/* * This file is part of Cleanflight and Betaflight. * * Cleanflight and Betaflight are free software. You can redistribute * this software and/or modify this software under the terms of the * GNU General Public License as published by the Free Software * Foundation, either version 3 of the License, or (at your option) * any later version. * * Cleanflight and Betaflight are distributed in the hope that they * will be useful, but WITHOUT ANY WARRANTY; without even the implied * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this software. * * If not, see . */ #include #include #include #include "platform.h" #ifdef USE_ADC #include "common/utils.h" #include "drivers/accgyro/accgyro.h" #include "drivers/adc_impl.h" #include "drivers/dma.h" #include "drivers/dma_reqmap.h" #include "drivers/io.h" #include "drivers/rcc.h" #include "drivers/sensor.h" #include "drivers/time.h" #include "pg/adc.h" #include "adc.h" const adcDevice_t adcHardware[] = { { .ADCx = ADC1, .rccADC = RCC_AHB(ADC12), #if !defined(USE_DMA_SPEC) .DMAy_Channelx = DMA1_Channel1, #endif }, #ifdef ADC24_DMA_REMAP { .ADCx = ADC2, .rccADC = RCC_AHB(ADC12), #if !defined(USE_DMA_SPEC) .DMAy_Channelx = DMA2_Channel3, #endif }, #else { .ADCx = ADC2, .rccADC = RCC_AHB(ADC12), #if !defined(USE_DMA_SPEC) .DMAy_Channelx = DMA2_Channel1, #endif }, #endif { .ADCx = ADC3, .rccADC = RCC_AHB(ADC34), #if !defined(USE_DMA_SPEC) .DMAy_Channelx = DMA2_Channel5, #endif } }; const adcTagMap_t adcTagMap[] = { { DEFIO_TAG_E__PA0, ADC_DEVICES_1, ADC_Channel_1 }, // ADC1 { DEFIO_TAG_E__PA1, ADC_DEVICES_1, ADC_Channel_2 }, // ADC1 { DEFIO_TAG_E__PA2, ADC_DEVICES_1, ADC_Channel_3 }, // ADC1 { DEFIO_TAG_E__PA3, ADC_DEVICES_1, ADC_Channel_4 }, // ADC1 { DEFIO_TAG_E__PA4, ADC_DEVICES_2, ADC_Channel_1 }, // ADC2 { DEFIO_TAG_E__PA5, ADC_DEVICES_2, ADC_Channel_2 }, // ADC2 { DEFIO_TAG_E__PA6, ADC_DEVICES_2, ADC_Channel_3 }, // ADC2 { DEFIO_TAG_E__PA7, ADC_DEVICES_4, ADC_Channel_4 }, // ADC2 { DEFIO_TAG_E__PB0, ADC_DEVICES_3, ADC_Channel_12 }, // ADC3 { DEFIO_TAG_E__PB1, ADC_DEVICES_3, ADC_Channel_1 }, // ADC3 { DEFIO_TAG_E__PB2, ADC_DEVICES_2, ADC_Channel_12 }, // ADC2 { DEFIO_TAG_E__PB12, ADC_DEVICES_4, ADC_Channel_3 }, // ADC4 { DEFIO_TAG_E__PB13, ADC_DEVICES_3, ADC_Channel_5 }, // ADC3 { DEFIO_TAG_E__PB14, ADC_DEVICES_4, ADC_Channel_4 }, // ADC4 { DEFIO_TAG_E__PB15, ADC_DEVICES_4, ADC_Channel_5 }, // ADC4 { DEFIO_TAG_E__PC0, ADC_DEVICES_12, ADC_Channel_6 }, // ADC12 { DEFIO_TAG_E__PC1, ADC_DEVICES_12, ADC_Channel_7 }, // ADC12 { DEFIO_TAG_E__PC2, ADC_DEVICES_12, ADC_Channel_8 }, // ADC12 { DEFIO_TAG_E__PC3, ADC_DEVICES_12, ADC_Channel_9 }, // ADC12 { DEFIO_TAG_E__PC4, ADC_DEVICES_2, ADC_Channel_5 }, // ADC2 { DEFIO_TAG_E__PC5, ADC_DEVICES_2, ADC_Channel_11 }, // ADC2 { DEFIO_TAG_E__PD8, ADC_DEVICES_4, ADC_Channel_12 }, // ADC4 { DEFIO_TAG_E__PD9, ADC_DEVICES_4, ADC_Channel_13 }, // ADC4 { DEFIO_TAG_E__PD10, ADC_DEVICES_34, ADC_Channel_7 }, // ADC34 { DEFIO_TAG_E__PD11, ADC_DEVICES_34, ADC_Channel_8 }, // ADC34 { DEFIO_TAG_E__PD12, ADC_DEVICES_34, ADC_Channel_9 }, // ADC34 { DEFIO_TAG_E__PD13, ADC_DEVICES_34, ADC_Channel_10 }, // ADC34 { DEFIO_TAG_E__PD14, ADC_DEVICES_34, ADC_Channel_11 }, // ADC34 { DEFIO_TAG_E__PE7, ADC_DEVICES_3, ADC_Channel_13 }, // ADC3 { DEFIO_TAG_E__PE8, ADC_DEVICES_34, ADC_Channel_6 }, // ADC34 { DEFIO_TAG_E__PE9, ADC_DEVICES_3, ADC_Channel_2 }, // ADC3 { DEFIO_TAG_E__PE10, ADC_DEVICES_3, ADC_Channel_14 }, // ADC3 { DEFIO_TAG_E__PE11, ADC_DEVICES_3, ADC_Channel_15 }, // ADC3 { DEFIO_TAG_E__PE12, ADC_DEVICES_3, ADC_Channel_16 }, // ADC3 { DEFIO_TAG_E__PE13, ADC_DEVICES_3, ADC_Channel_3 }, // ADC3 { DEFIO_TAG_E__PE14, ADC_DEVICES_4, ADC_Channel_1 }, // ADC4 { DEFIO_TAG_E__PE15, ADC_DEVICES_4, ADC_Channel_2 }, // ADC4 { DEFIO_TAG_E__PF2, ADC_DEVICES_12, ADC_Channel_10 }, // ADC12 { DEFIO_TAG_E__PF4, ADC_DEVICES_1, ADC_Channel_5 }, // ADC1 }; void adcInit(const adcConfig_t *config) { ADC_InitTypeDef ADC_InitStructure; DMA_InitTypeDef DMA_InitStructure; uint8_t adcChannelCount = 0; memset(&adcOperatingConfig, 0, sizeof(adcOperatingConfig)); if (config->vbat.enabled) { adcOperatingConfig[ADC_BATTERY].tag = config->vbat.ioTag; } if (config->rssi.enabled) { adcOperatingConfig[ADC_RSSI].tag = config->rssi.ioTag; //RSSI_ADC_CHANNEL; } if (config->external1.enabled) { adcOperatingConfig[ADC_EXTERNAL1].tag = config->external1.ioTag; //EXTERNAL1_ADC_CHANNEL; } if (config->current.enabled) { adcOperatingConfig[ADC_CURRENT].tag = config->current.ioTag; //CURRENT_METER_ADC_CHANNEL; } ADCDevice device = ADC_CFG_TO_DEV(config->device); if (device == ADCINVALID) { return; } #ifdef ADC24_DMA_REMAP SYSCFG_DMAChannelRemapConfig(SYSCFG_DMARemap_ADC2ADC4, ENABLE); #endif adcDevice_t adc = adcHardware[device]; bool adcActive = false; for (int i = 0; i < ADC_CHANNEL_COUNT; i++) { if (!adcVerifyPin(adcOperatingConfig[i].tag, device)) { continue; } adcActive = true; IOInit(IOGetByTag(adcOperatingConfig[i].tag), OWNER_ADC_BATT + i, 0); IOConfigGPIO(IOGetByTag(adcOperatingConfig[i].tag), IO_CONFIG(GPIO_Mode_AN, 0, GPIO_OType_OD, GPIO_PuPd_NOPULL)); adcOperatingConfig[i].adcChannel = adcChannelByTag(adcOperatingConfig[i].tag); adcOperatingConfig[i].dmaIndex = adcChannelCount++; adcOperatingConfig[i].sampleTime = ADC_SampleTime_601Cycles5; adcOperatingConfig[i].enabled = true; } if (!adcActive) { return; } if ((device == ADCDEV_1) || (device == ADCDEV_2)) { // enable clock for ADC1+2 RCC_ADCCLKConfig(RCC_ADC12PLLCLK_Div256); // 72 MHz divided by 256 = 281.25 kHz } else { // enable clock for ADC3+4 RCC_ADCCLKConfig(RCC_ADC34PLLCLK_Div256); // 72 MHz divided by 256 = 281.25 kHz } RCC_ClockCmd(adc.rccADC, ENABLE); #if defined(USE_DMA_SPEC) const dmaChannelSpec_t *dmaSpec = dmaGetChannelSpecByPeripheral(DMA_PERIPH_ADC, device, config->dmaopt[device]); if (!dmaSpec) { return; } dmaInit(dmaGetIdentifier(dmaSpec->ref), OWNER_ADC, RESOURCE_INDEX(device)); DMA_DeInit(dmaSpec->ref); #else dmaInit(dmaGetIdentifier(adc.DMAy_Channelx), OWNER_ADC, 0); DMA_DeInit(adc.DMAy_Channelx); #endif DMA_StructInit(&DMA_InitStructure); DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&adc.ADCx->DR; DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)adcValues; DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; DMA_InitStructure.DMA_BufferSize = adcChannelCount; DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; DMA_InitStructure.DMA_MemoryInc = adcChannelCount > 1 ? DMA_MemoryInc_Enable : DMA_MemoryInc_Disable; DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; DMA_InitStructure.DMA_Priority = DMA_Priority_High; DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; #if defined(USE_DMA_SPEC) DMA_Init(dmaSpec->ref, &DMA_InitStructure); DMA_Cmd(dmaSpec->ref, ENABLE); #else DMA_Init(adc.DMAy_Channelx, &DMA_InitStructure); DMA_Cmd(adc.DMAy_Channelx, ENABLE); #endif // calibrate ADC_VoltageRegulatorCmd(adc.ADCx, ENABLE); delay(10); ADC_SelectCalibrationMode(adc.ADCx, ADC_CalibrationMode_Single); ADC_StartCalibration(adc.ADCx); while (ADC_GetCalibrationStatus(adc.ADCx) != RESET); ADC_VoltageRegulatorCmd(adc.ADCx, DISABLE); ADC_CommonInitTypeDef ADC_CommonInitStructure; ADC_CommonStructInit(&ADC_CommonInitStructure); ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent; ADC_CommonInitStructure.ADC_Clock = ADC_Clock_SynClkModeDiv4; ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_1; ADC_CommonInitStructure.ADC_DMAMode = ADC_DMAMode_Circular; ADC_CommonInitStructure.ADC_TwoSamplingDelay = 0; ADC_CommonInit(adc.ADCx, &ADC_CommonInitStructure); ADC_StructInit(&ADC_InitStructure); ADC_InitStructure.ADC_ContinuousConvMode = ADC_ContinuousConvMode_Enable; ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b; ADC_InitStructure.ADC_ExternalTrigConvEvent = ADC_ExternalTrigConvEvent_0; ADC_InitStructure.ADC_ExternalTrigEventEdge = ADC_ExternalTrigEventEdge_None; ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStructure.ADC_OverrunMode = ADC_OverrunMode_Disable; ADC_InitStructure.ADC_AutoInjMode = ADC_AutoInjec_Disable; ADC_InitStructure.ADC_NbrOfRegChannel = adcChannelCount; ADC_Init(adc.ADCx, &ADC_InitStructure); uint8_t rank = 1; for (int i = 0; i < ADC_CHANNEL_COUNT; i++) { if (!adcOperatingConfig[i].enabled) { continue; } ADC_RegularChannelConfig(adc.ADCx, adcOperatingConfig[i].adcChannel, rank++, adcOperatingConfig[i].sampleTime); } ADC_Cmd(adc.ADCx, ENABLE); while (!ADC_GetFlagStatus(adc.ADCx, ADC_FLAG_RDY)); ADC_DMAConfig(adc.ADCx, ADC_DMAMode_Circular); ADC_DMACmd(adc.ADCx, ENABLE); ADC_StartConversion(adc.ADCx); } void adcGetChannelValues(void) { // Nothing to do } #endif