mirror of
https://github.com/betaflight/betaflight.git
synced 2025-07-18 05:45:31 +03:00
gyro sensors/debug: standardize gyro debugging enum elements
* will require coordination with BFC of course. * rationale: previously `DEBUG_GYRO_NOTCH` debugging was used to grab the scaled, unfiltered gyro readings, prior to the FFT running. This has been updated to `DEBUG_GYRO_SCALED`. similarly, `DEBUG_GYRO` debugging was used to record the filtered gyro. This is updated to `GYRO_FILTERED`. interestingly, `DEBUG_GYRO` was also used for movement threshold calibration. This has been updated to be `DEBUG_GYRO_CALIBRATION` and also now stores per-axis standard deviation. Application of filter position moved slightly for logical grouping, has no effect due to LTI.
This commit is contained in:
parent
de22f87a6d
commit
f2cc9acc1f
2 changed files with 13 additions and 18 deletions
|
@ -52,10 +52,10 @@ typedef enum {
|
||||||
DEBUG_NONE,
|
DEBUG_NONE,
|
||||||
DEBUG_CYCLETIME,
|
DEBUG_CYCLETIME,
|
||||||
DEBUG_BATTERY,
|
DEBUG_BATTERY,
|
||||||
DEBUG_GYRO,
|
DEBUG_GYRO_FILTERED,
|
||||||
DEBUG_ACCELEROMETER,
|
DEBUG_ACCELEROMETER,
|
||||||
DEBUG_PIDLOOP,
|
DEBUG_PIDLOOP,
|
||||||
DEBUG_GYRO_NOTCH,
|
DEBUG_GYRO_SCALED,
|
||||||
DEBUG_RC_INTERPOLATION,
|
DEBUG_RC_INTERPOLATION,
|
||||||
DEBUG_ANGLERATE,
|
DEBUG_ANGLERATE,
|
||||||
DEBUG_ESC_SENSOR,
|
DEBUG_ESC_SENSOR,
|
||||||
|
|
|
@ -520,9 +520,9 @@ bool gyroInit(void)
|
||||||
|
|
||||||
switch (debugMode) {
|
switch (debugMode) {
|
||||||
case DEBUG_FFT:
|
case DEBUG_FFT:
|
||||||
case DEBUG_GYRO_NOTCH:
|
|
||||||
case DEBUG_GYRO:
|
|
||||||
case DEBUG_GYRO_RAW:
|
case DEBUG_GYRO_RAW:
|
||||||
|
case DEBUG_GYRO_SCALED:
|
||||||
|
case DEBUG_GYRO_FILTERED:
|
||||||
gyroDebugMode = debugMode;
|
gyroDebugMode = debugMode;
|
||||||
break;
|
break;
|
||||||
default:
|
default:
|
||||||
|
@ -864,8 +864,8 @@ STATIC_UNIT_TESTED void performGyroCalibration(gyroSensor_t *gyroSensor, uint8_t
|
||||||
|
|
||||||
if (isOnFinalGyroCalibrationCycle(&gyroSensor->calibration)) {
|
if (isOnFinalGyroCalibrationCycle(&gyroSensor->calibration)) {
|
||||||
const float stddev = devStandardDeviation(&gyroSensor->calibration.var[axis]);
|
const float stddev = devStandardDeviation(&gyroSensor->calibration.var[axis]);
|
||||||
|
// DEBUG_GYRO_CALIBRATION records per-axis standard deviation
|
||||||
DEBUG_SET(DEBUG_GYRO, DEBUG_GYRO_CALIBRATION, lrintf(stddev));
|
DEBUG_SET(DEBUG_GYRO_CALIBRATION, axis, lrintf(stddev));
|
||||||
|
|
||||||
// check deviation and startover in case the model was moved
|
// check deviation and startover in case the model was moved
|
||||||
if (gyroMovementCalibrationThreshold && stddev > gyroMovementCalibrationThreshold) {
|
if (gyroMovementCalibrationThreshold && stddev > gyroMovementCalibrationThreshold) {
|
||||||
|
@ -1054,14 +1054,13 @@ static FAST_CODE FAST_CODE_NOINLINE void gyroUpdateSensor(gyroSensor_t *gyroSens
|
||||||
// NOTE: this branch optimized for when there is no gyro debugging, ensure it is kept in step with non-optimized branch
|
// NOTE: this branch optimized for when there is no gyro debugging, ensure it is kept in step with non-optimized branch
|
||||||
float gyroADCf = gyroSensor->gyroDev.gyroADC[axis] * gyroSensor->gyroDev.scale;
|
float gyroADCf = gyroSensor->gyroDev.gyroADC[axis] * gyroSensor->gyroDev.scale;
|
||||||
|
|
||||||
gyroADCf = gyroSensor->lowpass2FilterApplyFn((filter_t *)&gyroSensor->lowpass2Filter[axis], gyroADCf);
|
|
||||||
|
|
||||||
#ifdef USE_GYRO_DATA_ANALYSE
|
#ifdef USE_GYRO_DATA_ANALYSE
|
||||||
gyroADCf = gyroSensor->notchFilterDynApplyFn((filter_t *)&gyroSensor->notchFilterDyn[axis], gyroADCf);
|
