
warn_failsafe = FAILSAFE_WARNING_LANDING;
if (failsafeShouldHaveCausedLandingByNow()) { break;
warn_failsafe = FAILSAFE_FIND_ME; case FAILSAFE_LANDED:
} warn_failsafe = FAILSAFE_WARNING_FIND_ME;
break;
default:
warn_failsafe = FAILSAFE_WARNING_NONE;
} }
if (failsafeHasTimerElapsed() && !ARMING_FLAG(ARMED)) { if (rxIsReceivingSignal()) {
warn_failsafe = FAILSAFE_FIND_ME; warn_failsafe = FAILSAFE_WARNING_NONE;
}
if (failsafeIsIdle()) {
warn_failsafe = FAILSAFE_IDLE; // turn off alarm if TX is okay
} }
} }

View file

@ -51,6 +51,7 @@
#include "flight/pid.h" #include "flight/pid.h"
#include "flight/imu.h" #include "flight/imu.h"
#include "flight/failsafe.h"
#ifdef GPS #ifdef GPS
#include "io/gps.h" #include "io/gps.h"
@ -203,6 +204,33 @@ void updateTicker(void)
tickerIndex = tickerIndex % TICKER_CHARACTER_COUNT; tickerIndex = tickerIndex % TICKER_CHARACTER_COUNT;
} }
void updateRxStatus(void)
{
i2c_OLED_set_xy(SCREEN_CHARACTER_COLUMN_COUNT - 2, 0);
i2c_OLED_send_char(rxIsReceivingSignal() ? 'R' : '!');
}
void updateFailsafeStatus(void)
{
char failsafeIndicator;
switch (failsafePhase()) {
case FAILSAFE_IDLE:
failsafeIndicator = '-';
break;
case FAILSAFE_RX_LOSS_DETECTED:
failsafeIndicator = 'R';
break;
case FAILSAFE_LANDING:
failsafeIndicator = 'l';
break;
case FAILSAFE_LANDED:
failsafeIndicator = 'L';
break;
}
i2c_OLED_set_xy(SCREEN_CHARACTER_COLUMN_COUNT - 3, 0);
i2c_OLED_send_char(failsafeIndicator);
}
void showTitle() void showTitle()
{ {
i2c_OLED_set_line(0); i2c_OLED_set_line(0);
@ -573,8 +601,11 @@ void updateDisplay(void)
#endif #endif
} }
if (!armedState) { if (!armedState) {
updateFailsafeStatus();
updateRxStatus();
updateTicker(); updateTicker();
} }
} }
void displaySetPage(pageId_e pageId) void displaySetPage(pageId_e pageId)

View file

@ -661,7 +661,7 @@ void applyLedWarningLayer(uint8_t updateNow)
if (feature(FEATURE_VBAT) && calculateBatteryState() != BATTERY_OK) { if (feature(FEATURE_VBAT) && calculateBatteryState() != BATTERY_OK) {
warningFlags |= WARNING_FLAG_LOW_BATTERY; warningFlags |= WARNING_FLAG_LOW_BATTERY;
} }
if (feature(FEATURE_FAILSAFE) && failsafeHasTimerElapsed()) { if (feature(FEATURE_FAILSAFE) && failsafeIsActive()) {
warningFlags |= WARNING_FLAG_FAILSAFE; warningFlags |= WARNING_FLAG_FAILSAFE;
} }
if (!ARMING_FLAG(ARMED) && !ARMING_FLAG(OK_TO_ARM)) { if (!ARMING_FLAG(ARMED) && !ARMING_FLAG(OK_TO_ARM)) {
@ -714,6 +714,9 @@ void applyLedIndicatorLayer(uint8_t indicatorFlashState)
const ledConfig_t *ledConfig; const ledConfig_t *ledConfig;
static const hsvColor_t *flashColor; static const hsvColor_t *flashColor;
if (!rxIsReceivingSignal()) {
return;
}
if (indicatorFlashState == 0) { if (indicatorFlashState == 0) {
flashColor = &hsv_orange; flashColor = &hsv_orange;

