/* * Copyright (c) 2020 Raspberry Pi (Trading) Ltd. * * SPDX-License-Identifier: BSD-3-Clause */ #include "pico.h" #include "hardware/regs/clocks.h" #include "hardware/platform_defs.h" #include "hardware/clocks.h" #include "hardware/pll.h" #include "hardware/irq.h" #include "hardware/gpio.h" check_hw_layout(clocks_hw_t, clk[clk_adc].selected, CLOCKS_CLK_ADC_SELECTED_OFFSET); check_hw_layout(clocks_hw_t, fc0.result, CLOCKS_FC0_RESULT_OFFSET); check_hw_layout(clocks_hw_t, ints, CLOCKS_INTS_OFFSET); static uint32_t configured_freq[CLK_COUNT]; static resus_callback_t _resus_callback; // Clock muxing consists of two components: // - A glitchless mux, which can be switched freely, but whose inputs must be // free-running // - An auxiliary (glitchy) mux, whose output glitches when switched, but has // no constraints on its inputs // Not all clocks have both types of mux. static inline bool has_glitchless_mux(clock_handle_t clock) { return clock == clk_sys || clock == clk_ref; } void clock_stop(clock_handle_t clock) { clock_hw_t *clock_hw = &clocks_hw->clk[clock]; hw_clear_bits(&clock_hw->ctrl, CLOCKS_CLK_USB_CTRL_ENABLE_BITS); configured_freq[clock] = 0; } /// \tag::clock_configure[] static void clock_configure_internal(clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t actual_freq, uint32_t div) { clock_hw_t *clock_hw = &clocks_hw->clk[clock]; // If increasing divisor, set divisor before source. Otherwise set source // before divisor. This avoids a momentary overspeed when e.g. switching // to a faster source and increasing divisor to compensate. if (div > clock_hw->div) clock_hw->div = div; // If switching a glitchless slice (ref or sys) to an aux source, switch // away from aux *first* to avoid passing glitches when changing aux mux. // Assume (!!!) glitchless source 0 is no faster than the aux source. if (has_glitchless_mux(clock) && src == CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX) { hw_clear_bits(&clock_hw->ctrl, CLOCKS_CLK_REF_CTRL_SRC_BITS); while (!(clock_hw->selected & 1u)) tight_loop_contents(); } // If no glitchless mux, cleanly stop the clock to avoid glitches // propagating when changing aux mux. Note it would be a really bad idea // to do this on one of the glitchless clocks (clk_sys, clk_ref). else { // Disable clock. On clk_ref and clk_sys this does nothing, // all other clocks have the ENABLE bit in the same position. hw_clear_bits(&clock_hw->ctrl, CLOCKS_CLK_GPOUT0_CTRL_ENABLE_BITS); if (configured_freq[clock] > 0) { // Delay for 3 cycles of the target clock, for ENABLE propagation. // Note XOSC_COUNT is not helpful here because XOSC is not // necessarily running, nor is timer... uint delay_cyc = configured_freq[clk_sys] / configured_freq[clock] + 1; busy_wait_at_least_cycles(delay_cyc * 3); } } // Set aux mux first, and then glitchless mux if this clock has one hw_write_masked(&clock_hw->ctrl, (auxsrc << CLOCKS_CLK_SYS_CTRL_AUXSRC_LSB), CLOCKS_CLK_SYS_CTRL_AUXSRC_BITS ); if (has_glitchless_mux(clock)) { hw_write_masked(&clock_hw->ctrl, src << CLOCKS_CLK_REF_CTRL_SRC_LSB, CLOCKS_CLK_REF_CTRL_SRC_BITS ); while (!(clock_hw->selected & (1u << src))) tight_loop_contents(); } // Enable clock. On clk_ref and clk_sys this does nothing, // all other clocks have the ENABLE bit in the same position. hw_set_bits(&clock_hw->ctrl, CLOCKS_CLK_GPOUT0_CTRL_ENABLE_BITS); // Now that the source is configured, we can trust that the user-supplied // divisor is a safe value. clock_hw->div = div; configured_freq[clock] = actual_freq; } bool clock_configure(clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t src_freq, uint32_t freq) { assert(src_freq >= freq); if (freq > src_freq) return false; uint32_t div = (uint32_t)((((uint64_t) src_freq) << CLOCKS_CLK_GPOUT0_DIV_INT_LSB) / freq); uint32_t actual_freq = (uint32_t) ((((uint64_t) src_freq) << CLOCKS_CLK_GPOUT0_DIV_INT_LSB) / div); clock_configure_internal(clock, src, auxsrc, actual_freq, div); // Store the configured frequency return true; } void clock_configure_int_divider(clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t src_freq, uint32_t int_divider) { clock_configure_internal(clock, src, auxsrc, src_freq / int_divider, int_divider << CLOCKS_CLK_GPOUT0_DIV_INT_LSB); } void clock_configure_undivided(clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t src_freq) { clock_configure_internal(clock, src, auxsrc, src_freq, 1u << CLOCKS_CLK_GPOUT0_DIV_INT_LSB); } /// \end::clock_configure[] /// \tag::clock_get_hz[] uint32_t clock_get_hz(clock_handle_t clock) { return configured_freq[clock]; } /// \end::clock_get_hz[] void clock_set_reported_hz(clock_handle_t clock, uint hz) { configured_freq[clock] = hz; } /// \tag::frequency_count_khz[] uint32_t frequency_count_khz(uint src) { fc_hw_t *fc = &clocks_hw->fc0; // If frequency counter is running need to wait for it. It runs even if the source is NULL while(fc->status & CLOCKS_FC0_STATUS_RUNNING_BITS) { tight_loop_contents(); } // Set reference freq fc->ref_khz = clock_get_hz(clk_ref) / 1000; // FIXME: Don't pick random interval. Use best interval fc->interval = 10; // No min or max fc->min_khz = 0; fc->max_khz = 0xffffffff; // Set SRC which automatically starts the measurement fc->src = src; while(!(fc->status & CLOCKS_FC0_STATUS_DONE_BITS)) { tight_loop_contents(); } // Return the result return fc->result >> CLOCKS_FC0_RESULT_KHZ_LSB; } /// \end::frequency_count_khz[] static void clocks_handle_resus(void) { // Set clk_sys back to the ref clock rather than it being forced to clk_ref // by resus. Call the user's resus callback if they have set one // CLK SYS = CLK_REF. Must be running for this code to be running uint clk_ref_freq = clock_get_hz(clk_ref); clock_configure_undivided(clk_sys, CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLK_REF, 0, clk_ref_freq); // Assert we have been resussed assert(clocks_hw->resus.status & CLOCKS_CLK_SYS_RESUS_STATUS_RESUSSED_BITS); // Now we have fixed clk_sys we can safely remove the resus hw_set_bits(&clocks_hw->resus.ctrl, CLOCKS_CLK_SYS_RESUS_CTRL_CLEAR_BITS); hw_clear_bits(&clocks_hw->resus.ctrl, CLOCKS_CLK_SYS_RESUS_CTRL_CLEAR_BITS); // Now we should no longer be resussed assert(!(clocks_hw->resus.status & CLOCKS_CLK_SYS_RESUS_STATUS_RESUSSED_BITS)); // Call the user's callback to notify them of the resus event if (_resus_callback) { _resus_callback(); } } static void clocks_irq_handler(void) { // Clocks interrupt handler. Only resus but handle irq // defensively just in case. uint32_t ints = clocks_hw->ints; if (ints & CLOCKS_INTE_CLK_SYS_RESUS_BITS) { ints &= ~CLOCKS_INTE_CLK_SYS_RESUS_BITS; clocks_handle_resus(); } #ifndef NDEBUG if (ints) { panic("Unexpected clocks irq\n"); } #endif } void clocks_enable_resus(resus_callback_t resus_callback) { // Restart clk_sys if it is stopped by forcing it // to the default source of clk_ref. If clk_ref stops running this will // not work. // Store user's resus callback _resus_callback = resus_callback; irq_set_exclusive_handler(CLOCKS_IRQ, clocks_irq_handler); // Enable the resus interrupt in clocks clocks_hw->inte = CLOCKS_INTE_CLK_SYS_RESUS_BITS; // Enable the clocks irq irq_set_enabled(CLOCKS_IRQ, true); // 2 * clk_ref freq / clk_sys_min_freq; // assume clk_ref is 3MHz and we want clk_sys to be no lower than 1MHz uint timeout = 2 * 3 * 1; // Enable resus with the maximum timeout clocks_hw->resus.ctrl = CLOCKS_CLK_SYS_RESUS_CTRL_ENABLE_BITS | timeout; } void clock_gpio_init_int_frac(uint gpio, uint src, uint32_t div_int, uint8_t div_frac) { // Bit messy but it's as much code to loop through a lookup // table. The sources for each gpout generators are the same // so just call with the sources from GP0 uint gpclk = 0; if (gpio == 21) gpclk = clk_gpout0; else if (gpio == 23) gpclk = clk_gpout1; else if (gpio == 24) gpclk = clk_gpout2; else if (gpio == 25) gpclk = clk_gpout3; #if !PICO_RP2040 else if (gpio == 13) gpclk = clk_gpout0; else if (gpio == 15) gpclk = clk_gpout1; #endif else { invalid_params_if(HARDWARE_CLOCKS, true); } // Set up the gpclk generator clocks_hw->clk[gpclk].ctrl = (src << CLOCKS_CLK_GPOUT0_CTRL_AUXSRC_LSB) | CLOCKS_CLK_GPOUT0_CTRL_ENABLE_BITS; clocks_hw->clk[gpclk].div = (div_int << CLOCKS_CLK_GPOUT0_DIV_INT_LSB) | div_frac; // Set gpio pin to gpclock function gpio_set_function(gpio, GPIO_FUNC_GPCK); } static const uint8_t gpin0_src[CLK_COUNT] = { CLOCKS_CLK_GPOUT0_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_GPOUT0 CLOCKS_CLK_GPOUT1_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_GPOUT1 CLOCKS_CLK_GPOUT2_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_GPOUT2 CLOCKS_CLK_GPOUT3_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_GPOUT3 CLOCKS_CLK_REF_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_REF CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_SYS CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_PERI #if !PICO_RP2040 CLOCKS_CLK_HSTX_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_HSTX #endif CLOCKS_CLK_USB_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_USB CLOCKS_CLK_ADC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_ADC #if PICO_RP2040 CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_RTC #endif }; // Assert GPIN1 is GPIN0 + 1 static_assert(CLOCKS_CLK_GPOUT0_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_GPOUT0_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch"); static_assert(CLOCKS_CLK_GPOUT1_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_GPOUT1_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch"); static_assert(CLOCKS_CLK_GPOUT2_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_GPOUT2_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch"); static_assert(CLOCKS_CLK_GPOUT3_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_GPOUT3_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch"); static_assert(CLOCKS_CLK_REF_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_REF_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch"); static_assert(CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch"); static_assert(CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch"); #if HAS_HSTX static_assert(CLOCKS_CLK_HSTX_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_HSTX_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch"); #endif static_assert(CLOCKS_CLK_USB_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_USB_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch"); static_assert(CLOCKS_CLK_ADC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_ADC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch"); #if HAS_RP2040_RTC static_assert(CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch"); #endif bool clock_configure_gpin(clock_handle_t clock, uint gpio, uint32_t src_freq, uint32_t freq) { // Configure a clock to run from a GPIO input uint gpin = 0; if (gpio == 20) gpin = 0; else if (gpio == 22) gpin = 1; #if PICO_RP2350 else if (gpio == 12) gpin = 0; else if (gpio == 14) gpin = 1; #endif else { invalid_params_if(HARDWARE_CLOCKS, true); } // Work out sources. GPIN is always an auxsrc uint src = 0; // GPIN1 == GPIN0 + 1 uint auxsrc = gpin0_src[clock] + gpin; if (has_glitchless_mux(clock)) { // AUX src is always 1 src = 1; } // Set the GPIO function gpio_set_function(gpio, GPIO_FUNC_GPCK); // Now we have the src, auxsrc, and configured the gpio input // call clock configure to run the clock from a gpio return clock_configure(clock, src, auxsrc, src_freq, freq); } // everything running off the USB oscillator void set_sys_clock_48mhz(void) { if (!running_on_fpga()) { // Change