1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-17 05:15:25 +03:00

AltHold cleanup.

* Renamed several methods and variables so they make more sense.
* Move more altitude hold related code out of imu.c/h into
altitudehold.c/h.
* Fixed a unsigned integer being using instead of an signed integer in
the throttle calculation code.
This commit is contained in:
Dominic Clifton 2014-09-29 01:34:15 +01:00
parent 7d4abb8a4a
commit daa823ddba
8 changed files with 222 additions and 199 deletions

View file

@ -65,7 +65,7 @@ int32_t vario = 0; // variometer in cm/s
float throttleAngleScale;
float fc_acc;
int32_t BaroPID = 0;
int32_t altHoldThrottleAdjustment = 0;
float magneticDeclination = 0.0f; // calculated at startup from config
float gyroScaleRad;
@ -83,14 +83,12 @@ static void getEstimatedAttitude(void);
imuRuntimeConfig_t *imuRuntimeConfig;
pidProfile_t *pidProfile;
barometerConfig_t *barometerConfig;
accDeadband_t *accDeadband;
void configureImu(imuRuntimeConfig_t *initialImuRuntimeConfig, pidProfile_t *initialPidProfile, barometerConfig_t *intialBarometerConfig, accDeadband_t *initialAccDeadband)
void configureImu(imuRuntimeConfig_t *initialImuRuntimeConfig, pidProfile_t *initialPidProfile, accDeadband_t *initialAccDeadband)
{
imuRuntimeConfig = initialImuRuntimeConfig;
pidProfile = initialPidProfile;
barometerConfig = intialBarometerConfig;
accDeadband = initialAccDeadband;
}
@ -203,16 +201,13 @@ void rotateV(struct fp_vector *v, fp_angles_t *delta)
v->Z = v_tmp.X * mat[0][2] + v_tmp.Y * mat[1][2] + v_tmp.Z * mat[2][2];
}
int32_t applyDeadband(int32_t value, int32_t deadband)
void accSum_reset(void)
{
if (abs(value) < deadband) {
value = 0;
} else if (value > 0) {
value -= deadband;
} else if (value < 0) {
value += deadband;
}
return value;
accSum[0] = 0;
accSum[1] = 0;
accSum[2] = 0;
accSumCount = 0;
accTimeSum = 0;
}
// rotate acc into Earth frame and calculate acceleration in it
@ -259,15 +254,6 @@ void acc_calc(uint32_t deltaT)
accSumCount++;
}
void accSum_reset(void)
{
accSum[0] = 0;
accSum[1] = 0;
accSum[2] = 0;
accSumCount = 0;
accTimeSum = 0;
}
// baseflight calculation by Luggi09 originates from arducopter
static int16_t calculateHeading(t_fp_vector *vec)
{
@ -371,165 +357,3 @@ int16_t calculateThrottleAngleCorrection(uint8_t throttle_correction_value)
angle = 900;
return lrintf(throttle_correction_value * sinf(angle / (900.0f * M_PI / 2.0f)));
}
#if defined(BARO) || defined(SONAR)
// 40hz update rate (20hz LPF on acc)
#define BARO_UPDATE_FREQUENCY_40HZ (1000 * 25)
#define DEGREES_80_IN_DECIDEGREES 800
bool isThrustFacingDownwards(rollAndPitchInclination_t *inclination)
{
return abs(inclination->values.rollDeciDegrees) < DEGREES_80_IN_DECIDEGREES && abs(inclination->values.pitchDeciDegrees) < DEGREES_80_IN_DECIDEGREES;
}
int16_t calculateTiltAngle(rollAndPitchInclination_t *inclination)
{
return max(abs(inclination->values.rollDeciDegrees), abs(inclination->values.pitchDeciDegrees));
}
int32_t calculateBaroPid(int32_t vel_tmp, float accZ_tmp, float accZ_old)
{
uint32_t newBaroPID = 0;
int32_t error;
int32_t setVel;
if (!isThrustFacingDownwards(&inclination)) {
return newBaroPID;
}
// Altitude P-Controller
if (!velocityControl) {
error = constrain(AltHold - EstAlt, -500, 500);
