/* * This file is part of Cleanflight. * * Cleanflight is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Cleanflight is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Cleanflight. If not, see . */ #include #include #include #include #include "build_config.h" #include "debug.h" #include "common/axis.h" #include "common/maths.h" #include "common/filter.h" #include "drivers/sensor.h" #include "drivers/gyro_sync.h" #include "drivers/accgyro.h" #include "sensors/sensors.h" #include "sensors/gyro.h" #include "sensors/acceleration.h" #include "rx/rx.h" #include "io/rc_controls.h" #include "io/gps.h" #include "flight/pid.h" #include "flight/imu.h" #include "flight/navigation.h" #include "flight/gtune.h" #include "config/runtime_config.h" extern uint8_t motorCount; extern bool motorLimitReached; uint32_t targetPidLooptime; int16_t axisPID[3]; #ifdef BLACKBOX int32_t axisPID_P[3], axisPID_I[3], axisPID_D[3]; #endif // PIDweight is a scale factor for PIDs which is derived from the throttle and TPA setting, and 100 = 100% scale means no PID reduction uint8_t dynP8[3], dynI8[3], dynD8[3], PIDweight[3]; static int32_t errorGyroI[3], errorGyroILimit[3]; static float errorGyroIf[3], errorGyroIfLimit[3]; static int32_t errorAngleI[2]; static float errorAngleIf[2]; static bool lowThrottlePidReduction; static void pidMultiWiiRewrite(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig, uint16_t max_angle_inclination, rollAndPitchTrims_t *angleTrim, rxConfig_t *rxConfig); typedef void (*pidControllerFuncPtr)(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig, uint16_t max_angle_inclination, rollAndPitchTrims_t *angleTrim, rxConfig_t *rxConfig); // pid controller function prototype pidControllerFuncPtr pid_controller = pidMultiWiiRewrite; // which pid controller are we using, defaultMultiWii void setTargetPidLooptime(uint8_t pidProcessDenom) { targetPidLooptime = targetLooptime * pidProcessDenom; } float calculateExpoPlus(int axis, rxConfig_t *rxConfig) { float propFactor; propFactor = 1.0f - ((rxConfig->superExpoFactor / 100.0f) * (ABS(rcCommand[axis]) / 500.0f)); return propFactor; } void pidResetErrorAngle(void) { errorAngleI[ROLL] = 0; errorAngleI[PITCH] = 0; errorAngleIf[ROLL] = 0.0f; errorAngleIf[PITCH] = 0.0f; } void pidResetErrorGyroState(uint8_t resetOption) { if (resetOption >= RESET_ITERM) { int axis; for (axis = 0; axis < 3; axis++) { errorGyroI[axis] = 0; errorGyroIf[axis] = 0.0f; } } if (resetOption == RESET_ITERM_AND_REDUCE_PID) { lowThrottlePidReduction = true; } else { lowThrottlePidReduction = false; } } float getdT (void) { static float dT; if (!dT) dT = (float)targetPidLooptime * 0.000001f; return dT; } const angle_index_t rcAliasToAngleIndexMap[] = { AI_ROLL, AI_PITCH }; static filterStatePt1_t deltaFilterState[3]; static filterStatePt1_t yawFilterState; static void pidLuxFloat(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig, uint16_t max_angle_inclination, rollAndPitchTrims_t *angleTrim, rxConfig_t *rxConfig) { float RateError, AngleRate, gyroRate; float ITerm,PTerm,DTerm; static float lastErrorForDelta[3]; static float deltaState[3][DELTA_MAX_SAMPLES]; float delta; int axis; float horizonLevelStrength = 1; float tpaFactor = PIDweight[0] / 100.0f; // tpa is now float if (FLIGHT_MODE(HORIZON_MODE)) { // Figure