/* * This file is part of Cleanflight. * * Cleanflight is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Cleanflight is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Cleanflight. If not, see . */ #include #include #include #include #ifndef SKIP_PID_FLOAT #include "build/build_config.h" #include "build/debug.h" #include "common/axis.h" #include "common/maths.h" #include "common/filter.h" #include "drivers/sensor.h" #include "drivers/accgyro.h" #include "sensors/sensors.h" #include "sensors/gyro.h" #include "sensors/acceleration.h" #include "rx/rx.h" #include "io/gps.h" #include "fc/rc_controls.h" #include "fc/runtime_config.h" #include "flight/pid.h" #include "flight/imu.h" #include "flight/navigation.h" #include "flight/gtune.h" extern float rcInput[3]; extern float setpointRate[3], ptermSetpointRate[3]; extern float errorGyroIf[3]; extern bool pidStabilisationEnabled; extern pt1Filter_t deltaFilter[3]; extern pt1Filter_t yawFilter; extern biquadFilter_t dtermFilterLpf[3]; extern biquadFilter_t dtermFilterNotch[3]; extern bool dtermNotchInitialised; extern bool dtermBiquadLpfInitialised; void initFilters(const pidProfile_t *pidProfile); float getdT(void); // Betaflight pid controller, which will be maintained in the future with additional features specialised for current (mini) multirotor usage. // Based on 2DOF reference design (matlab) void pidBetaflight(const pidProfile_t *pidProfile, uint16_t max_angle_inclination, const rollAndPitchTrims_t *angleTrim, const rxConfig_t *rxConfig) { float errorRate = 0, rP = 0, rD = 0, PVRate = 0; float ITerm,PTerm,DTerm; static float lastRateError[2]; static float Kp[3], Ki[3], Kd[3], c[3], rollPitchMaxVelocity, yawMaxVelocity, previousSetpoint[3]; float delta; int axis; float horizonLevelStrength = 1; float tpaFactor = PIDweight[0] / 100.0f; // tpa is now float initFilters(pidProfile); if (FLIGHT_MODE(HORIZON_MODE)) { // Figure out the raw stick positions const int32_t stickPosAil = ABS(getRcStickDeflection(FD_ROLL, rxConfig->midrc)); const int32_t stickPosEle = ABS(getRcStickDeflection(FD_PITCH, rxConfig->midrc)); const int32_t mostDeflectedPos = MAX(stickPosAil, stickPosEle); // Progressively turn off the horizon self level strength as the stick is banged over horizonLevelStrength = (float)(500 - mostDeflectedPos) / 500; // 1 at centre stick, 0 = max stick deflection if(pidProfile->D8[PIDLEVEL] == 0){ horizonLevelStrength = 0; } else { horizonLevelStrength = constrainf(((horizonLevelStrength - 1) * (100 / pidProfile->D8[PIDLEVEL])) + 1, 0, 1); } } // Yet Highly experimental and under test and development // Throttle coupled to Igain like inverted TPA // 50hz calculation (should cover all rx protocols) static float kiThrottleGain = 1.0f; if (pidProfile->itermThrottleGain) { const uint16_t maxLoopCount = 20000 / targetPidLooptime; const float throttleItermGain = (float)pidProfile->itermThrottleGain * 0.001f; static int16_t previousThrottle; static uint16_t loopIncrement; if (loopIncrement >= maxLoopCount) { kiThrottleGain = 1.0f + constrainf((float)(ABS(rcCommand[THROTTLE] - previousThrottle)) * throttleItermGain, 0.0f, 5.0f); // Limit to factor 5 previousThrottle = rcCommand[THROTTLE]; loopIncrement = 0; } else { loopIncrement++; } } // ----------PID controller---------- for (axis = 0; axis < 3; axis++) { static uint8_t configP[3], configI[3], configD[3]; // Prevent unnecessary computing and check for changed PIDs. No need for individual checks. Only pids is fine for now // Prepare all parameters for PID controller if ((pidProfile->P8[axis] != configP[axis]) || (pidProfile->I8[axis] != configI[axis]) || (pidProfile->D8[axis] != configD[axis])) { Kp[axis] = PTERM_SCALE * pidProfile->P8[axis]; Ki[axis] = ITERM_SCALE * pidProfile->I8[axis]; Kd[axis] = DTERM_SCALE * pidProfile->D8[axis]; c[axis] = pidProfile->dtermSetpointWeight / 100.0f; yawMaxVelocity = pidProfile->yawRateAccelLimit * 1000 * getdT(); rollPitchMaxVelocity = pidProfile->rateAccelLimit * 1000 * getdT(); configP[axis] = pidProfile->P8[axis]; configI[axis] = pidProfile->I8[axis]; configD[axis] = pidProfile->D8[axis]; } // Limit abrupt yaw inputs / stops float maxVelocity = (axis == YAW) ? yawMaxVelocity : rollPitchMaxVelocity; if (maxVelocity) { float currentVelocity = setpointRate[axis] - previousSetpoint[axis]; if (ABS(currentVelocity) > maxVelocity) { setpointRate[axis] = (currentVelocity > 0) ? previousSetpoint[axis] + maxVelocity : previousSetpoint[axis] - maxVelocity; } previousSetpoint[axis] = setpointRate[axis]; } // Yaw control is GYRO based, direct sticks control is applied to rate PID if ((FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) && axis != YAW) { // calculate error angle and limit the angle to the max inclination #ifdef GPS const float errorAngle = (constrain(2 * rcCommand[axis] + GPS_angle[axis], -((int) max_angle_inclination), +max_angle_inclination) - attitude.raw[axis] + angleTrim->raw[axis]) / 10.0f; // 16 bits is ok here #else const float errorAngle = (constrain(2 * rcCommand[axis], -((int) max_angle_inclination), +max_angle_inclination) - attitude.raw[axis] + angleTrim->raw[axis]) / 10.0f; // 16 bits is ok here #endif if (FLIGHT_MODE(ANGLE_MODE)) { // ANGLE mode - control is angle based, so control loop is needed ptermSetpointRate[axis] = setpointRate[axis] = errorAngle * pidProfile->P8[PIDLEVEL] / 10.0f; } else { // HORIZON mode - direct sticks control is applied to rate PID // mix up angle error to desired AngleRate to add a little auto-level feel ptermSetpointRate[axis] = setpointRate[axis] = setpointRate[axis] + (errorAngle * pidProfile->I8[PIDLEVEL] * horizonLevelStrength / 10.0f); } } PVRate = gyroADCf[axis] / 16.4f; // Process variable from gyro output in deg/sec // --------low-level gyro-based PID based on 2DOF PID controller. ---------- // ---------- 2-DOF PID controller with optional filter on derivative term. b = 1 and only c can be tuned (amount derivative on measurement or error). ---------- // Used in stand-alone mode for ACRO, controlled by higher level regulators in other modes // ----- calculate error / angle rates ---------- errorRate = setpointRate[axis] - PVRate; // r - y rP = ptermSetpointRate[axis] - PVRate; // br - y // -----calculate P component PTerm = Kp[axis] * rP * tpaFactor; // -----calculate I component. // Reduce strong Iterm accumulation during higher stick inputs float accumulationThreshold = (axis == YAW) ? pidProfile->yawItermIgnoreRate : pidProfile->rollPitchItermIgnoreRate; float setpointRateScaler = constrainf(1.0f - (ABS(setpointRate[axis]) / accumulationThreshold), 0.0f, 1.0f); // Handle All windup Scenarios // limit maximum integrator value to prevent WindUp float itermScaler = setpointRateScaler * kiThrottleGain; errorGyroIf[axis] = constrainf(errorGyroIf[axis] + Ki[axis] * errorRate * getdT() * itermScaler, -250.0f, 250.0f); // I coefficient (I8) moved before integration to make limiting independent from PID settings ITerm = errorGyroIf[axis]; //-----calculate D-term (Yaw D not yet supported) if (axis != YAW) { rD = c[axis] * setpointRate[axis] - PVRate; // cr - y delta = rD - lastRateError[axis]; lastRateError[axis] = rD; // Divide delta by targetLooptime to get differential (ie dr/dt) delta *= (1.0f / getdT()); if (debugMode == DEBUG_DTERM_FILTER) debug[axis] = Kd[axis] * delta * tpaFactor; // Filter delta if (dtermNotchInitialised) delta = biquadFilterApply(&dtermFilterNotch[axis], delta); if (pidProfile->dterm_lpf_hz) { if (dtermBiquadLpfInitialised) { delta = biquadFilterApply(&dtermFilterLpf[axis], delta); } else { delta = pt1FilterApply4(&deltaFilter[axis], delta, pidProfile->dterm_lpf_hz, getdT()); } } DTerm = Kd[axis] * delta * tpaFactor; // -----calculate total PID output axisPID[axis] = constrain(lrintf(PTerm + ITerm + DTerm), -900, 900); } else { if (pidProfile->yaw_lpf_hz) PTerm = pt1FilterApply4(&yawFilter, PTerm, pidProfile->yaw_lpf_hz, getdT()); axisPID[axis] = lrintf(PTerm + ITerm); DTerm = 0.0f; // needed for blackbox } // Disable PID control at zero throttle if (!pidStabilisationEnabled) axisPID[axis] = 0; #ifdef GTUNE if (FLIGHT_MODE(GTUNE_MODE) && ARMING_FLAG(ARMED)) { calculate_Gtune(axis); } #endif #ifdef BLACKBOX axisPID_P[axis] = PTerm; axisPID_I[axis] = ITerm; axisPID_D[axis] = DTerm; #endif } } #endif