View file

@ -51,6 +51,7 @@
#include "flight/pid.h" #include "flight/pid.h"
#include "flight/navigation.h" #include "flight/navigation.h"
#include "flight/failsafe.h"
#include "mw.h" #include "mw.h"
@ -124,7 +125,8 @@ void processRcStickPositions(rxConfig_t *rxConfig, throttleStatus_e throttleStat
} }
} else { } else {
// Disarming via ARM BOX // Disarming via ARM BOX
if (ARMING_FLAG(ARMED)) {
if (ARMING_FLAG(ARMED) && rxIsReceivingSignal() && !failsafeIsActive() ) {
if (disarm_kill_switch) { if (disarm_kill_switch) {
mwDisarm(); mwDisarm();
} else if (throttleStatus == THROTTLE_LOW) { } else if (throttleStatus == THROTTLE_LOW) {

View file

@ -404,11 +404,12 @@ const clivalue_t valueTable[] = {
{ "tpa_rate", VAR_UINT8 | CONTROL_RATE_VALUE, &masterConfig.controlRateProfiles[0].dynThrPID, 0, CONTROL_RATE_CONFIG_TPA_MAX}, { "tpa_rate", VAR_UINT8 | CONTROL_RATE_VALUE, &masterConfig.controlRateProfiles[0].dynThrPID, 0, CONTROL_RATE_CONFIG_TPA_MAX},
{ "tpa_breakpoint", VAR_UINT16 | CONTROL_RATE_VALUE, &masterConfig.controlRateProfiles[0].tpa_breakpoint, PWM_RANGE_MIN, PWM_RANGE_MAX}, { "tpa_breakpoint", VAR_UINT16 | CONTROL_RATE_VALUE, &masterConfig.controlRateProfiles[0].tpa_breakpoint, PWM_RANGE_MIN, PWM_RANGE_MAX},
{ "failsafe_delay", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].failsafeConfig.failsafe_delay, 0, 200 }, { "failsafe_delay", VAR_UINT8 | MASTER_VALUE, &masterConfig.failsafeConfig.failsafe_delay, 0, 200 },
{ "failsafe_off_delay", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].failsafeConfig.failsafe_off_delay, 0, 200 }, { "failsafe_off_delay", VAR_UINT8 | MASTER_VALUE, &masterConfig.failsafeConfig.failsafe_off_delay, 0, 200 },
{ "failsafe_throttle", VAR_UINT16 | PROFILE_VALUE, &masterConfig.profile[0].failsafeConfig.failsafe_throttle, PWM_RANGE_MIN, PWM_RANGE_MAX }, { "failsafe_throttle", VAR_UINT16 | MASTER_VALUE, &masterConfig.failsafeConfig.failsafe_throttle, PWM_RANGE_MIN, PWM_RANGE_MAX },
{ "failsafe_min_usec", VAR_UINT16 | PROFILE_VALUE, &masterConfig.profile[0].failsafeConfig.failsafe_min_usec, 100, PWM_RANGE_MAX },
{ "failsafe_max_usec", VAR_UINT16 | PROFILE_VALUE, &masterConfig.profile[0].failsafeConfig.failsafe_max_usec, 100, PWM_RANGE_MAX + (PWM_RANGE_MAX - PWM_RANGE_MIN) }, { "rx_min_usec", VAR_UINT16 | MASTER_VALUE, &masterConfig.rxConfig.rx_min_usec, 100, PWM_RANGE_MAX },
{ "rx_max_usec", VAR_UINT16 | MASTER_VALUE, &masterConfig.rxConfig.rx_max_usec, 100, PWM_RANGE_MAX + (PWM_RANGE_MAX - PWM_RANGE_MIN) },
#ifdef USE_SERVOS #ifdef USE_SERVOS
{ "gimbal_flags", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].gimbalConfig.gimbal_flags, 0, 255}, { "gimbal_flags", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].gimbalConfig.gimbal_flags, 0, 255},

