#include "board.h" #include "mw.h" int16_t gyroADC[3], accADC[3], accSmooth[3], magADC[3]; int16_t acc_25deg = 0; int32_t BaroAlt; int32_t EstAlt; // in cm int16_t BaroPID = 0; int32_t AltHold; int16_t errorAltitudeI = 0; // ************** // gyro+acc IMU // ************** int16_t gyroData[3] = { 0, 0, 0 }; int16_t gyroZero[3] = { 0, 0, 0 }; int16_t angle[2] = { 0, 0 }; // absolute angle inclination in multiple of 0.1 degree 180 deg = 1800 int8_t smallAngle25 = 1; static void getEstimatedAttitude(void); void imuInit(void) { acc_25deg = acc_1G * 0.423f; #ifdef MAG // if mag sensor is enabled, use it if (sensors(SENSOR_MAG)) Mag_init(); #endif } void computeIMU(void) { uint8_t axis; static int16_t gyroADCprevious[3] = { 0, 0, 0 }; int16_t gyroADCp[3]; int16_t gyroADCinter[3]; static uint32_t timeInterleave = 0; static int16_t gyroYawSmooth = 0; if (sensors(SENSOR_ACC)) { ACC_getADC(); getEstimatedAttitude(); } Gyro_getADC(); for (axis = 0; axis < 3; axis++) gyroADCp[axis] = gyroADC[axis]; timeInterleave = micros(); annexCode(); if ((micros() - timeInterleave) > 650) { annex650_overrun_count++; } else { while ((micros() - timeInterleave) < 650); // empirical, interleaving delay between 2 consecutive reads } Gyro_getADC(); for (axis = 0; axis < 3; axis++) { gyroADCinter[axis] = gyroADC[axis] + gyroADCp[axis]; // empirical, we take a weighted value of the current and the previous values gyroData[axis] = (gyroADCinter[axis] + gyroADCprevious[axis] + 1) / 3; gyroADCprevious[axis] = gyroADCinter[axis] / 2; if (!sensors(SENSOR_ACC)) accADC[axis] = 0; } if (feature(FEATURE_GYRO_SMOOTHING)) { static uint8_t Smoothing[3] = { 0, 0, 0 }; static int16_t gyroSmooth[3] = { 0, 0, 0 }; if (Smoothing[0] == 0) { // initialize Smoothing[ROLL] = (cfg.gyro_smoothing_factor >> 16) & 0xff; Smoothing[PITCH] = (cfg.gyro_smoothing_factor >> 8) & 0xff; Smoothing[YAW] = (cfg.gyro_smoothing_factor) & 0xff; } for (axis = 0; axis < 3; axis++) { gyroData[axis] = (gyroSmooth[axis] * (Smoothing[axis] - 1) + gyroData[axis] + 1) / Smoothing[axis]; gyroSmooth[axis] = gyroData[axis]; } } else if (cfg.mixerConfiguration == MULTITYPE_TRI) { gyroData[YAW] = (gyroYawSmooth * 2 + gyroData[YAW] + 1) / 3; gyroYawSmooth = gyroData[YAW]; } } // ************************************************** // Simplified IMU based on "Complementary Filter" // Inspired by http://starlino.com/imu_guide.html // // adapted by ziss_dm : http://www.multiwii.com/forum/viewtopic.php?f=8&t=198 // // The following ideas was used in this project: // 1) Rotation matrix: http://en.wikipedia.org/wiki/Rotation_matrix // 2) Small-angle approximation: http://en.wikipedia.org/wiki/Small-angle_approximation // 3) C. Hastings approximation for atan2() // 4) Optimization tricks: http://www.hackersdelight.org/ // // Currently Magnetometer uses separate CF which is used only // for heading approximation. // // Modified: 19/04/2011 by ziss_dm // Version: V1.1 // // code size deduction and tmp vector intermediate step for vector rotation computation: October 2011 by Alex // ************************************************** //****** advanced users settings ******************* /* Set the Low Pass Filter factor for Magnetometer */ /* Increasing this value would reduce Magnetometer noise (not visible in GUI), but would increase Magnetometer lag time*/ /* Comment this if you do not want filter at all.