clk_sys to be 48MHz. The simplest way is to take this from PLL_USB // which has a source frequency of 48MHz clock_configure_undivided(clk_sys, CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX, CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB, USB_CLK_HZ); // Turn off PLL sys for good measure pll_deinit(pll_sys); // CLK peri is clocked from clk_sys so need to change clk_peri's freq clock_configure_undivided(clk_peri, 0, CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLK_SYS, USB_CLK_HZ); } } // PICO_CONFIG: PICO_CLOCK_ADJUST_PERI_CLOCK_WITH_SYS_CLOCK, When the SYS clock PLL is changed keep the peripheral clock attached to it, type=bool, default=0, advanced=true, group=hardware_clocks #ifndef PICO_CLOCK_ADJUST_PERI_CLOCK_WITH_SYS_CLOCK // support old incorrect spelling too #ifdef PICO_CLOCK_AJDUST_PERI_CLOCK_WITH_SYS_CLOCK #define PICO_CLOCK_ADJUST_PERI_CLOCK_WITH_SYS_CLOCK PICO_CLOCK_AJDUST_PERI_CLOCK_WITH_SYS_CLOCK #else // By default, when reconfiguring the system clock PLL settings after runtime initialization, // the peripheral clock is switched to the 48MHz USB clock to ensure continuity of peripheral operation. // Setting this value to 1 changes the behavior to have the peripheral clock re-configured // to the system clock at it's new frequency. #define PICO_CLOCK_ADJUST_PERI_CLOCK_WITH_SYS_CLOCK 0 #endif #endif void set_sys_clock_pll(uint32_t vco_freq, uint post_div1, uint post_div2) { if (!running_on_fpga()) { clock_configure_undivided(clk_sys, CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX, CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB, USB_CLK_HZ); pll_init(pll_sys, PLL_SYS_REFDIV, vco_freq, post_div1, post_div2); uint32_t freq = vco_freq / (post_div1 * post_div2); // Configure clocks // CLK_REF is the XOSC source clock_configure_undivided(clk_ref, CLOCKS_CLK_REF_CTRL_SRC_VALUE_XOSC_CLKSRC, 0, // No aux mux XOSC_HZ); // CLK SYS = PLL SYS (usually) 125MHz / 1 = 125MHz clock_configure_undivided(clk_sys, CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX, CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_SYS, freq); #if PICO_CLOCK_ADJUST_PERI_CLOCK_WITH_SYS_CLOCK clock_configure_undivided(clk_peri, 0, CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_PLL_SYS, freq); #else clock_configure_undivided(clk_peri, 0, // Only AUX mux on ADC CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB, USB_CLK_HZ); #endif } } bool check_sys_clock_hz(uint32_t freq_hz, uint *vco_out, uint *postdiv1_out, uint *postdiv2_out) { uint reference_freq_hz = XOSC_HZ / PLL_SYS_REFDIV; for (uint fbdiv = 320; fbdiv >= 16; fbdiv--) { uint vco_hz = fbdiv * reference_freq_hz; if (vco_hz < PICO_PLL_VCO_MIN_FREQ_HZ || vco_hz > PICO_PLL_VCO_MAX_FREQ_HZ) continue; for (uint postdiv1 = 7; postdiv1 >= 1; postdiv1--) { for (uint postdiv2 = postdiv1; postdiv2 >= 1; postdiv2--) { uint out = vco_hz / (postdiv1 * postdiv2); if (out == freq_hz && !(vco_hz % (postdiv1 * postdiv2))) { *vco_out = vco_hz; *postdiv1_out = postdiv1; *postdiv2_out = postdiv2; return true; } } } } return false; } // Note this impl is kept to preserve previous rounding behavior, vs calling check_sys_clock_hz bool check_sys_clock_khz(uint32_t freq_khz, uint *vco_out, uint *postdiv1_out, uint *postdiv2_out) { uint reference_freq_khz = (XOSC_HZ / KHZ) / PLL_SYS_REFDIV; for (uint fbdiv = 320; fbdiv >= 16; fbdiv--) { uint vco_khz = fbdiv * reference_freq_khz; if (vco_khz < PICO_PLL_VCO_MIN_FREQ_HZ / KHZ || vco_khz > PICO_PLL_VCO_MAX_FREQ_HZ / KHZ) continue; for (uint postdiv1 = 7; postdiv1 >= 1; postdiv1--) { for (uint postdiv2 = postdiv1; postdiv2 >= 1; postdiv2--) { uint out = vco_khz / (postdiv1 * postdiv2); if (out == freq_khz && !(vco_khz % (postdiv1 * postdiv2))) { *vco_out = vco_khz * KHZ; *postdiv1_out = postdiv1; *postdiv2_out = postdiv2; return true; } } } } return false; }