mirror of
https://github.com/betaflight/betaflight.git
synced 2025-07-17 05:15:25 +03:00
Cleanup project structure. Update unit test Makefile to place object
files in obj/test
This commit is contained in:
parent
fb9e3a2358
commit
d19a5e7046
330 changed files with 657 additions and 638 deletions
467
src/main/flight/imu.c
Executable file
467
src/main/flight/imu.c
Executable file
|
@ -0,0 +1,467 @@
|
|||
// Inertial Measurement Unit (IMU)
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <stdint.h>
|
||||
#include <math.h>
|
||||
|
||||
#include "common/maths.h"
|
||||
|
||||
#include <platform.h>
|
||||
|
||||
#include "common/axis.h"
|
||||
#include "flight/flight.h"
|
||||
|
||||
#include "drivers/system.h"
|
||||
|
||||
#include "sensors/sensors.h"
|
||||
#include "drivers/accgyro.h"
|
||||
#include "sensors/gyro.h"
|
||||
#include "sensors/compass.h"
|
||||
#include "sensors/acceleration.h"
|
||||
#include "sensors/barometer.h"
|
||||
|
||||
#include "io/gps.h"
|
||||
|
||||
#include "io/gimbal.h"
|
||||
#include "flight/mixer.h"
|
||||
|
||||
// FIXME remove dependency on config.h
|
||||
#include "sensors/boardalignment.h"
|
||||
#include "io/battery.h"
|
||||
#include "io/escservo.h"
|
||||
#include "io/rc_controls.h"
|
||||
#include "rx/rx.h"
|
||||
#include "drivers/serial.h"
|
||||
#include "io/serial.h"
|
||||
#include "telemetry/telemetry.h"
|
||||
#include "flight/failsafe.h"
|
||||
#include "config/runtime_config.h"
|
||||
#include "config/config.h"
|
||||
#include "config/config_profile.h"
|
||||
#include "config/config_master.h"
|
||||
|
||||
|
||||
int16_t gyroADC[XYZ_AXIS_COUNT], accADC[XYZ_AXIS_COUNT], accSmooth[XYZ_AXIS_COUNT];
|
||||
int32_t accSum[XYZ_AXIS_COUNT];
|
||||
|
||||
uint32_t accTimeSum = 0; // keep track for integration of acc
|
||||
int accSumCount = 0;
|
||||
float accVelScale;
|
||||
|
||||
int16_t smallAngle = 0;
|
||||
|
||||
int32_t EstAlt; // in cm
|
||||
int32_t AltHold;
|
||||
int32_t errorAltitudeI = 0;
|
||||
|
||||
int32_t vario = 0; // variometer in cm/s
|
||||
|
||||
int16_t throttleAngleCorrection = 0; // correction of throttle in lateral wind,
|
||||
float throttleAngleScale;
|
||||
|
||||
int32_t BaroPID = 0;
|
||||
|
||||
float magneticDeclination = 0.0f; // calculated at startup from config
|
||||
float gyroScaleRad;
|
||||
|
||||
// **************
|
||||
// gyro+acc IMU
|
||||
// **************
|
||||
int16_t gyroData[FLIGHT_DYNAMICS_INDEX_COUNT] = { 0, 0, 0 };
|
||||
int16_t gyroZero[FLIGHT_DYNAMICS_INDEX_COUNT] = { 0, 0, 0 };
|
||||
|
||||
rollAndPitchInclination_t inclination = { { 0, 0 } }; // absolute angle inclination in multiple of 0.1 degree 180 deg = 1800
|
||||
float anglerad[2] = { 0.0f, 0.0f }; // absolute angle inclination in radians
|
||||
|
||||
static void getEstimatedAttitude(void);
|
||||
|
||||
void imuInit(void)