*/ /* Default WMC value: n/a*/ //#define MG_LPF_FACTOR 4 /* Set the Gyro Weight for Gyro/Acc complementary filter */ /* Increasing this value would reduce and delay Acc influence on the output of the filter*/ /* Default WMC value: 300*/ // #define GYR_CMPF_FACTOR 310.0f #define GYR_CMPF_FACTOR 500.0f /* Set the Gyro Weight for Gyro/Magnetometer complementary filter */ /* Increasing this value would reduce and delay Magnetometer influence on the output of the filter*/ /* Default WMC value: n/a*/ #define GYR_CMPFM_FACTOR 200.0f //****** end of advanced users settings ************* #define INV_GYR_CMPF_FACTOR (1.0f / (GYR_CMPF_FACTOR + 1.0f)) #define INV_GYR_CMPFM_FACTOR (1.0f / (GYR_CMPFM_FACTOR + 1.0f)) #define GYRO_SCALE ((1998 * M_PI)/((32767.0f / 4.0f ) * 180.0f * 1000000.0f)) // 32767 / 16.4lsb/dps for MPU3000 // #define GYRO_SCALE ((2380 * M_PI)/((32767.0f / 4.0f ) * 180.0f * 1000000.0f)) //should be 2279.44 but 2380 gives better result (ITG-3200) // +-2000/sec deg scale //#define GYRO_SCALE ((200.0f * PI)/((32768.0f / 5.0f / 4.0f ) * 180.0f * 1000000.0f) * 1.5f) // +- 200/sec deg scale // 1.5 is emperical, not sure what it means // should be in rad/sec typedef struct fp_vector { float X; float Y; float Z; } t_fp_vector_def; typedef union { float A[3]; t_fp_vector_def V; } t_fp_vector; // Rotate Estimated vector(s) with small angle approximation, according to the gyro data void rotateV(struct fp_vector *v, float *delta) { struct fp_vector v_tmp = *v; v->Z -= delta[ROLL] * v_tmp.X + delta[PITCH] * v_tmp.Y; v->X += delta[ROLL] * v_tmp.Z - delta[YAW] * v_tmp.Y; v->Y += delta[PITCH] * v_tmp.Z + delta[YAW] * v_tmp.X; } static int16_t _atan2f(float y, float x) { // no need for aidsy inaccurate shortcuts on a proper platform return (int16_t)(atan2f(y, x) * (180.0f / M_PI * 10.0f)); } static void getEstimatedAttitude(void) { uint8_t axis; int32_t accMag = 0; static t_fp_vector EstG; static t_fp_vector EstM; #if defined(MG_LPF_FACTOR) static int16_t mgSmooth[3]; #endif static float accTemp[3]; // projection of smoothed and normalized magnetic vector on x/y/z axis, as measured by magnetometer static uint32_t previousT; uint32_t currentT = micros(); float scale, deltaGyroAngle[3]; scale = (currentT - previousT) * GYRO_SCALE; previousT = currentT; // Initialization for (axis = 0; axis < 3; axis++) { deltaGyroAngle[axis] = gyroADC[axis] * scale; if (cfg.acc_lpf_factor > 0) { accTemp[axis] = accTemp[axis] * (1.0f - (1.0f / cfg.acc_lpf_factor)) + accADC[axis] * (1.0f / cfg.acc_lpf_factor); accSmooth[axis] = roundf(accTemp[axis]); // accTemp[axis] = (accTemp[axis] - (accTemp[axis] >> cfg.acc_lpf_factor)) + accADC[axis]; // accSmooth[axis] = accTemp[axis] >> cfg.acc_lpf_factor; } else { accSmooth[axis] = accADC[axis]; } accMag += (int32_t)accSmooth[axis] * accSmooth[axis]; if (sensors(SENSOR_MAG)) { #if defined(MG_LPF_FACTOR) mgSmooth[axis] = (mgSmooth[axis] * (MG_LPF_FACTOR - 1) + magADC[axis]) / MG_LPF_FACTOR; // LPF for Magnetometer values #define MAG_VALUE mgSmooth[axis] #else #define MAG_VALUE magADC[axis] #endif } } accMag = accMag * 100 / ((int32_t)acc_1G * acc_1G); rotateV(&EstG.V, deltaGyroAngle); if (sensors(SENSOR_MAG)) { rotateV(&EstM.V, deltaGyroAngle); } if (abs(accSmooth[ROLL]) < acc_25deg && abs(accSmooth[PITCH]) < acc_25deg && accSmooth[YAW] > 0) smallAngle25 = 1; else smallAngle25 = 0; // Apply complimentary filter (Gyro drift correction) // If accel magnitude >1.4G or <0.6G and ACC vector outside of the limit range => we neutralize the effect of accelerometers in the angle estimation. // To do that, we just skip filter, as EstV already rotated by Gyro if ((36 < accMag && accMag < 196) || smallAngle25) { for (axis = 0; axis < 3; axis++) { // int16_t acc = accSmooth[axis]; EstG.A[axis] = (EstG.A[axis] * GYR_CMPF_FACTOR + accTemp[axis]) * INV_GYR_CMPF_FACTOR; } } if (sensors(SENSOR_MAG)) { for (axis = 0; axis < 3; axis++) EstM.A[axis] = (EstM.A[axis] * GYR_CMPFM_FACTOR + MAG_VALUE) * INV_GYR_CMPFM_FACTOR; } // Attitude of the estimated vector angle[ROLL] = _atan2f(EstG.V.X, EstG.V.Z); angle[PITCH] = _atan2f(EstG.V.Y, EstG.V.Z); #ifdef MAG if (sensors(SENSOR_MAG)) { // Attitude of the cross product vector GxM heading = _atan2f(EstG.V.X * EstM.V.Z - EstG.V.Z * EstM.V.X, EstG.V.Z * EstM.V.Y - EstG.V.Y * EstM.V.Z) / 10; } #endif } #ifdef BARO #define UPDATE_INTERVAL 25000 // 40hz update rate (20hz LPF on acc) #define INIT_DELAY 4000000 // 4 sec initialization delay #define BARO_TAB_SIZE 40 void getEstimatedAltitude(void) { uint8_t index; static uint32_t deadLine = INIT_DELAY; static int16_t BaroHistTab[BARO_TAB_SIZE]; static int8_t BaroHistIdx; static int32_t BaroHigh = 0; static int32_t BaroLow = 0; int32_t temp32; int16_t last; if (currentTime < deadLine) return; deadLine = currentTime + UPDATE_INTERVAL; //**** Alt. Set Point stabilization PID **** //calculate speed for D calculation last = BaroHistTab[BaroHistIdx]; BaroHistTab[BaroHistIdx] = BaroAlt / 10; BaroHigh += BaroHistTab[BaroHistIdx]; index = (BaroHistIdx + (BARO_TAB_SIZE / 2)) % BARO_TAB_SIZE; BaroHigh -= BaroHistTab[index]; BaroLow += BaroHistTab[index]; BaroLow -= last; BaroHistIdx++; if (BaroHistIdx >= BARO_TAB_SIZE) BaroHistIdx = 0; BaroPID = 0; //D temp32 = cfg.D8[PIDALT] * (BaroHigh - BaroLow) / 40; BaroPID -= temp32; EstAlt = BaroHigh * 10 / (BARO_TAB_SIZE / 2); temp32 = AltHold - EstAlt; if (abs(temp32) < 10 && abs(BaroPID) < 10) BaroPID = 0; // remove small D parameter to reduce noise near zero position // P BaroPID += cfg.P8[PIDALT] * constrain(temp32, (-2) * cfg.P8[PIDALT], 2 * cfg.P8[PIDALT]) / 100; BaroPID = constrain(BaroPID, -150, +150); // sum of P and D should be in range 150 // I errorAltitudeI += temp32 * cfg.I8[PIDALT] / 50; errorAltitudeI = constrain(errorAltitudeI, -30000, 30000); temp32 = errorAltitudeI / 500; // I in range +/-60 BaroPID += temp32; } #endif /* BARO */