gyroADCf = gyroSensor->notchFilterDynApplyFn((filter_t *)&gyroSensor->notchFilterDyn[axis], gyroADCf);
|
||||||
#endif
|
#endif
|
||||||
gyroADCf = gyroSensor->notchFilter1ApplyFn((filter_t *)&gyroSensor->notchFilter1[axis], gyroADCf);
|
gyroADCf = gyroSensor->notchFilter1ApplyFn((filter_t *)&gyroSensor->notchFilter1[axis], gyroADCf);
|
||||||
gyroADCf = gyroSensor->notchFilter2ApplyFn((filter_t *)&gyroSensor->notchFilter2[axis], gyroADCf);
|
gyroADCf = gyroSensor->notchFilter2ApplyFn((filter_t *)&gyroSensor->notchFilter2[axis], gyroADCf);
|
||||||
gyroADCf = gyroSensor->lowpassFilterApplyFn((filter_t *)&gyroSensor->lowpassFilter[axis], gyroADCf);
|
gyroADCf = gyroSensor->lowpassFilterApplyFn((filter_t *)&gyroSensor->lowpassFilter[axis], gyroADCf);
|
||||||
|
gyroADCf = gyroSensor->lowpass2FilterApplyFn((filter_t *)&gyroSensor->lowpass2Filter[axis], gyroADCf);
|
||||||
gyroSensor->gyroDev.gyroADCf[axis] = gyroADCf;
|
gyroSensor->gyroDev.gyroADCf[axis] = gyroADCf;
|
||||||
|
|
||||||
if (!gyroSensor->overflowDetected) {
|
if (!gyroSensor->overflowDetected) {
|
||||||
|
@ -1075,11 +1074,8 @@ static FAST_CODE FAST_CODE_NOINLINE void gyroUpdateSensor(gyroSensor_t *gyroSens
|
||||||
DEBUG_SET(DEBUG_GYRO_RAW, axis, gyroSensor->gyroDev.gyroADCRaw[axis]);
|
DEBUG_SET(DEBUG_GYRO_RAW, axis, gyroSensor->gyroDev.gyroADCRaw[axis]);
|
||||||
// scale gyro output to degrees per second
|
// scale gyro output to degrees per second
|
||||||
float gyroADCf = gyroSensor->gyroDev.gyroADC[axis] * gyroSensor->gyroDev.scale;
|
float gyroADCf = gyroSensor->gyroDev.gyroADC[axis] * gyroSensor->gyroDev.scale;
|
||||||
// DEBUG_GYRO_NOTCH records the unfiltered gyro output
|
// DEBUG_GYRO_SCALED records the unfiltered, scaled gyro output
|
||||||
DEBUG_SET(DEBUG_GYRO_NOTCH, axis, lrintf(gyroADCf));
|
DEBUG_SET(DEBUG_GYRO_SCALED, axis, lrintf(gyroADCf));
|
||||||
|
|
||||||
// apply lowpass2 filter
|
|
||||||
gyroADCf = gyroSensor->lowpass2FilterApplyFn((filter_t *)&gyroSensor->lowpass2Filter[axis], gyroADCf);
|
|
||||||
|
|
||||||
#ifdef USE_GYRO_DATA_ANALYSE
|
#ifdef USE_GYRO_DATA_ANALYSE
|
||||||
// apply dynamic notch filter
|
// apply dynamic notch filter
|
||||||
|
@ -1093,14 +1089,13 @@ static FAST_CODE FAST_CODE_NOINLINE void gyroUpdateSensor(gyroSensor_t *gyroSens
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
// apply static notch filters and software lowpass filters
|
||||||
// apply static notch filters
|
|
||||||
gyroADCf = gyroSensor->notchFilter1ApplyFn((filter_t *)&gyroSensor->notchFilter1[axis], gyroADCf);
|
gyroADCf = gyroSensor->notchFilter1ApplyFn((filter_t *)&gyroSensor->notchFilter1[axis], gyroADCf);
|
||||||
gyroADCf = gyroSensor->notchFilter2ApplyFn((filter_t *)&gyroSensor->notchFilter2[axis], gyroADCf);
|
gyroADCf = gyroSensor->notchFilter2ApplyFn((filter_t *)&gyroSensor->notchFilter2[axis], gyroADCf);
|
||||||
|
|
||||||
// apply lowpass2 filter
|
|
||||||
DEBUG_SET(DEBUG_GYRO, axis, lrintf(gyroADCf));
|
|
||||||
gyroADCf = gyroSensor->lowpassFilterApplyFn((filter_t *)&gyroSensor->lowpassFilter[axis], gyroADCf);
|
gyroADCf = gyroSensor->lowpassFilterApplyFn((filter_t *)&gyroSensor->lowpassFilter[axis], gyroADCf);
|
||||||
|
gyroADCf = gyroSensor->lowpass2FilterApplyFn((filter_t *)&gyroSensor->lowpass2Filter[axis], gyroADCf);
|
||||||
|
// DEBUG_GYRO_FILTERED records the scaled, filtered, after all software filtering has been applied.
|
||||||
|
DEBUG_SET(DEBUG_GYRO_FILTERED, axis, lrintf(gyroADCf));
|
||||||
|
|
||||||
gyroSensor->gyroDev.gyroADCf[axis] = gyroADCf;
|
gyroSensor->gyroDev.gyroADCf[axis] = gyroADCf;
|
||||||
if (!gyroSensor->overflowDetected) {
|
if (!gyroSensor->overflowDetected) {
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue