1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-17 05:15:25 +03:00

Cleanup project structure. Update unit test Makefile to place object

files in obj/test
This commit is contained in:
Dominic Clifton 2014-05-31 22:43:06 +01:00
parent fb9e3a2358
commit d19a5e7046
330 changed files with 657 additions and 638 deletions

467
src/main/flight/imu.c Executable file
View file

@ -0,0 +1,467 @@
// Inertial Measurement Unit (IMU)
#include <stdbool.h>
#include <stdint.h>
#include <math.h>
#include "common/maths.h"
#include <platform.h>
#include "common/axis.h"
#include "flight/flight.h"
#include "drivers/system.h"
#include "sensors/sensors.h"
#include "drivers/accgyro.h"
#include "sensors/gyro.h"
#include "sensors/compass.h"
#include "sensors/acceleration.h"
#include "sensors/barometer.h"
#include "io/gps.h"
#include "io/gimbal.h"
#include "flight/mixer.h"
// FIXME remove dependency on config.h
#include "sensors/boardalignment.h"
#include "io/battery.h"
#include "io/escservo.h"
#include "io/rc_controls.h"
#include "rx/rx.h"
#include "drivers/serial.h"
#include "io/serial.h"
#include "telemetry/telemetry.h"
#include "flight/failsafe.h"
#include "config/runtime_config.h"
#include "config/config.h"
#include "config/config_profile.h"
#include "config/config_master.h"
int16_t gyroADC[XYZ_AXIS_COUNT], accADC[XYZ_AXIS_COUNT], accSmooth[XYZ_AXIS_COUNT];
int32_t accSum[XYZ_AXIS_COUNT];
uint32_t accTimeSum = 0; // keep track for integration of acc
int accSumCount = 0;
float accVelScale;
int16_t smallAngle = 0;
int32_t EstAlt; // in cm
int32_t AltHold;
int32_t errorAltitudeI = 0;
int32_t vario = 0; // variometer in cm/s
int16_t throttleAngleCorrection = 0; // correction of throttle in lateral wind,
float throttleAngleScale;
int32_t BaroPID = 0;
float magneticDeclination = 0.0f; // calculated at startup from config
float gyroScaleRad;
// **************
// gyro+acc IMU
// **************
int16_t gyroData[FLIGHT_DYNAMICS_INDEX_COUNT] = { 0, 0, 0 };
int16_t gyroZero[FLIGHT_DYNAMICS_INDEX_COUNT] = { 0, 0, 0 };
rollAndPitchInclination_t inclination = { { 0, 0 } }; // absolute angle inclination in multiple of 0.1 degree 180 deg = 1800
float anglerad[2] = { 0.0f, 0.0f }; // absolute angle inclination in radians
static void getEstimatedAttitude(void);
void imuInit(void)
{
smallAngle = lrintf(acc_1G * cosf(RAD * 25.0f));
accVelScale = 9.80665f / acc_1G / 10000.0f;
throttleAngleScale = (1800.0f / M_PI) * (900.0f / currentProfile.throttle_correction_angle);
gyroScaleRad = gyro.scale * (M_PI / 180.0f) * 0.000001f;
#ifdef MAG
// if mag sensor is enabled, use it
if (sensors(SENSOR_MAG))
compassInit();
#endif
}
void computeIMU(void)
{
uint32_t axis;
static int16_t gyroYawSmooth = 0;
gyroGetADC();
if (sensors(SENSOR_ACC)) {
updateAccelerationReadings(&currentProfile.accelerometerTrims);
getEstimatedAttitude();
} else {
accADC[X] = 0;
accADC[Y] = 0;
accADC[Z] = 0;
}
if (masterConfig.mixerConfiguration == MULTITYPE_TRI) {
gyroData[FD_YAW] = (gyroYawSmooth * 2 + gyroADC[FD_YAW]) / 3;
gyroYawSmooth = gyroData[FD_YAW];
gyroData[FD_ROLL] = gyroADC[FD_ROLL];
gyroData[FD_PITCH] = gyroADC[FD_PITCH];
} else {
for (axis = 0; axis < 3; axis++)
gyroData[axis] = gyroADC[axis];
}
}
// **************************************************
// Simplified IMU based on "Complementary Filter"
// Inspired by http://starlino.com/imu_guide.html
//
// adapted by ziss_dm : http://www.multiwii.com/forum/viewtopic.php?f=8&t=198
//
// The following ideas was used in this project:
// 1) Rotation matrix: http://en.wikipedia.org/wiki/Rotation_matrix
//
// Currently Magnetometer uses separate CF which is used only
// for heading approximation.