|
||||
{
|
||||
smallAngle = lrintf(acc_1G * cosf(RAD * 25.0f));
|
||||
accVelScale = 9.80665f / acc_1G / 10000.0f;
|
||||
throttleAngleScale = (1800.0f / M_PI) * (900.0f / currentProfile.throttle_correction_angle);
|
||||
gyroScaleRad = gyro.scale * (M_PI / 180.0f) * 0.000001f;
|
||||
|
||||
#ifdef MAG
|
||||
// if mag sensor is enabled, use it
|
||||
if (sensors(SENSOR_MAG))
|
||||
compassInit();
|
||||
#endif
|
||||
}
|
||||
|
||||
void computeIMU(void)
|
||||
{
|
||||
uint32_t axis;
|
||||
static int16_t gyroYawSmooth = 0;
|
||||
|
||||
gyroGetADC();
|
||||
if (sensors(SENSOR_ACC)) {
|
||||
updateAccelerationReadings(¤tProfile.accelerometerTrims);
|
||||
getEstimatedAttitude();
|
||||
} else {
|
||||
accADC[X] = 0;
|
||||
accADC[Y] = 0;
|
||||
accADC[Z] = 0;
|
||||
}
|
||||
|
||||
if (masterConfig.mixerConfiguration == MULTITYPE_TRI) {
|
||||
gyroData[FD_YAW] = (gyroYawSmooth * 2 + gyroADC[FD_YAW]) / 3;
|
||||
gyroYawSmooth = gyroData[FD_YAW];
|
||||
gyroData[FD_ROLL] = gyroADC[FD_ROLL];
|
||||
gyroData[FD_PITCH] = gyroADC[FD_PITCH];
|
||||
} else {
|
||||
for (axis = 0; axis < 3; axis++)
|
||||
gyroData[axis] = gyroADC[axis];
|
||||
}
|
||||
}
|
||||
|
||||
// **************************************************
|
||||
// Simplified IMU based on "Complementary Filter"
|
||||
// Inspired by http://starlino.com/imu_guide.html
|
||||
//
|
||||
// adapted by ziss_dm : http://www.multiwii.com/forum/viewtopic.php?f=8&t=198
|
||||
//
|
||||
// The following ideas was used in this project:
|
||||
// 1) Rotation matrix: http://en.wikipedia.org/wiki/Rotation_matrix
|
||||
//
|
||||
// Currently Magnetometer uses separate CF which is used only
|
||||
// for heading approximation.
|
||||
//
|
||||
// **************************************************
|
||||
|
||||
|
||||
t_fp_vector EstG;
|
||||
|
||||
// Normalize a vector
|
||||
void normalizeV(struct fp_vector *src, struct fp_vector *dest)
|
||||
{
|
||||
float length;
|
||||
|
||||
length = sqrtf(src->X * src->X + src->Y * src->Y + src->Z * src->Z);
|
||||
if (length != 0) {
|
||||
dest->X = src->X / length;
|
||||
dest->Y = src->Y / length;
|
||||
dest->Z = src->Z / length;
|
||||
}
|
||||
}
|
||||
|
||||
// Rotate Estimated vector(s) with small angle approximation, according to the gyro data
|
||||
void rotateV(struct fp_vector *v, fp_angles_t *delta)
|
||||
{
|
||||
struct fp_vector v_tmp = *v;
|
||||
|
||||
// This does a "proper" matrix rotation using gyro deltas without small-angle approximation
|
||||
float mat[3][3];
|
||||
float cosx, sinx, cosy, siny, cosz, sinz;
|
||||
float coszcosx, coszcosy, sinzcosx, coszsinx, sinzsinx;
|
||||
|
||||
cosx = cosf(delta->angles.roll);
|
||||
sinx = sinf(delta->angles.roll);
|
||||
cosy = cosf(delta->angles.pitch);
|
||||
siny = sinf(delta->angles.pitch);
|
||||
cosz = cosf(delta->angles.yaw);
