1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-18 22:05:17 +03:00

Further work on making gyro reentrant

This commit is contained in:
Martin Budden 2017-02-15 07:07:51 +00:00
parent c39ab90bc6
commit e1ffd34d8f

View file

@ -74,7 +74,13 @@ gyro_t gyro;
STATIC_UNIT_TESTED gyroDev_t gyroDev0;
static int16_t gyroTemperature0;
static uint16_t calibratingG = 0;
typedef struct gyroCalibration_s {
int32_t g[XYZ_AXIS_COUNT];
stdev_t var[XYZ_AXIS_COUNT];
uint16_t calibratingG;
} gyroCalibration_t;
STATIC_UNIT_TESTED gyroCalibration_t gyroCalibration;
static filterApplyFnPtr softLpfFilterApplyFn;
static void *softLpfFilter[3];
@ -416,12 +422,12 @@ void gyroInitFilters(void)
bool isGyroCalibrationComplete(void)
{
return calibratingG == 0;
return gyroCalibration.calibratingG == 0;
}
static bool isOnFinalGyroCalibrationCycle(void)
static bool isOnFinalGyroCalibrationCycle(const gyroCalibration_t *gyroCalibration)
{
return calibratingG == 1;
return gyroCalibration->calibratingG == 1;
}
static uint16_t gyroCalculateCalibratingCycles(void)
@ -429,56 +435,52 @@ static uint16_t gyroCalculateCalibratingCycles(void)
return (CALIBRATING_GYRO_CYCLES / gyro.targetLooptime) * CALIBRATING_GYRO_CYCLES;
}
static bool isOnFirstGyroCalibrationCycle(void)
static bool isOnFirstGyroCalibrationCycle(const gyroCalibration_t *gyroCalibration)
{
return calibratingG == gyroCalculateCalibratingCycles();
return gyroCalibration->calibratingG == gyroCalculateCalibratingCycles();
}
void gyroSetCalibrationCycles(void)
{
calibratingG = gyroCalculateCalibratingCycles();
gyroCalibration.calibratingG = gyroCalculateCalibratingCycles();
}
STATIC_UNIT_TESTED void performGyroCalibration(gyroDev_t *gyroDev, uint8_t gyroMovementCalibrationThreshold)
STATIC_UNIT_TESTED void performGyroCalibration(gyroDev_t *gyroDev, gyroCalibration_t *gyroCalibration, uint8_t gyroMovementCalibrationThreshold)
{
static int32_t g[3];
static stdev_t var[3];
for (int axis = 0; axis < 3; axis++) {
// Reset g[axis] at start of calibration
if (isOnFirstGyroCalibrationCycle()) {
g[axis] = 0;
devClear(&var[axis]);
if (isOnFirstGyroCalibrationCycle(gyroCalibration)) {
gyroCalibration->g[axis] = 0;
devClear(&gyroCalibration->var[axis]);
}
// Sum up CALIBRATING_GYRO_CYCLES readings
g[axis] += gyroDev->gyroADC[axis];
devPush(&var[axis], gyroDev->gyroADC[axis]);
gyroCalibration->g[axis] += gyroDev->gyroADC[axis];
devPush(&gyroCalibration->var[axis], gyroDev->gyroADC[axis]);
// Reset global variables to prevent other code from using un-calibrated data
gyroDev->gyroADC[axis] = 0;
gyroDev->gyroZero[axis] = 0;
if (isOnFinalGyroCalibrationCycle()) {
const float dev = devStandardDeviation(&var[axis]);
if (isOnFinalGyroCalibrationCycle(gyroCalibration)) {
const float stddev = devStandardDeviation(&gyroCalibration->var[axis]);
DEBUG_SET(DEBUG_GYRO, DEBUG_GYRO_CALIBRATION, lrintf(dev));