//
// **************************************************
t_fp_vector EstG;
// Normalize a vector
void normalizeV(struct fp_vector *src, struct fp_vector *dest)
{
float length;
length = sqrtf(src->X * src->X + src->Y * src->Y + src->Z * src->Z);
if (length != 0) {
dest->X = src->X / length;
dest->Y = src->Y / length;
dest->Z = src->Z / length;
}
}
// Rotate Estimated vector(s) with small angle approximation, according to the gyro data
void rotateV(struct fp_vector *v, fp_angles_t *delta)
{
struct fp_vector v_tmp = *v;
// This does a "proper" matrix rotation using gyro deltas without small-angle approximation
float mat[3][3];
float cosx, sinx, cosy, siny, cosz, sinz;
float coszcosx, coszcosy, sinzcosx, coszsinx, sinzsinx;
cosx = cosf(delta->angles.roll);
sinx = sinf(delta->angles.roll);
cosy = cosf(delta->angles.pitch);
siny = sinf(delta->angles.pitch);
cosz = cosf(delta->angles.yaw);
sinz = sinf(delta->angles.yaw);
coszcosx = cosz * cosx;
coszcosy = cosz * cosy;
sinzcosx = sinz * cosx;
coszsinx = sinx * cosz;
sinzsinx = sinx * sinz;
mat[0][0] = coszcosy;
mat[0][1] = -cosy * sinz;
mat[0][2] = siny;
mat[1][0] = sinzcosx + (coszsinx * siny);
mat[1][1] = coszcosx - (sinzsinx * siny);
mat[1][2] = -sinx * cosy;
mat[2][0] = (sinzsinx) - (coszcosx * siny);
mat[2][1] = (coszsinx) + (sinzcosx * siny);
mat[2][2] = cosy * cosx;
v->X = v_tmp.X * mat[0][0] + v_tmp.Y * mat[1][0] + v_tmp.Z * mat[2][0];
v->Y = v_tmp.X * mat[0][1] + v_tmp.Y * mat[1][1] + v_tmp.Z * mat[2][1];
v->Z = v_tmp.X * mat[0][2] + v_tmp.Y * mat[1][2] + v_tmp.Z * mat[2][2];
}
int32_t applyDeadband(int32_t value, int32_t deadband)
{
if (abs(value) < deadband) {
value = 0;
} else if (value > 0) {
value -= deadband;
} else if (value < 0) {
value += deadband;
}
return value;
}
#define F_CUT_ACCZ 10.0f // 10Hz should still be fast enough
static const float fc_acc = 0.5f / (M_PI * F_CUT_ACCZ);
// rotate acc into Earth frame and calculate acceleration in it
void acc_calc(uint32_t deltaT)
{
static int32_t accZoffset = 0;
static float accz_smooth;
fp_angles_t rpy;
t_fp_vector accel_ned;
// the accel values have to be rotated into the earth frame
rpy.angles.roll = -(float)anglerad[AI_ROLL];
rpy.angles.pitch = -(float)anglerad[AI_PITCH];
rpy.angles.yaw = -(float)heading * RAD;
accel_ned.V.X = accSmooth[0];
accel_ned.V.Y = accSmooth[1];
accel_ned.V.Z = accSmooth[2];
rotateV(&accel_ned.V, &rpy);
if (currentProfile.acc_unarmedcal == 1) {
if (!f.ARMED) {
accZoffset -= accZoffset / 64;
accZoffset += accel_ned.V.Z;
}
accel_ned.V.Z -= accZoffset / 64; // compensate for gravitation on z-axis
} else
accel_ned.V.Z -= acc_1G;
accz_smooth = accz_smooth + (deltaT / (fc_acc + deltaT)) * (accel_ned.V.Z - accz_smooth); // low pass filter
// apply Deadband to reduce integration drift and vibration influence
accSum[X] += applyDeadband(lrintf(accel_ned.V.X), currentProfile.accxy_deadband);
accSum[Y] += applyDeadband(lrintf(accel_ned.V.Y), currentProfile.accxy_deadband);
accSum[Z] += applyDeadband(lrintf(accz_smooth), currentProfile.accz_deadband);
// sum up Values for later integration to get velocity and distance
accTimeSum += deltaT;
accSumCount++;
}
void accSum_reset(void)
{
accSum[0] = 0;
accSum[1] = 0;
accSum[2] = 0;
accSumCount = 0;
accTimeSum = 0;
}
// baseflight calculation by Luggi09 originates from arducopter
static int16_t calculateHeading(t_fp_vector *vec)