|
||||
sinz = sinf(delta->angles.yaw);
|
||||
|
||||
coszcosx = cosz * cosx;
|
||||
coszcosy = cosz * cosy;
|
||||
sinzcosx = sinz * cosx;
|
||||
coszsinx = sinx * cosz;
|
||||
sinzsinx = sinx * sinz;
|
||||
|
||||
mat[0][0] = coszcosy;
|
||||
mat[0][1] = -cosy * sinz;
|
||||
mat[0][2] = siny;
|
||||
mat[1][0] = sinzcosx + (coszsinx * siny);
|
||||
mat[1][1] = coszcosx - (sinzsinx * siny);
|
||||
mat[1][2] = -sinx * cosy;
|
||||
mat[2][0] = (sinzsinx) - (coszcosx * siny);
|
||||
mat[2][1] = (coszsinx) + (sinzcosx * siny);
|
||||
mat[2][2] = cosy * cosx;
|
||||
|
||||
v->X = v_tmp.X * mat[0][0] + v_tmp.Y * mat[1][0] + v_tmp.Z * mat[2][0];
|
||||
v->Y = v_tmp.X * mat[0][1] + v_tmp.Y * mat[1][1] + v_tmp.Z * mat[2][1];
|
||||
v->Z = v_tmp.X * mat[0][2] + v_tmp.Y * mat[1][2] + v_tmp.Z * mat[2][2];
|
||||
}
|
||||
|
||||
int32_t applyDeadband(int32_t value, int32_t deadband)
|
||||
{
|
||||
if (abs(value) < deadband) {
|
||||
value = 0;
|
||||
} else if (value > 0) {
|
||||
value -= deadband;
|
||||
} else if (value < 0) {
|
||||
value += deadband;
|
||||
}
|
||||
return value;
|
||||
}
|
||||
|
||||
#define F_CUT_ACCZ 10.0f // 10Hz should still be fast enough
|
||||
static const float fc_acc = 0.5f / (M_PI * F_CUT_ACCZ);
|
||||
|
||||
// rotate acc into Earth frame and calculate acceleration in it
|
||||
void acc_calc(uint32_t deltaT)
|
||||
{
|
||||
static int32_t accZoffset = 0;
|
||||
static float accz_smooth;
|
||||
fp_angles_t rpy;
|
||||
t_fp_vector accel_ned;
|
||||
|
||||
// the accel values have to be rotated into the earth frame
|
||||
rpy.angles.roll = -(float)anglerad[AI_ROLL];
|
||||
rpy.angles.pitch = -(float)anglerad[AI_PITCH];
|
||||
rpy.angles.yaw = -(float)heading * RAD;
|
||||
|
||||
accel_ned.V.X = accSmooth[0];
|
||||
accel_ned.V.Y = accSmooth[1];
|
||||
accel_ned.V.Z = accSmooth[2];
|
||||
|
||||
rotateV(&accel_ned.V, &rpy);
|
||||
|
||||
if (currentProfile.acc_unarmedcal == 1) {
|
||||
if (!f.ARMED) {
|
||||
accZoffset -= accZoffset / 64;
|
||||
accZoffset += accel_ned.V.Z;
|
||||
}
|
||||
accel_ned.V.Z -= accZoffset / 64; // compensate for gravitation on z-axis
|
||||
} else
|
||||
accel_ned.V.Z -= acc_1G;
|
||||
|
||||
accz_smooth = accz_smooth + (deltaT / (fc_acc + deltaT)) * (accel_ned.V.Z - accz_smooth); // low pass filter
|
||||
|
||||
// apply Deadband to reduce integration drift and vibration influence
|
||||
accSum[X] += applyDeadband(lrintf(accel_ned.V.X), currentProfile.accxy_deadband);
|
||||
accSum[Y] += applyDeadband(lrintf(accel_ned.V.Y), currentProfile.accxy_deadband);
|
||||
accSum[Z] += applyDeadband(lrintf(accz_smooth), currentProfile.accz_deadband);
|
||||
|
||||
// sum up Values for later integration to get velocity and distance
|
||||
accTimeSum += deltaT;
|
||||
accSumCount++;
|
||||
}
|
||||
|
||||
void accSum_reset(void)
|
||||
{
|
||||
