/* * The MIT License (MIT) * * Copyright (c) 2019 Ha Thach (tinyusb.org) * Copyright (c) 2023 HiFiPhile * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "stm32c0xx_hal.h" #include "bsp/board_api.h" #include "board.h" //--------------------------------------------------------------------+ // Forward USB interrupt events to TinyUSB IRQ Handler //--------------------------------------------------------------------+ void USB_DRD_FS_IRQHandler(void) { tud_int_handler(0); } // Startup code generated by STM32CubeIDE uses USB_IRQHandler, while // stm32c071xx.s from cmsis_device_c0 uses USB_DRD_FS_IRQHandler. void USB_IRQHandler(void) { USB_DRD_FS_IRQHandler(); } //--------------------------------------------------------------------+ // MACRO TYPEDEF CONSTANT ENUM //--------------------------------------------------------------------+ UART_HandleTypeDef UartHandle; void board_init(void) { HAL_Init(); // Enable the HSIUSB48 48 MHz oscillator. RCC->CR |= RCC_CR_HSIUSB48ON; // Wait for HSIUSB48 to be ready. while (!(RCC->CR & RCC_CR_HSIUSB48RDY)) { } // Change the SYSCLK source to HSIUSB48. RCC->CFGR = (RCC->CFGR & ~RCC_CFGR_SW) | RCC_SYSCLKSOURCE_HSIUSB48; // Wait for the SYSCLK source to change. while ((RCC->CFGR & RCC_CFGR_SWS) >> RCC_CFGR_SWS_Pos != RCC_SYSCLKSOURCE_HSIUSB48) { } // Disable HSI48 to save power. RCC->CR &= ~RCC_CR_HSION; // Enable peripheral clocks. RCC->APBENR1 = RCC_APBENR1_USBEN | RCC_APBENR1_CRSEN | RCC_APBENR1_USART2EN; RCC->APBENR2 = RCC_APBENR2_USART1EN; // Enable all GPIO clocks. RCC->IOPENR = 0x2F; // Turn on CRS to make the HSIUSB48 clock more precise when USB is connected. CRS->CR |= CRS_CR_AUTOTRIMEN | CRS_CR_CEN; #if CFG_TUSB_OS == OPT_OS_NONE // 1ms tick timer SysTick_Config(SystemCoreClock / 1000); #elif CFG_TUSB_OS == OPT_OS_FREERTOS // Explicitly disable systick to prevent its ISR runs before scheduler start SysTick->CTRL &= ~1U; // If freeRTOS is used, IRQ priority is limit by max syscall ( smaller is higher ) NVIC_SetPriority(USB_DRD_FS_IRQn, configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY); #endif // LED { GPIO_InitTypeDef gpio_init = { 0 }; gpio_init.Pin = LED_PIN; gpio_init.Mode = GPIO_MODE_OUTPUT_PP; HAL_GPIO_Init(LED_PORT, &gpio_init); board_led_write(false); } // Button { GPIO_InitTypeDef gpio_init = { 0 }; gpio_init.Pin = BUTTON_PIN; gpio_init.Mode = GPIO_MODE_INPUT; gpio_init.Pull = BUTTON_STATE_ACTIVE ? GPIO_PULLDOWN : GPIO_PULLUP; HAL_GPIO_Init(BUTTON_PORT, &gpio_init); } #ifdef UART_DEV // UART { GPIO_InitTypeDef gpio_init = { 0 }; gpio_init.Pin = UART_TX_PIN | UART_RX_PIN; gpio_init.Mode = GPIO_MODE_AF_PP; gpio_init.Pull = GPIO_PULLUP; gpio_init.Speed = GPIO_SPEED_FREQ_HIGH; gpio_init.Alternate = UART_GPIO_AF; HAL_GPIO_Init(UART_GPIO_PORT, &gpio_init); } UartHandle = (UART_HandleTypeDef){ .Instance = UART_DEV, .Init.BaudRate = CFG_BOARD_UART_BAUDRATE, .Init.WordLength = UART_WORDLENGTH_8B, .Init.StopBits = UART_STOPBITS_1, .Init.Parity = UART_PARITY_NONE, .Init.HwFlowCtl = UART_HWCONTROL_NONE, .Init.Mode = UART_MODE_TX_RX, .Init.OverSampling = UART_OVERSAMPLING_16, .AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT }; HAL_UART_Init(&UartHandle); #endif } //--------------------------------------------------------------------+ // Board porting API //--------------------------------------------------------------------+ void board_led_write(bool state) { GPIO_PinState pin_state = (GPIO_PinState)(state ? LED_STATE_ON : (1 - LED_STATE_ON)); HAL_GPIO_WritePin(LED_PORT, LED_PIN, pin_state); } uint32_t board_button_read(void) { return BUTTON_STATE_ACTIVE == HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN); } size_t board_get_unique_id(uint8_t id[], size_t max_len) { (void) max_len; volatile uint32_t * stm32_uuid = (volatile uint32_t *) UID_BASE; uint32_t* id32 = (uint32_t*) (uintptr_t) id; uint8_t const len = 12; id32[0] = stm32_uuid[0]; id32[1] = stm32_uuid[1]; id32[2] = stm32_uuid[2]; return len; } int board_uart_read(uint8_t *buf, int len) { (void) buf; (void) len; return 0; } int board_uart_write(void const *buf, int len) { #ifdef UART_DEV HAL_UART_Transmit(&UartHandle, (uint8_t*)(uintptr_t) buf, len, 0xffff); return len; #else (void) buf; (void) len; (void) UartHandle; return 0; #endif } #if CFG_TUSB_OS == OPT_OS_NONE volatile uint32_t system_ticks = 0; void SysTick_Handler(void) { system_ticks++; HAL_IncTick(); } uint32_t board_millis(void) { return system_ticks; } #endif void HardFault_Handler(void) { __asm("BKPT #0\n"); } // Required by __libc_init_array in startup code if we are compiling using // -nostdlib/-nostartfiles. void _init(void) { }