{
int16_t head;
float cosineRoll = cosf(anglerad[AI_ROLL]);
float sineRoll = sinf(anglerad[AI_ROLL]);
float cosinePitch = cosf(anglerad[AI_PITCH]);
float sinePitch = sinf(anglerad[AI_PITCH]);
float Xh = vec->A[X] * cosinePitch + vec->A[Y] * sineRoll * sinePitch + vec->A[Z] * sinePitch * cosineRoll;
float Yh = vec->A[Y] * cosineRoll - vec->A[Z] * sineRoll;
float hd = (atan2f(Yh, Xh) * 1800.0f / M_PI + magneticDeclination) / 10.0f;
head = lrintf(hd);
if (head < 0)
head += 360;
return head;
}
static void getEstimatedAttitude(void)
{
int32_t axis;
int32_t accMag = 0;
static t_fp_vector EstM;
static t_fp_vector EstN = { .A = { 1.0f, 0.0f, 0.0f } };
static float accLPF[3];
static uint32_t previousT;
uint32_t currentT = micros();
uint32_t deltaT;
float scale;
fp_angles_t deltaGyroAngle;
deltaT = currentT - previousT;
scale = deltaT * gyroScaleRad;
previousT = currentT;
// Initialization
for (axis = 0; axis < 3; axis++) {
deltaGyroAngle.raw[axis] = gyroADC[axis] * scale;
if (currentProfile.acc_lpf_factor > 0) {
accLPF[axis] = accLPF[axis] * (1.0f - (1.0f / currentProfile.acc_lpf_factor)) + accADC[axis] * (1.0f / currentProfile.acc_lpf_factor);
accSmooth[axis] = accLPF[axis];
} else {
accSmooth[axis] = accADC[axis];
}
accMag += (int32_t)accSmooth[axis] * accSmooth[axis];
}
accMag = accMag * 100 / ((int32_t)acc_1G * acc_1G);
rotateV(&EstG.V, &deltaGyroAngle);
if (sensors(SENSOR_MAG)) {
rotateV(&EstM.V, &deltaGyroAngle);
} else {
rotateV(&EstN.V, &deltaGyroAngle);
normalizeV(&EstN.V, &EstN.V);
}
// Apply complimentary filter (Gyro drift correction)
// If accel magnitude >1.15G or <0.85G and ACC vector outside of the limit range => we neutralize the effect of accelerometers in the angle estimation.
// To do that, we just skip filter, as EstV already rotated by Gyro
float invGyroComplimentaryFilterFactor = (1.0f / ((float)masterConfig.gyro_cmpf_factor + 1.0f));
if (72 < (uint16_t)accMag && (uint16_t)accMag < 133) {
for (axis = 0; axis < 3; axis++)
EstG.A[axis] = (EstG.A[axis] * (float)masterConfig.gyro_cmpf_factor + accSmooth[axis]) * invGyroComplimentaryFilterFactor;
}
// FIXME what does the _M_ mean?
float invGyroComplimentaryFilter_M_Factor = (1.0f / ((float)masterConfig.gyro_cmpfm_factor + 1.0f));
if (sensors(SENSOR_MAG)) {
for (axis = 0; axis < 3; axis++)
EstM.A[axis] = (EstM.A[axis] * (float)masterConfig.gyro_cmpfm_factor + magADC[axis]) * invGyroComplimentaryFilter_M_Factor;
}
f.SMALL_ANGLE = (EstG.A[Z] > smallAngle);
// Attitude of the estimated vector
anglerad[AI_ROLL] = atan2f(EstG.V.Y, EstG.V.Z);
anglerad[AI_PITCH] = atan2f(-EstG.V.X, sqrtf(EstG.V.Y * EstG.V.Y + EstG.V.Z * EstG.V.Z));
inclination.values.rollDeciDegrees = lrintf(anglerad[AI_ROLL] * (1800.0f / M_PI));
inclination.values.pitchDeciDegrees = lrintf(anglerad[AI_PITCH] * (1800.0f / M_PI));
if (sensors(SENSOR_MAG))
heading = calculateHeading(&EstM);
else
heading = calculateHeading(&EstN);
acc_calc(deltaT); // rotate acc vector into earth frame
if (currentProfile.throttle_correction_value) {
float cosZ = EstG.V.Z / sqrtf(EstG.V.X * EstG.V.X + EstG.V.Y * EstG.V.Y + EstG.V.Z * EstG.V.Z);
if (cosZ <= 0.015f) { // we are inverted, vertical or with a small angle < 0.86 deg
throttleAngleCorrection = 0;
} else {
int angle = lrintf(acosf(cosZ) * throttleAngleScale);
if (angle > 900)
angle = 900;