accSum[0] = 0;
|
||||
accSum[1] = 0;
|
||||
accSum[2] = 0;
|
||||
accSumCount = 0;
|
||||
accTimeSum = 0;
|
||||
}
|
||||
|
||||
// baseflight calculation by Luggi09 originates from arducopter
|
||||
static int16_t calculateHeading(t_fp_vector *vec)
|
||||
{
|
||||
int16_t head;
|
||||
|
||||
float cosineRoll = cosf(anglerad[AI_ROLL]);
|
||||
float sineRoll = sinf(anglerad[AI_ROLL]);
|
||||
float cosinePitch = cosf(anglerad[AI_PITCH]);
|
||||
float sinePitch = sinf(anglerad[AI_PITCH]);
|
||||
float Xh = vec->A[X] * cosinePitch + vec->A[Y] * sineRoll * sinePitch + vec->A[Z] * sinePitch * cosineRoll;
|
||||
float Yh = vec->A[Y] * cosineRoll - vec->A[Z] * sineRoll;
|
||||
float hd = (atan2f(Yh, Xh) * 1800.0f / M_PI + magneticDeclination) / 10.0f;
|
||||
head = lrintf(hd);
|
||||
if (head < 0)
|
||||
head += 360;
|
||||
|
||||
return head;
|
||||
}
|
||||
|
||||
static void getEstimatedAttitude(void)
|
||||
{
|
||||
int32_t axis;
|
||||
int32_t accMag = 0;
|
||||
static t_fp_vector EstM;
|
||||
static t_fp_vector EstN = { .A = { 1.0f, 0.0f, 0.0f } };
|
||||
static float accLPF[3];
|
||||
static uint32_t previousT;
|
||||
uint32_t currentT = micros();
|
||||
uint32_t deltaT;
|
||||
float scale;
|
||||
fp_angles_t deltaGyroAngle;
|
||||
deltaT = currentT - previousT;
|
||||
scale = deltaT * gyroScaleRad;
|
||||
previousT = currentT;
|
||||
|
||||
// Initialization
|
||||
for (axis = 0; axis < 3; axis++) {
|
||||
deltaGyroAngle.raw[axis] = gyroADC[axis] * scale;
|
||||
if (currentProfile.acc_lpf_factor > 0) {
|
||||
accLPF[axis] = accLPF[axis] * (1.0f - (1.0f / currentProfile.acc_lpf_factor)) + accADC[axis] * (1.0f / currentProfile.acc_lpf_factor);
|
||||
accSmooth[axis] = accLPF[axis];
|
||||
} else {
|
||||
accSmooth[axis] = accADC[axis];
|
||||
}
|
||||
accMag += (int32_t)accSmooth[axis] * accSmooth[axis];
|
||||
}
|
||||
accMag = accMag * 100 / ((int32_t)acc_1G * acc_1G);
|
||||
|
||||
rotateV(&EstG.V, &deltaGyroAngle);
|
||||
if (sensors(SENSOR_MAG)) {
|
||||
rotateV(&EstM.V, &deltaGyroAngle);
|
||||
} else {
|
||||
rotateV(&EstN.V, &deltaGyroAngle);
|
||||
normalizeV(&EstN.V, &EstN.V);
|
||||
}
|
||||
|
||||
// Apply complimentary filter (Gyro drift correction)
|
||||
// If accel magnitude >1.15G or <0.85G and ACC vector outside of the limit range => we neutralize the effect of accelerometers in the angle estimation.
|
||||
// To do that, we just skip filter, as EstV already rotated by Gyro
|
||||
|
||||
float invGyroComplimentaryFilterFactor = (1.0f / ((float)masterConfig.gyro_cmpf_factor + 1.0f));
|
||||
|
||||
if (72 < (uint16_t)accMag && (uint16_t)accMag < 133) {
|
||||
for (axis = 0; axis < 3; axis++)
|
||||
EstG.A[axis] = (EstG.A[axis] * (float)masterConfig.gyro_cmpf_factor + accSmooth[axis]) * invGyroComplimentaryFilterFactor;
|
||||
}
|
||||
|
||||
// FIXME what does the _M_ mean?