View file

@ -1003,7 +1003,7 @@ static bool processOutCommand(uint8_t cmdMSP)
serialize16(masterConfig.escAndServoConfig.maxthrottle); serialize16(masterConfig.escAndServoConfig.maxthrottle);
serialize16(masterConfig.escAndServoConfig.mincommand); serialize16(masterConfig.escAndServoConfig.mincommand);
serialize16(currentProfile->failsafeConfig.failsafe_throttle); serialize16(masterConfig.failsafeConfig.failsafe_throttle);
#ifdef GPS #ifdef GPS
serialize8(masterConfig.gpsConfig.provider); // gps_type serialize8(masterConfig.gpsConfig.provider); // gps_type
@ -1378,7 +1378,7 @@ static bool processInCommand(void)
masterConfig.escAndServoConfig.maxthrottle = read16(); masterConfig.escAndServoConfig.maxthrottle = read16();
masterConfig.escAndServoConfig.mincommand = read16(); masterConfig.escAndServoConfig.mincommand = read16();
currentProfile->failsafeConfig.failsafe_throttle = read16(); masterConfig.failsafeConfig.failsafe_throttle = read16();
#ifdef GPS #ifdef GPS
masterConfig.gpsConfig.provider = read8(); // gps_type masterConfig.gpsConfig.provider = read8(); // gps_type

View file

@ -509,8 +509,8 @@ void processRx(void)
if (feature(FEATURE_FAILSAFE)) { if (feature(FEATURE_FAILSAFE)) {
if (currentTime > FAILSAFE_POWER_ON_DELAY_US && !failsafeIsEnabled()) { if (currentTime > FAILSAFE_POWER_ON_DELAY_US && !failsafeIsMonitoring()) {
failsafeEnable(); failsafeStartMonitoring();
} }
failsafeUpdateState(); failsafeUpdateState();
@ -527,7 +527,8 @@ void processRx(void)
if (ARMING_FLAG(ARMED) if (ARMING_FLAG(ARMED)
&& feature(FEATURE_MOTOR_STOP) && !STATE(FIXED_WING) && feature(FEATURE_MOTOR_STOP) && !STATE(FIXED_WING)
&& masterConfig.auto_disarm_delay != 0 && masterConfig.auto_disarm_delay != 0
&& isUsingSticksForArming()) { && isUsingSticksForArming())
{
if (throttleStatus == THROTTLE_LOW) { if (throttleStatus == THROTTLE_LOW) {
if ((int32_t)(disarmAt - millis()) < 0) // delay is over if ((int32_t)(disarmAt - millis()) < 0) // delay is over
mwDisarm(); mwDisarm();
@ -551,7 +552,7 @@ void processRx(void)
bool canUseHorizonMode = true; bool canUseHorizonMode = true;
if ((IS_RC_MODE_ACTIVE(BOXANGLE) || (feature(FEATURE_FAILSAFE) && failsafeHasTimerElapsed())) && (sensors(SENSOR_ACC))) { if ((IS_RC_MODE_ACTIVE(BOXANGLE) || (feature(FEATURE_FAILSAFE) && failsafeIsActive())) && (sensors(SENSOR_ACC))) {
// bumpless transfer to Level mode // bumpless transfer to Level mode
canUseHorizonMode = false; canUseHorizonMode = false;
@ -628,7 +629,7 @@ void loop(void)
static bool haveProcessedAnnexCodeOnce = false; static bool haveProcessedAnnexCodeOnce = false;
#endif #endif
updateRx(); updateRx(currentTime);
if (shouldProcessRx(currentTime)) { if (shouldProcessRx(currentTime)) {
processRx(); processRx();