out the raw stick positions const int32_t stickPosAil = ABS(getRcStickDeflection(FD_ROLL, rxConfig->midrc)); const int32_t stickPosEle = ABS(getRcStickDeflection(FD_PITCH, rxConfig->midrc)); const int32_t mostDeflectedPos = MAX(stickPosAil, stickPosEle); // Progressively turn off the horizon self level strength as the stick is banged over horizonLevelStrength = (float)(500 - mostDeflectedPos) / 500; // 1 at centre stick, 0 = max stick deflection if(pidProfile->H_sensitivity == 0){ horizonLevelStrength = 0; } else { horizonLevelStrength = constrainf(((horizonLevelStrength - 1) * (100 / pidProfile->H_sensitivity)) + 1, 0, 1); } } // ----------PID controller---------- for (axis = 0; axis < 3; axis++) { uint8_t rate = controlRateConfig->rates[axis]; if (axis == FD_YAW) { // YAW is always gyro-controlled (MAG correction is applied to rcCommand) 100dps to 1100dps max yaw rate AngleRate = (float)((rate + 10) * rcCommand[YAW]) / 50.0f; } else { // ACRO mode, control is GYRO based, direct sticks control is applied to rate PID AngleRate = (float)((rate + 20) * rcCommand[axis]) / 50.0f; // 200dps to 1200dps max roll/pitch rate if (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) { // calculate error angle and limit the angle to the max inclination #ifdef GPS const float errorAngle = (constrain(rcCommand[axis] + GPS_angle[axis], -((int) max_angle_inclination), +max_angle_inclination) - attitude.raw[axis] + angleTrim->raw[axis]) / 10.0f; // 16 bits is ok here #else const float errorAngle = (constrain(rcCommand[axis], -((int) max_angle_inclination), +max_angle_inclination) - attitude.raw[axis] + angleTrim->raw[axis]) / 10.0f; // 16 bits is ok here #endif if (FLIGHT_MODE(ANGLE_MODE)) { // ANGLE mode - control is angle based, so control loop is needed AngleRate = errorAngle * pidProfile->P8[PIDLEVEL] / 10.0f; } else { // HORIZON mode - direct sticks control is applied to rate PID // mix up angle error to desired AngleRate to add a little auto-level feel AngleRate += errorAngle * pidProfile->I8[PIDLEVEL] / 10.0f * horizonLevelStrength; } } } gyroRate = gyroADC[axis] * gyro.scale; // gyro output scaled to dps // --------low-level gyro-based PID. ---------- // Used in stand-alone mode for ACRO, controlled by higher level regulators in other modes // -----calculate scaled error.AngleRates // multiplication of rcCommand corresponds to changing the sticks scaling here RateError = AngleRate - gyroRate; // -----calculate P component if (IS_RC_MODE_ACTIVE(BOXSUPEREXPO) && axis != YAW) { PTerm = (pidProfile->P8[axis] / 40.0f * tpaFactor) * (AngleRate - gyroRate * calculateExpoPlus(axis, rxConfig)); } else { PTerm = RateError * (pidProfile->P8[axis] / 40.0f) * tpaFactor; } // Constrain YAW by yaw_p_limit value if not servo driven in that case servolimits apply if((motorCount >= 4 && pidProfile->yaw_p_limit) && axis == YAW) { PTerm = constrainf(PTerm, -pidProfile->yaw_p_limit, pidProfile->yaw_p_limit); } // -----calculate I component. errorGyroIf[axis] = constrainf(errorGyroIf[axis] + RateError * getdT() * pidProfile->I8[axis] / 10.0f, -250.0f, 250.0f); if (IS_RC_MODE_ACTIVE(BOXSUPEREXPO) && axis != YAW) { if (ABS(gyroRate) >= pidProfile->rollPitchItermResetRate) errorGyroIf[axis] = 0; } if (axis == YAW) { if (ABS(gyroRate) >= pidProfile->yawItermResetRate) errorGyroIf[axis] = 0; } if (antiWindupProtection || motorLimitReached) { errorGyroIf[axis] = constrainf(errorGyroIf[axis], -errorGyroIfLimit[axis], errorGyroIfLimit[axis]); } else { errorGyroIfLimit[axis] = ABS(errorGyroIf[axis]); } // limit maximum integrator value to prevent WindUp - accumulating extreme values when system is saturated. // I coefficient (I8) moved before integration to make limiting independent from PID settings ITerm = errorGyroIf[axis]; //-----calculate D-term if (axis == YAW) { if (pidProfile->yaw_lpf_hz) PTerm = filterApplyPt1(PTerm, &yawFilterState, pidProfile->yaw_lpf_hz, getdT()); DTerm = 0; } else { if (pidProfile->deltaMethod == DELTA_FROM_ERROR) { delta = RateError - lastErrorForDelta[axis]; lastErrorForDelta[axis] = RateError; } else { delta = -(gyroRate - lastErrorForDelta[axis]); // 16 bits is ok here, the dif between 2 consecutive gyro reads is limited to 800 lastErrorForDelta[axis] = gyroRate; } // Correct difference by cycle time. Cycle time is jittery (can be different 2 times), so calculated difference // would be scaled by different dt each time. Division by dT fixes that. delta *= (1.0f / getdT()); // Filter delta if (pidProfile->dterm_lpf_hz) delta = filterApplyPt1(delta, &deltaFilterState[axis], pidProfile->dterm_lpf_hz, getdT()); // Apply moving average if (pidProfile->dterm_average_count) delta = filterApplyAveragef(delta, pidProfile->dterm_average_count, deltaState[axis]); DTerm = constrainf(delta * (float)pidProfile->D8[axis] * 0.001f * tpaFactor, -300.0f, 300.0f); } // -----calculate total PID output axisPID[axis] = constrain(lrintf(PTerm + ITerm + DTerm), -1000, 1000); if (lowThrottlePidReduction) axisPID[axis] /= 3; #ifdef GTUNE if (FLIGHT_MODE(GTUNE_MODE) && ARMING_FLAG(ARMED)) { calculate_Gtune(axis); } #endif #ifdef BLACKBOX axisPID_P[axis] = PTerm; axisPID_I[axis] = ITerm; axisPID_D[axis] = DTerm; #endif } } static void pidMultiWii23(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig, uint16_t max_angle_inclination, rollAndPitchTrims_t *angleTrim, rxConfig_t *rxConfig) { UNUSED(rxConfig); int axis, prop = 0; int32_t rc, error, errorAngle, delta, gyroError; int32_t PTerm, ITerm, PTermACC, ITermACC, DTerm; static int16_t lastErrorForDelta[2]; static int32_t deltaState[3][DELTA_MAX_SAMPLES]; if (FLIGHT_MODE(HORIZON_MODE)) { prop = MIN(MAX(ABS(rcCommand[PITCH]), ABS(rcCommand[ROLL])), 512); } // PITCH & ROLL for (axis = 0; axis < 2; axis++) { rc = rcCommand[axis] << 1; gyroError = gyroADC[axis] / 4; error = rc - gyroError; errorGyroI[axis] = constrain(errorGyroI[axis] + ((error * (uint16_t)targetPidLooptime) >> 11) , -16000, +16000); // WindUp 16 bits is ok here if (ABS(gyroADC[axis]) > (640 * 4)) { errorGyroI[axis] = 0; } // Anti windup protection if (antiWindupProtection || motorLimitReached) { errorGyroI[axis] = constrain(errorGyroI[axis], -errorGyroILimit[axis], errorGyroILimit[axis]); } else { errorGyroILimit[axis] = ABS(errorGyroI[axis]); } ITerm = (errorGyroI[axis] >> 7) * pidProfile->I8[axis] >> 6; // 16 bits is ok here 16000/125 = 128 ; 128*250 = 32000 PTerm = (int32_t)rc * pidProfile->P8[axis] >> 6; if (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) { // axis relying on ACC // 50 degrees max inclination #ifdef GPS errorAngle = constrain(2 * rcCommand[axis] + GPS_angle[axis], -((int) max_angle_inclination), +max_angle_inclination) - attitude.raw[axis] + angleTrim->raw[axis]; #else errorAngle = constrain(2 * rcCommand[axis], -((int) max_angle_inclination), +max_angle_inclination) - attitude.raw[axis] + angleTrim->raw[axis]; #endif errorAngleI[axis] = constrain(errorAngleI[axis] + errorAngle, -10000, +10000); // WindUp //16 bits is ok here PTermACC = ((int32_t)errorAngle * pidProfile->P8[PIDLEVEL]) >> 7; // 32 bits is needed for calculation: errorAngle*P8 could exceed 32768 16 bits is ok for result int16_t limit = pidProfile->D8[PIDLEVEL] * 5; PTermACC = constrain(PTermACC, -limit, +limit); ITermACC = ((int32_t)errorAngleI[axis] * pidProfile->I8[PIDLEVEL]) >> 12; // 32 bits is needed for calculation:10000*I8 could exceed 32768 16 bits is ok for result ITerm = ITermACC + ((ITerm - ITermACC) * prop >> 9); PTerm = PTermACC + ((PTerm - PTermACC) * prop >> 9); } PTerm -= ((int32_t)gyroError * dynP8[axis]) >> 6; // 32 bits is needed for calculation //-----calculate D-term based on the configured approach (delta from measurement or deltafromError) if (pidProfile->deltaMethod == DELTA_FROM_ERROR) { delta = error - lastErrorForDelta[axis]; lastErrorForDelta[axis] = error; } else { /* Delta from measurement */ delta = -(gyroError - lastErrorForDelta[axis]); lastErrorForDelta[axis] = gyroError; } // Scale delta to looptime delta = (delta * ((uint16_t) 0xFFFF)) / ((uint16_t)targetPidLooptime << 5); // Filer delta if (pidProfile->dterm_lpf_hz) delta = filterApplyPt1((float)delta, &deltaFilterState[axis], pidProfile->dterm_lpf_hz, getdT()); // Apply moving average and multiply to get original scaling if (pidProfile->dterm_average_count) delta = filterApplyAverage(delta, pidProfile->dterm_average_count, deltaState[axis]) * 2; DTerm = (delta * dynD8[axis]) >> 5; // 32 bits is needed for calculation axisPID[axis] = PTerm + ITerm + DTerm; if (lowThrottlePidReduction) axisPID[axis] /= 3; #ifdef GTUNE if (FLIGHT_MODE(GTUNE_MODE) && ARMING_FLAG(ARMED)) { calculate_Gtune(axis); } #endif #ifdef BLACKBOX axisPID_P[axis] = PTerm; axisPID_I[axis] = ITerm; axisPID_D[axis] = DTerm; #endif } //YAW rc = (int32_t)rcCommand[FD_YAW] * (2 * controlRateConfig->rates[FD_YAW] + 30) >> 5; #ifdef ALIENWII32 error = rc - gyroADC[FD_YAW]; #else error = rc - (gyroADC[FD_YAW] / 4); #endif errorGyroI[FD_YAW] += (int32_t)error * pidProfile->I8[FD_YAW]; errorGyroI[FD_YAW] = constrain(errorGyroI[FD_YAW], 2 - ((int32_t)1 << 28), -2 + ((int32_t)1 << 28)); if (ABS(rc) > 50) errorGyroI[FD_YAW] = 0; PTerm = (int32_t)error * pidProfile->P8[FD_YAW] >> 6; // TODO: Bitwise shift on a signed integer is not recommended // Constrain YAW by yaw_p_limit value if not servo driven in that case servolimits apply if(motorCount >= 4 && pidProfile->yaw_p_limit < YAW_P_LIMIT_MAX) { PTerm = constrain(PTerm, -pidProfile->yaw_p_limit, pidProfile->yaw_p_limit); } ITerm = constrain((int16_t)(errorGyroI[FD_YAW] >> 13), -GYRO_I_MAX, +GYRO_I_MAX); axisPID[FD_YAW] = PTerm + ITerm; if (pidProfile->yaw_lpf_hz) axisPID[FD_YAW] = filterApplyPt1(axisPID[FD_YAW], &yawFilterState, pidProfile->yaw_lpf_hz, getdT()); #ifdef GTUNE if (FLIGHT_MODE(GTUNE_MODE) && ARMING_FLAG(ARMED)) { calculate_Gtune(FD_YAW); } #endif #ifdef BLACKBOX