|
||||
float invGyroComplimentaryFilter_M_Factor = (1.0f / ((float)masterConfig.gyro_cmpfm_factor + 1.0f));
|
||||
|
||||
if (sensors(SENSOR_MAG)) {
|
||||
for (axis = 0; axis < 3; axis++)
|
||||
EstM.A[axis] = (EstM.A[axis] * (float)masterConfig.gyro_cmpfm_factor + magADC[axis]) * invGyroComplimentaryFilter_M_Factor;
|
||||
}
|
||||
|
||||
f.SMALL_ANGLE = (EstG.A[Z] > smallAngle);
|
||||
|
||||
// Attitude of the estimated vector
|
||||
anglerad[AI_ROLL] = atan2f(EstG.V.Y, EstG.V.Z);
|
||||
anglerad[AI_PITCH] = atan2f(-EstG.V.X, sqrtf(EstG.V.Y * EstG.V.Y + EstG.V.Z * EstG.V.Z));
|
||||
inclination.values.rollDeciDegrees = lrintf(anglerad[AI_ROLL] * (1800.0f / M_PI));
|
||||
inclination.values.pitchDeciDegrees = lrintf(anglerad[AI_PITCH] * (1800.0f / M_PI));
|
||||
|
||||
if (sensors(SENSOR_MAG))
|
||||
heading = calculateHeading(&EstM);
|
||||
else
|
||||
heading = calculateHeading(&EstN);
|
||||
|
||||
acc_calc(deltaT); // rotate acc vector into earth frame
|
||||
|
||||
if (currentProfile.throttle_correction_value) {
|
||||
|
||||
float cosZ = EstG.V.Z / sqrtf(EstG.V.X * EstG.V.X + EstG.V.Y * EstG.V.Y + EstG.V.Z * EstG.V.Z);
|
||||
|
||||
if (cosZ <= 0.015f) { // we are inverted, vertical or with a small angle < 0.86 deg
|
||||
throttleAngleCorrection = 0;
|
||||
} else {
|
||||
int angle = lrintf(acosf(cosZ) * throttleAngleScale);
|
||||
if (angle > 900)
|
||||
angle = 900;
|
||||
throttleAngleCorrection = lrintf(currentProfile.throttle_correction_value * sinf(angle / (900.0f * M_PI / 2.0f))) ;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef BARO
|
||||
#define UPDATE_INTERVAL 25000 // 40hz update rate (20hz LPF on acc)
|
||||
|
||||
|
||||
#define DEGREES_80_IN_DECIDEGREES 800
|
||||
|
||||
bool isThrustFacingDownwards(rollAndPitchInclination_t *inclination)
|
||||
{
|
||||
return abs(inclination->values.rollDeciDegrees) < DEGREES_80_IN_DECIDEGREES && abs(inclination->values.pitchDeciDegrees) < DEGREES_80_IN_DECIDEGREES;
|
||||
}
|
||||
|
||||
int32_t calculateBaroPid(int32_t vel_tmp, float accZ_tmp, float accZ_old)
|
||||
{
|
||||
uint32_t baroPID = 0;
|
||||
int32_t error;
|
||||
int32_t setVel;
|
||||
|
||||
if (!isThrustFacingDownwards(&inclination)) {
|
||||
return baroPID;
|
||||
}
|
||||
|
||||
// Altitude P-Controller
|
||||
|
||||
error = constrain(AltHold - EstAlt, -500, 500);
|
||||
error = applyDeadband(error, 10); // remove small P parametr to reduce noise near zero position
|
||||
setVel = constrain((currentProfile.pidProfile.P8[PIDALT] * error / 128), -300, +300); // limit velocity to +/- 3 m/s
|
||||
|
||||
// Velocity PID-Controller
|
||||
|
||||
// P
|
||||
error = setVel - vel_tmp;
|
||||
baroPID = constrain((currentProfile.pidProfile.P8[PIDVEL] * error / 32), -300, +300);
|
||||
|
||||
// I
|
||||
errorAltitudeI += (currentProfile.pidProfile.I8[PIDVEL] * error) / 8;