View file

@ -62,6 +62,13 @@ const char rcChannelLetters[] = "AERT12345678abcdefgh";
uint16_t rssi = 0; // range: [0;1023] uint16_t rssi = 0; // range: [0;1023]
static bool rxDataReceived = false;
static bool rxSignalReceived = false;
static bool shouldCheckPulse = true;
static uint32_t rxUpdateAt = 0;
static uint32_t needRxSignalBefore = 0;
int16_t rcData[MAX_SUPPORTED_RC_CHANNEL_COUNT]; // interval [1000;2000] int16_t rcData[MAX_SUPPORTED_RC_CHANNEL_COUNT]; // interval [1000;2000]
#define PPM_AND_PWM_SAMPLE_COUNT 4 #define PPM_AND_PWM_SAMPLE_COUNT 4
@ -70,6 +77,7 @@ int16_t rcData[MAX_SUPPORTED_RC_CHANNEL_COUNT]; // interval [1000;2000]
#define PULSE_MAX 2250 // maximum PWM pulse width which is considered valid #define PULSE_MAX 2250 // maximum PWM pulse width which is considered valid
#define DELAY_50_HZ (1000000 / 50) #define DELAY_50_HZ (1000000 / 50)
#define DELAY_10_HZ (1000000 / 10)
static rcReadRawDataPtr rcReadRawFunc = NULL; // receive data from default (pwm/ppm) or additional (spek/sbus/?? receiver drivers) static rcReadRawDataPtr rcReadRawFunc = NULL; // receive data from default (pwm/ppm) or additional (spek/sbus/?? receiver drivers)
@ -84,6 +92,28 @@ void useRxConfig(rxConfig_t *rxConfigToUse)
} }
#define STICK_CHANNEL_COUNT 4 #define STICK_CHANNEL_COUNT 4
#define REQUIRED_CHANNEL_MASK 0x0F // first 4 channels
// pulse duration is in micro seconds (usec)
void rxCheckPulse(uint8_t channel, uint16_t pulseDuration)
{
static uint8_t goodChannelMask = 0;
if (channel < 4 &&
pulseDuration > rxConfig->rx_min_usec &&
pulseDuration < rxConfig->rx_max_usec
) {
// if signal is valid - mark channel as OK
goodChannelMask |= (1 << channel);
}
if (goodChannelMask == REQUIRED_CHANNEL_MASK) {
goodChannelMask = 0;
failsafeOnValidDataReceived();
rxSignalReceived = true;
}
}
void rxInit(rxConfig_t *rxConfig) void rxInit(rxConfig_t *rxConfig)
{ {
@ -179,43 +209,71 @@ uint8_t calculateChannelRemapping(uint8_t *channelMap, uint8_t channelMapEntryCo
return channelToRemap; return channelToRemap;
} }
static bool rcDataReceived = false; bool rxIsReceivingSignal(void)
static uint32_t rxUpdateAt = 0;
void updateRx(void)
{ {
rcDataReceived = false; return rxSignalReceived;
}
static bool isRxDataDriven(void) {
return !(feature(FEATURE_RX_PARALLEL_PWM | FEATURE_RX_PPM));
}
void updateRx(uint32_t currentTime)
{
rxDataReceived = false;
shouldCheckPulse = true;
if (rxSignalReceived) {
if (((int32_t)(currentTime - needRxSignalBefore) >= 0)) {
rxSignalReceived = false;
}
}
#ifdef SERIAL_RX #ifdef SERIAL_RX
if (feature(FEATURE_RX_SERIAL)) { if (feature(FEATURE_RX_SERIAL)) {
uint8_t frameStatus = serialRxFrameStatus(rxConfig); uint8_t frameStatus = serialRxFrameStatus(rxConfig);
if (frameStatus & SERIAL_RX_FRAME_COMPLETE) { if (frameStatus & SERIAL_RX_FRAME_COMPLETE) {
rcDataReceived = true; rxDataReceived = true;
if ((frameStatus & SERIAL_RX_FRAME_FAILSAFE) == 0 && feature(FEATURE_FAILSAFE)) { rxSignalReceived = (frameStatus & SERIAL_RX_FRAME_FAILSAFE) == 0;
failsafeReset(); if (rxSignalReceived && feature(FEATURE_FAILSAFE)) {
shouldCheckPulse = false;
failsafeOnValidDataReceived();
} }
} else {
shouldCheckPulse = false;
} }
} }
#endif #endif
if (feature(FEATURE_RX_MSP)) { if (feature(FEATURE_RX_MSP)) {
rcDataReceived = rxMspFrameComplete(); rxDataReceived = rxMspFrameComplete();
if (rcDataReceived && feature(FEATURE_FAILSAFE)) { if (rxDataReceived) {
failsafeReset();
if (feature(FEATURE_FAILSAFE)) {
failsafeOnValidDataReceived();
}
} }
} }
if (feature(FEATURE_RX_SERIAL | FEATURE_RX_MSP) && rxDataReceived) {
needRxSignalBefore = currentTime + DELAY_10_HZ;
}
if (feature(FEATURE_RX_PPM)) {
if (isPPMDataBeingReceived()) {
rxSignalReceived = true;
needRxSignalBefore = currentTime + DELAY_10_HZ;
resetPPMDataReceivedState();
}
shouldCheckPulse = rxSignalReceived;
}
} }
bool shouldProcessRx(uint32_t currentTime) bool shouldProcessRx(uint32_t currentTime)
{ {
return rcDataReceived || ((int32_t)(currentTime - rxUpdateAt) >= 0); // data driven or 50Hz return rxDataReceived || ((int32_t)(currentTime - rxUpdateAt) >= 0); // data driven or 50Hz
}
static bool isRxDataDriven(void) {
return !(feature(FEATURE_RX_PARALLEL_PWM | FEATURE_RX_PPM));
} }
static uint8_t rcSampleIndex = 0; static uint8_t rcSampleIndex = 0;
@ -256,17 +314,6 @@ static void processRxChannels(void)
return; // rcData will have already been updated by MSP_SET_RAW_RC return; // rcData will have already been updated by MSP_SET_RAW_RC
} }
bool shouldCheckPulse = true;
if (feature(FEATURE_FAILSAFE)) {
if (feature(FEATURE_RX_PPM)) {
shouldCheckPulse = isPPMDataBeingReceived();
resetPPMDataReceivedState();
} else {
shouldCheckPulse = !isRxDataDriven();
}
}
for (chan = 0; chan < rxRuntimeConfig.channelCount; chan++) { for (chan = 0; chan < rxRuntimeConfig.channelCount; chan++) {
if (!rcReadRawFunc) { if (!rcReadRawFunc) {
@ -279,8 +326,8 @@ static void processRxChannels(void)
// sample the channel // sample the channel
uint16_t sample = rcReadRawFunc(&rxRuntimeConfig, rawChannel); uint16_t sample = rcReadRawFunc(&rxRuntimeConfig, rawChannel);
if (feature(FEATURE_FAILSAFE) && shouldCheckPulse) { if (shouldCheckPulse) {
failsafeCheckPulse(chan, sample); rxCheckPulse(chan, sample);
} }
// validate the range // validate the range
@ -311,9 +358,7 @@ void calculateRxChannelsAndUpdateFailsafe(uint32_t currentTime)
{ {
rxUpdateAt = currentTime + DELAY_50_HZ; rxUpdateAt = currentTime + DELAY_50_HZ;
if (feature(FEATURE_FAILSAFE)) { failsafeOnRxCycleStarted();
failsafeOnRxCycle();
}
if (isRxDataDriven()) { if (isRxDataDriven()) {
processDataDrivenRx(); processDataDrivenRx();