error = applyDeadband(error, 10); // remove small P parameter to reduce noise near zero position
setVel = constrain((pidProfile->P8[PIDALT] * error / 128), -300, +300); // limit velocity to +/- 3 m/s
} else {
setVel = setVelocity;
}
// Velocity PID-Controller
// P
error = setVel - vel_tmp;
newBaroPID = constrain((pidProfile->P8[PIDVEL] * error / 32), -300, +300);
// I
errorVelocityI += (pidProfile->I8[PIDVEL] * error);
errorVelocityI = constrain(errorVelocityI, -(8192 * 200), (8192 * 200));
newBaroPID += errorVelocityI / 8192; // I in range +/-200
// D
newBaroPID -= constrain(pidProfile->D8[PIDVEL] * (accZ_tmp + accZ_old) / 512, -150, 150);
return newBaroPID;
}
void calculateEstimatedAltitude(uint32_t currentTime)
{
static uint32_t previousTime;
uint32_t dTime;
int32_t baroVel;
float dt;
float vel_acc;
int32_t vel_tmp;
float accZ_tmp;
static float accZ_old = 0.0f;
static float vel = 0.0f;
static float accAlt = 0.0f;
static int32_t lastBaroAlt;
static int32_t baroAlt_offset = 0;
float sonarTransition;
#ifdef SONAR
int16_t tiltAngle;
#endif
dTime = currentTime - previousTime;
if (dTime < BARO_UPDATE_FREQUENCY_40HZ)
return;
previousTime = currentTime;
#ifdef BARO
if (!isBaroCalibrationComplete()) {
performBaroCalibrationCycle();
vel = 0;
accAlt = 0;
}
BaroAlt = baroCalculateAltitude();
#else
BaroAlt = 0;
#endif
#ifdef SONAR
tiltAngle = calculateTiltAngle(&inclination);
sonarAlt = sonarCalculateAltitude(sonarAlt, tiltAngle);
#endif
if (sonarAlt > 0 && sonarAlt < 200) {
baroAlt_offset = BaroAlt - sonarAlt;
BaroAlt = sonarAlt;
} else {
BaroAlt -= baroAlt_offset;
if (sonarAlt > 0) {
sonarTransition = (300 - sonarAlt) / 100.0f;
BaroAlt = sonarAlt * sonarTransition + BaroAlt * (1.0f - sonarTransition);
}
}
dt = accTimeSum * 1e-6f; // delta acc reading time in seconds
// Integrator - velocity, cm/sec
accZ_tmp = (float)accSum[2] / (float)accSumCount;
vel_acc = accZ_tmp * accVelScale * (float)accTimeSum;
// Integrator - Altitude in cm
accAlt += (vel_acc * 0.5f) * dt + vel * dt; // integrate velocity to get distance (x= a/2 * t^2)
accAlt = accAlt * barometerConfig->baro_cf_alt + (float)BaroAlt * (1.0f - barometerConfig->baro_cf_alt); // complementary filter for altitude estimation (baro & acc)
vel += vel_acc;
#if 0
debug[1] = accSum[2] / accSumCount; // acceleration
debug[2] = vel; // velocity
debug[3] = accAlt; // height
#endif
accSum_reset();
#ifdef BARO
if (!isBaroCalibrationComplete()) {
return;
}
#endif
if (sonarAlt > 0 && sonarAlt < 200) {
// the sonar has the best range
EstAlt = BaroAlt;
} else {
EstAlt = accAlt;
}
baroVel = (BaroAlt - lastBaroAlt) * 1000000.0f / dTime;
lastBaroAlt = BaroAlt;
baroVel = constrain(baroVel, -1500, 1500); // constrain baro velocity +/- 1500cm/s
baroVel = applyDeadband(baroVel, 10); // to reduce noise near zero
// apply Complimentary Filter to keep the calculated velocity based on baro velocity (i.e. near real velocity).
// By using CF it's possible to correct the drift of integrated accZ (velocity) without loosing the phase, i.e without delay
vel = vel * barometerConfig->baro_cf_vel + baroVel * (1.0f - barometerConfig->baro_cf_vel);
vel_tmp = lrintf(vel);
// set vario
vario = applyDeadband(vel_tmp, 5);
BaroPID = calculateBaroPid(vel_tmp, accZ_tmp, accZ_old);
accZ_old = accZ_tmp;
}
#endif /* BARO */