throttleAngleCorrection = lrintf(currentProfile.throttle_correction_value * sinf(angle / (900.0f * M_PI / 2.0f))) ;
}
}
}
#ifdef BARO
#define UPDATE_INTERVAL 25000 // 40hz update rate (20hz LPF on acc)
#define DEGREES_80_IN_DECIDEGREES 800
bool isThrustFacingDownwards(rollAndPitchInclination_t *inclination)
{
return abs(inclination->values.rollDeciDegrees) < DEGREES_80_IN_DECIDEGREES && abs(inclination->values.pitchDeciDegrees) < DEGREES_80_IN_DECIDEGREES;
}
int32_t calculateBaroPid(int32_t vel_tmp, float accZ_tmp, float accZ_old)
{
uint32_t baroPID = 0;
int32_t error;
int32_t setVel;
if (!isThrustFacingDownwards(&inclination)) {
return baroPID;
}
// Altitude P-Controller
error = constrain(AltHold - EstAlt, -500, 500);
error = applyDeadband(error, 10); // remove small P parametr to reduce noise near zero position
setVel = constrain((currentProfile.pidProfile.P8[PIDALT] * error / 128), -300, +300); // limit velocity to +/- 3 m/s
// Velocity PID-Controller
// P
error = setVel - vel_tmp;
baroPID = constrain((currentProfile.pidProfile.P8[PIDVEL] * error / 32), -300, +300);
// I
errorAltitudeI += (currentProfile.pidProfile.I8[PIDVEL] * error) / 8;
errorAltitudeI = constrain(errorAltitudeI, -(1024 * 200), (1024 * 200));
baroPID += errorAltitudeI / 1024; // I in range +/-200
// D
baroPID -= constrain(currentProfile.pidProfile.D8[PIDVEL] * (accZ_tmp + accZ_old) / 64, -150, 150);
return baroPID;
}
int getEstimatedAltitude(void)
{
static uint32_t previousT;
uint32_t currentT = micros();
uint32_t dTime;
int32_t baroVel;
float dt;
float vel_acc;
int32_t vel_tmp;
float accZ_tmp;
static float accZ_old = 0.0f;
static float vel = 0.0f;
static float accAlt = 0.0f;
static int32_t lastBaroAlt;
dTime = currentT - previousT;
if (dTime < UPDATE_INTERVAL)
return 0;
previousT = currentT;
if (!isBaroCalibrationComplete()) {
performBaroCalibrationCycle();
vel = 0;
accAlt = 0;
}
BaroAlt = baroCalculateAltitude();
dt = accTimeSum * 1e-6f; // delta acc reading time in seconds
// Integrator - velocity, cm/sec
accZ_tmp = (float)accSum[2] / (float)accSumCount;
vel_acc = accZ_tmp * accVelScale * (float)accTimeSum;
// Integrator - Altitude in cm
accAlt += (vel_acc * 0.5f) * dt + vel * dt; // integrate velocity to get distance (x= a/2 * t^2)
accAlt = accAlt * currentProfile.barometerConfig.baro_cf_alt + (float)BaroAlt * (1.0f - currentProfile.barometerConfig.baro_cf_alt); // complementary filter for Altitude estimation (baro & acc)
EstAlt = accAlt;
vel += vel_acc;
#if 0
debug[0] = accSum[2] / accSumCount; // acceleration
debug[1] = vel; // velocity
debug[2] = accAlt; // height
#endif
accSum_reset();
baroVel = (BaroAlt - lastBaroAlt) * 1000000.0f / dTime;
lastBaroAlt = BaroAlt;
baroVel = constrain(baroVel, -300, 300); // constrain baro velocity +/- 300cm/s
baroVel = applyDeadband(baroVel, 10); // to reduce noise near zero
// apply Complimentary Filter to keep the calculated velocity based on baro velocity (i.e. near real velocity).
// By using CF it's possible to correct the drift of integrated accZ (velocity) without loosing the phase, i.e without delay
vel = vel * currentProfile.barometerConfig.baro_cf_vel + baroVel * (1 - currentProfile.barometerConfig.baro_cf_vel);
vel_tmp = lrintf(vel);
// set vario
vario = applyDeadband(vel_tmp, 5);
BaroPID = calculateBaroPid(vel_tmp, accZ_tmp, accZ_old);
accZ_old = accZ_tmp;
return 1;
}
#endif /* BARO */