axisPID_P[FD_YAW] = PTerm; axisPID_I[FD_YAW] = ITerm; axisPID_D[FD_YAW] = 0; #endif } static void pidMultiWiiRewrite(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig, uint16_t max_angle_inclination, rollAndPitchTrims_t *angleTrim, rxConfig_t *rxConfig) { UNUSED(rxConfig); int axis; int32_t PTerm, ITerm, DTerm, delta; static int32_t lastErrorForDelta[3] = { 0, 0, 0 }; static int32_t deltaState[3][DELTA_MAX_SAMPLES]; int32_t AngleRateTmp, RateError, gyroRate; int8_t horizonLevelStrength = 100; if (FLIGHT_MODE(HORIZON_MODE)) { // Figure out the raw stick positions const int32_t stickPosAil = ABS(getRcStickDeflection(FD_ROLL, rxConfig->midrc)); const int32_t stickPosEle = ABS(getRcStickDeflection(FD_PITCH, rxConfig->midrc)); const int32_t mostDeflectedPos = MAX(stickPosAil, stickPosEle); // Progressively turn off the horizon self level strength as the stick is banged over horizonLevelStrength = (500 - mostDeflectedPos) / 5; // 100 at centre stick, 0 = max stick deflection // Using Level D as a Sensitivity for Horizon. 0 more level to 255 more rate. Default value of 100 seems to work fine. // For more rate mode increase D and slower flips and rolls will be possible horizonLevelStrength = constrain((10 * (horizonLevelStrength - 100) * (10 * pidProfile->D8[PIDLEVEL] / 80) / 100) + 100, 0, 100); } // ----------PID controller---------- for (axis = 0; axis < 3; axis++) { uint8_t rate = controlRateConfig->rates[axis]; // -----Get the desired angle rate depending on flight mode if (axis == FD_YAW) { // YAW is always gyro-controlled (MAG correction is applied to rcCommand) AngleRateTmp = ((int32_t)(rate + 47) * rcCommand[YAW]) >> 5; } else { AngleRateTmp = ((int32_t)(rate + 27) * rcCommand[axis]) >> 4; if (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) { // calculate error angle and limit the angle to max configured inclination #ifdef GPS const int32_t errorAngle = constrain(2 * rcCommand[axis] + GPS_angle[axis], -((int) max_angle_inclination), +max_angle_inclination) - attitude.raw[axis] + angleTrim->raw[axis]; #else const int32_t errorAngle = constrain(2 * rcCommand[axis], -((int) max_angle_inclination), +max_angle_inclination) - attitude.raw[axis] + angleTrim->raw[axis]; #endif if (FLIGHT_MODE(ANGLE_MODE)) { // ANGLE mode - control is angle based, so control loop is needed AngleRateTmp = (errorAngle * pidProfile->P8[PIDLEVEL]) >> 4; } else { // HORIZON mode - mix up angle error to desired AngleRateTmp to add a little auto-level feel, // horizonLevelStrength is scaled to the stick input AngleRateTmp += (errorAngle * pidProfile->I8[PIDLEVEL] * horizonLevelStrength / 100) >> 4; } } } // --------low-level gyro-based PID. ---------- // Used in stand-alone mode for ACRO, controlled by higher level regulators in other modes // -----calculate scaled error.AngleRates // multiplication of rcCommand corresponds to changing the sticks scaling here gyroRate = gyroADC[axis] / 4; RateError = AngleRateTmp - gyroRate; // -----calculate P component if (IS_RC_MODE_ACTIVE(BOXSUPEREXPO) && axis != YAW) { PTerm = (pidProfile->P8[axis] * PIDweight[axis] / 100) * (AngleRateTmp - (int32_t)(gyroRate * calculateExpoPlus(axis, rxConfig))) >> 7; } else { PTerm = (RateError * pidProfile->P8[axis] * PIDweight[axis] / 100) >> 7; } // Constrain YAW by