DEBUG_SET(DEBUG_GYRO, DEBUG_GYRO_CALIBRATION, lrintf(stddev));
// check deviation and startover in case the model was moved
if (gyroMovementCalibrationThreshold && dev > gyroMovementCalibrationThreshold) {
if (gyroMovementCalibrationThreshold && stddev > gyroMovementCalibrationThreshold) {
gyroSetCalibrationCycles();
return;
}
gyroDev->gyroZero[axis] = (g[axis] + (gyroCalculateCalibratingCycles() / 2)) / gyroCalculateCalibratingCycles();
gyroDev->gyroZero[axis] = (gyroCalibration->g[axis] + (gyroCalculateCalibratingCycles() / 2)) / gyroCalculateCalibratingCycles();
}
}
if (isOnFinalGyroCalibrationCycle()) {
if (isOnFinalGyroCalibrationCycle(gyroCalibration)) {
schedulerResetTaskStatistics(TASK_SELF); // so calibration cycles do not pollute tasks statistics
beeper(BEEPER_GYRO_CALIBRATED);
}
calibratingG--;
gyroCalibration->calibratingG--;
}
@ -493,14 +495,13 @@ static bool gyroUpdateISR(gyroDev_t* gyroDev)
#endif
gyroDev->dataReady = false;
// move gyro data into 32-bit variables to avoid overflows in calculations
gyroDev->gyroADC[X] = gyroDev->gyroADCRaw[X];
gyroDev->gyroADC[Y] = gyroDev->gyroADCRaw[Y];
gyroDev->gyroADC[Z] = gyroDev->gyroADCRaw[Z];
gyroDev->gyroADC[X] = (int32_t)gyroDev->gyroADCRaw[X] - (int32_t)gyroDev->gyroZero[X];
gyroDev->gyroADC[Y] = (int32_t)gyroDev->gyroADCRaw[Y] - (int32_t)gyroDev->gyroZero[Y];
gyroDev->gyroADC[Z] = (int32_t)gyroDev->gyroADCRaw[Z] - (int32_t)gyroDev->gyroZero[Z];
alignSensors(gyroDev->gyroADC, gyroDev->gyroAlign);
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
gyroDev->gyroADC[axis] -= gyroDev->gyroZero[axis];
// scale gyro output to degrees per second
float gyroADCf = (float)gyroDev->gyroADC[axis] * gyroDev->scale;
gyroADCf = softLpfFilterApplyFn(softLpfFilter[axis], gyroADCf);
@ -527,9 +528,9 @@ void gyroUpdate(void)
}
gyroDev0.dataReady = false;
// move gyro data into 32-bit variables to avoid overflows in calculations
gyroDev0.gyroADC[X] = gyroDev0.gyroADCRaw[X];
gyroDev0.gyroADC[Y] = gyroDev0.gyroADCRaw[Y];
gyroDev0.gyroADC[Z] = gyroDev0.gyroADCRaw[Z];
gyroDev0.gyroADC[X] = (int32_t)gyroDev0.gyroADCRaw[X] - (int32_t)gyroDev0.gyroZero[X];
gyroDev0.gyroADC[Y] = (int32_t)gyroDev0.gyroADCRaw[Y] - (int32_t)gyroDev0.gyroZero[Y];
gyroDev0.gyroADC[Z] = (int32_t)gyroDev0.gyroADCRaw[Z] - (int32_t)gyroDev0.gyroZero[Z];
alignSensors(gyroDev0.gyroADC, gyroDev0.gyroAlign);
@ -546,11 +547,10 @@ void gyroUpdate(void)
debug[3] = (uint16_t)(micros() & 0xffff);
#endif
} else {
performGyroCalibration(&gyroDev0, gyroConfig()->gyroMovementCalibrationThreshold);
performGyroCalibration(&gyroDev0, &gyroCalibration, gyroConfig()->gyroMovementCalibrationThreshold);
}
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
gyroDev0.gyroADC[axis] -= gyroDev0.gyroZero[axis];
// scale gyro output to degrees per second
float gyroADCf = (float)gyroDev0.gyroADC[axis] * gyroDev0.scale;