1
0
Fork 0
mirror of https://github.com/betaflight/betaflight.git synced 2025-07-25 17:25:20 +03:00

Added hooks for gyro data analysis

This commit is contained in:
Martin Budden 2017-02-23 09:23:54 +00:00
parent 2d5d608095
commit ea2ec8b069
11 changed files with 143 additions and 30 deletions

View file

@ -62,6 +62,7 @@
#include "sensors/boardalignment.h"
#include "sensors/gyro.h"
#include "sensors/gyroanalyse.h"
#include "sensors/sensors.h"
#ifdef USE_HARDWARE_REVISION_DETECTION
@ -73,9 +74,6 @@ gyro_t gyro;
STATIC_UNIT_TESTED gyroDev_t gyroDev0;
static int16_t gyroTemperature0;
static int32_t gyroADC[XYZ_AXIS_COUNT];
STATIC_UNIT_TESTED int32_t gyroZero[XYZ_AXIS_COUNT] = { 0, 0, 0 };
static uint16_t calibratingG = 0;
static filterApplyFnPtr softLpfFilterApplyFn;
@ -371,6 +369,9 @@ void gyroInitFilters(void)
biquadFilterInit(notchFilter2[axis], gyroConfig()->gyro_soft_notch_hz_2, gyro.targetLooptime, gyroSoftNotchQ2, FILTER_NOTCH);
}
}
#ifdef USE_GYRO_DATA_ANALYSE
gyroDataAnalyseInit();
#endif
}
bool isGyroCalibrationComplete(void)
@ -398,7 +399,7 @@ void gyroSetCalibrationCycles(void)
calibratingG = gyroCalculateCalibratingCycles();
}
STATIC_UNIT_TESTED void performGyroCalibration(uint8_t gyroMovementCalibrationThreshold)
STATIC_UNIT_TESTED void performGyroCalibration(gyroDev_t *gyroDev, uint8_t gyroMovementCalibrationThreshold)
{
static int32_t g[3];
static stdev_t var[3];
@ -412,15 +413,15 @@ STATIC_UNIT_TESTED void performGyroCalibration(uint8_t gyroMovementCalibrationTh
}
// Sum up CALIBRATING_GYRO_CYCLES readings
g[axis] += gyroADC[axis];
devPush(&var[axis], gyroADC[axis]);
g[axis] += gyroDev->gyroADC[axis];
devPush(&var[axis], gyroDev->gyroADC[axis]);
// Reset global variables to prevent other code from using un-calibrated data
gyroADC[axis] = 0;
gyroZero[axis] = 0;
gyroDev->gyroADC[axis] = 0;
gyroDev->gyroZero[axis] = 0;
if (isOnFinalGyroCalibrationCycle()) {
float dev = devStandardDeviation(&var[axis]);
const float dev = devStandardDeviation(&var[axis]);
DEBUG_SET(DEBUG_GYRO, DEBUG_GYRO_CALIBRATION, lrintf(dev));
@ -429,7 +430,7 @@ STATIC_UNIT_TESTED void performGyroCalibration(uint8_t gyroMovementCalibrationTh
gyroSetCalibrationCycles();
return;
}
gyroZero[axis] = (g[axis] + (gyroCalculateCalibratingCycles() / 2)) / gyroCalculateCalibratingCycles();
gyroDev->gyroZero[axis] = (g[axis] + (gyroCalculateCalibratingCycles() / 2)) / gyroCalculateCalibratingCycles();
}
}
@ -452,16 +453,16 @@ static bool gyroUpdateISR(gyroDev_t* gyroDev)
#endif
gyroDev->dataReady = false;
// move gyro data into 32-bit variables to avoid overflows in calculations
gyroADC[X] = gyroDev->gyroADCRaw[X];
gyroADC[Y] = gyroDev->gyroADCRaw[Y];
gyroADC[Z] = gyroDev->gyroADCRaw[Z];
gyroDev->gyroADC[X] = gyroDev->gyroADCRaw[X];
gyroDev->gyroADC[Y] = gyroDev->gyroADCRaw[Y];
gyroDev->gyroADC[Z] = gyroDev->gyroADCRaw[Z];
alignSensors(gyroADC, gyroDev->gyroAlign);
alignSensors(gyroDev->gyroADC, gyroDev->gyroAlign);
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
gyroADC[axis] -= gyroZero[axis];
gyroDev->gyroADC[axis] -= gyroDev->gyroZero[axis];
// scale gyro output to degrees per second
float gyroADCf = (float)gyroADC[axis] * gyroDev->scale;
float gyroADCf = (float)gyroDev->gyroADC[axis] * gyroDev->scale;
gyroADCf = softLpfFilterApplyFn(softLpfFilter[axis], gyroADCf);
gyroADCf = notchFilter1ApplyFn(notchFilter1[axis], gyroADCf);
gyroADCf = notchFilter2ApplyFn(notchFilter2[axis], gyroADCf);
@ -483,11 +484,11 @@ void gyroUpdate(void)
}
gyroDev0.dataReady = false;
// move gyro data into 32-bit variables to avoid overflows in calculations
gyroADC[X] = gyroDev0.gyroADCRaw[X];
gyroADC[Y] = gyroDev0.gyroADCRaw[Y];
gyroADC[Z] = gyroDev0.gyroADCRaw[Z];
gyroDev0.gyroADC[X] = gyroDev0.gyroADCRaw[X];
gyroDev0.gyroADC[Y] = gyroDev0.gyroADCRaw[Y];
gyroDev0.gyroADC[Z] = gyroDev0.gyroADCRaw[Z];
alignSensors(gyroADC, gyroDev0.gyroAlign);
alignSensors(gyroDev0.gyroADC, gyroDev0.gyroAlign);
const bool calibrationComplete = isGyroCalibrationComplete();
if (calibrationComplete) {
@ -502,13 +503,13 @@ void gyroUpdate(void)
debug[3] = (uint16_t)(micros() & 0xffff);
#endif
} else {
performGyroCalibration(gyroConfig()->gyroMovementCalibrationThreshold);
performGyroCalibration(&gyroDev0, gyroConfig()->gyroMovementCalibrationThreshold);
}
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
gyroADC[axis] -= gyroZero[axis];
gyroDev0.gyroADC[axis] -= gyroDev0.gyroZero[axis];
// scale gyro output to degrees per second
float gyroADCf = (float)gyroADC[axis] * gyroDev0.scale;
float gyroADCf = (float)gyroDev0.gyroADC[axis] * gyroDev0.scale;
// Apply LPF
DEBUG_SET(DEBUG_GYRO, axis, lrintf(gyroADCf));
@ -522,10 +523,13 @@ void gyroUpdate(void)
}
if (!calibrationComplete) {
gyroADC[X] = lrintf(gyro.gyroADCf[X] / gyroDev0.scale);
gyroADC[Y] = lrintf(gyro.gyroADCf[Y] / gyroDev0.scale);
gyroADC[Z] = lrintf(gyro.gyroADCf[Z] / gyroDev0.scale);
gyroDev0.gyroADC[X] = lrintf(gyro.gyroADCf[X] / gyroDev0.scale);
gyroDev0.gyroADC[Y] = lrintf(gyro.gyroADCf[Y] / gyroDev0.scale);
gyroDev0.gyroADC[Z] = lrintf(gyro.gyroADCf[Z] / gyroDev0.scale);
}
#ifdef USE_GYRO_DATA_ANALYSE
gyroDataAnalyse(&gyroDev0, &gyro);
#endif
}
void gyroReadTemperature(void)