|
||||
errorAltitudeI = constrain(errorAltitudeI, -(1024 * 200), (1024 * 200));
|
||||
baroPID += errorAltitudeI / 1024; // I in range +/-200
|
||||
|
||||
// D
|
||||
baroPID -= constrain(currentProfile.pidProfile.D8[PIDVEL] * (accZ_tmp + accZ_old) / 64, -150, 150);
|
||||
|
||||
return baroPID;
|
||||
}
|
||||
|
||||
int getEstimatedAltitude(void)
|
||||
{
|
||||
static uint32_t previousT;
|
||||
uint32_t currentT = micros();
|
||||
uint32_t dTime;
|
||||
int32_t baroVel;
|
||||
float dt;
|
||||
float vel_acc;
|
||||
int32_t vel_tmp;
|
||||
float accZ_tmp;
|
||||
static float accZ_old = 0.0f;
|
||||
static float vel = 0.0f;
|
||||
static float accAlt = 0.0f;
|
||||
static int32_t lastBaroAlt;
|
||||
|
||||
dTime = currentT - previousT;
|
||||
if (dTime < UPDATE_INTERVAL)
|
||||
return 0;
|
||||
previousT = currentT;
|
||||
|
||||
if (!isBaroCalibrationComplete()) {
|
||||
performBaroCalibrationCycle();
|
||||
vel = 0;
|
||||
accAlt = 0;
|
||||
}
|
||||
BaroAlt = baroCalculateAltitude();
|
||||
|
||||
dt = accTimeSum * 1e-6f; // delta acc reading time in seconds
|
||||
|
||||
// Integrator - velocity, cm/sec
|
||||
accZ_tmp = (float)accSum[2] / (float)accSumCount;
|
||||
vel_acc = accZ_tmp * accVelScale * (float)accTimeSum;
|
||||
|
||||
// Integrator - Altitude in cm
|
||||
accAlt += (vel_acc * 0.5f) * dt + vel * dt; // integrate velocity to get distance (x= a/2 * t^2)
|
||||
accAlt = accAlt * currentProfile.barometerConfig.baro_cf_alt + (float)BaroAlt * (1.0f - currentProfile.barometerConfig.baro_cf_alt); // complementary filter for Altitude estimation (baro & acc)
|
||||
EstAlt = accAlt;
|
||||
vel += vel_acc;
|
||||
|
||||
#if 0
|
||||
debug[0] = accSum[2] / accSumCount; // acceleration
|
||||
debug[1] = vel; // velocity
|
||||
debug[2] = accAlt; // height
|
||||
#endif
|
||||
|
||||
accSum_reset();
|
||||
|
||||
baroVel = (BaroAlt - lastBaroAlt) * 1000000.0f / dTime;
|
||||
lastBaroAlt = BaroAlt;
|
||||
|
||||
baroVel = constrain(baroVel, -300, 300); // constrain baro velocity +/- 300cm/s
|
||||
baroVel = applyDeadband(baroVel, 10); // to reduce noise near zero
|
||||
|
||||
// apply Complimentary Filter to keep the calculated velocity based on baro velocity (i.e. near real velocity).
|
||||
// By using CF it's possible to correct the drift of integrated accZ (velocity) without loosing the phase, i.e without delay
|
||||
vel = vel * currentProfile.barometerConfig.baro_cf_vel + baroVel * (1 - currentProfile.barometerConfig.baro_cf_vel);
|
||||
vel_tmp = lrintf(vel);
|
||||
|
||||
// set vario
|
||||
vario = applyDeadband(vel_tmp, 5);
|
||||
|
||||
BaroPID = calculateBaroPid(vel_tmp, accZ_tmp, accZ_old);
|
||||
|
||||
accZ_old = accZ_tmp;
|
||||
|
||||
return 1;
|
||||
}
|
||||
#endif /* BARO */
|
Loading…
Add table
Add a link
Reference in a new issue