View file

@ -79,6 +79,10 @@ typedef struct rxConfig_s {
uint16_t midrc; // Some radios have not a neutral point centered on 1500. can be changed here uint16_t midrc; // Some radios have not a neutral point centered on 1500. can be changed here
uint16_t mincheck; // minimum rc end uint16_t mincheck; // minimum rc end
uint16_t maxcheck; // maximum rc end uint16_t maxcheck; // maximum rc end
uint16_t rx_min_usec;
uint16_t rx_max_usec;
} rxConfig_t; } rxConfig_t;
#define REMAPPABLE_CHANNEL_COUNT (sizeof(((rxConfig_t *)0)->rcmap) / sizeof(((rxConfig_t *)0)->rcmap[0])) #define REMAPPABLE_CHANNEL_COUNT (sizeof(((rxConfig_t *)0)->rcmap) / sizeof(((rxConfig_t *)0)->rcmap[0]))
@ -94,7 +98,8 @@ void useRxConfig(rxConfig_t *rxConfigToUse);
typedef uint16_t (*rcReadRawDataPtr)(rxRuntimeConfig_t *rxRuntimeConfig, uint8_t chan); // used by receiver driver to return channel data typedef uint16_t (*rcReadRawDataPtr)(rxRuntimeConfig_t *rxRuntimeConfig, uint8_t chan); // used by receiver driver to return channel data
void updateRx(void); void updateRx(uint32_t currentTime);
bool rxIsReceivingSignal(void);
bool shouldProcessRx(uint32_t currentTime); bool shouldProcessRx(uint32_t currentTime);
void calculateRxChannelsAndUpdateFailsafe(uint32_t currentTime); void calculateRxChannelsAndUpdateFailsafe(uint32_t currentTime);