yaw_p_limit value if not servo driven in that case servolimits apply if((motorCount >= 4 && pidProfile->yaw_p_limit) && axis == YAW) { PTerm = constrain(PTerm, -pidProfile->yaw_p_limit, pidProfile->yaw_p_limit); } // -----calculate I component // there should be no division before accumulating the error to integrator, because the precision would be reduced. // Precision is critical, as I prevents from long-time drift. Thus, 32 bits integrator is used. // Time correction (to avoid different I scaling for different builds based on average cycle time) // is normalized to cycle time = 2048. errorGyroI[axis] = errorGyroI[axis] + ((RateError * (uint16_t)targetPidLooptime) >> 11) * pidProfile->I8[axis]; // limit maximum integrator value to prevent WindUp - accumulating extreme values when system is saturated. // I coefficient (I8) moved before integration to make limiting independent from PID settings errorGyroI[axis] = constrain(errorGyroI[axis], (int32_t) - GYRO_I_MAX << 13, (int32_t) + GYRO_I_MAX << 13); if (IS_RC_MODE_ACTIVE(BOXSUPEREXPO) && axis != YAW) { if (ABS(gyroRate / 4) >= pidProfile->rollPitchItermResetRate) errorGyroI[axis] = 0; } if (axis == YAW) { if (ABS(gyroRate / 4) >= pidProfile->yawItermResetRate) errorGyroI[axis] = 0; } if (antiWindupProtection || motorLimitReached) { errorGyroI[axis] = constrain(errorGyroI[axis], -errorGyroILimit[axis], errorGyroILimit[axis]); } else { errorGyroILimit[axis] = ABS(errorGyroI[axis]); } ITerm = errorGyroI[axis] >> 13; //-----calculate D-term if (axis == YAW) { if (pidProfile->yaw_lpf_hz) PTerm = filterApplyPt1(PTerm, &yawFilterState, pidProfile->yaw_lpf_hz, getdT()); DTerm = 0; } else { if (pidProfile->deltaMethod == DELTA_FROM_ERROR) { delta = RateError - lastErrorForDelta[axis]; // 16 bits is ok here, the dif between 2 consecutive gyro reads is limited to 800 lastErrorForDelta[axis] = RateError; } else { delta = -(gyroRate - lastErrorForDelta[axis]); // 16 bits is ok here, the dif between 2 consecutive gyro reads is limited to 800 lastErrorForDelta[axis] = gyroRate; } // Correct difference by cycle time. Cycle time is jittery (can be different 2 times), so calculated difference // would be scaled by different dt each time. Division by dT fixes that. delta = (delta * ((uint16_t) 0xFFFF / ((uint16_t)targetPidLooptime >> 4))) >> 6; // Filter delta if (pidProfile->dterm_lpf_hz) delta = filterApplyPt1((float)delta, &deltaFilterState[axis], pidProfile->dterm_lpf_hz, getdT()); // Apply moving average if (pidProfile->dterm_average_count) delta = filterApplyAverage(delta, pidProfile->dterm_average_count, deltaState[axis]) * 2; DTerm = (delta * pidProfile->D8[axis] * PIDweight[axis] / 100) >> 8; } // -----calculate total PID output axisPID[axis] = PTerm + ITerm + DTerm; if (lowThrottlePidReduction) axisPID[axis] /= 3; #ifdef GTUNE if (FLIGHT_MODE(GTUNE_MODE) && ARMING_FLAG(ARMED)) { calculate_Gtune(axis); } #endif #ifdef BLACKBOX axisPID_P[axis] = PTerm; axisPID_I[axis] = ITerm; axisPID_D[axis] = DTerm; #endif } } void pidSetController(pidControllerType_e type) { switch (type) { default: case PID_CONTROLLER_MWREWRITE: pid_controller = pidMultiWiiRewrite; break; case PID_CONTROLLER_LUX_FLOAT: pid_controller = pidLuxFloat; break; case PID_CONTROLLER_MW23: pid_controller = pidMultiWii23; } }