/* * This file is part of Cleanflight and Betaflight. * * Cleanflight and Betaflight are free software. You can redistribute * this software and/or modify this software under the terms of the * GNU General Public License as published by the Free Software * Foundation, either version 3 of the License, or (at your option) * any later version. * * Cleanflight and Betaflight are distributed in the hope that they * will be useful, but WITHOUT ANY WARRANTY; without even the implied * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this software. * * If not, see . */ #include #include #include #include "platform.h" #ifdef USE_DSHOT #include "build/debug.h" #include "drivers/dma.h" #include "drivers/dma_reqmap.h" #include "drivers/io.h" #include "drivers/nvic.h" #include "drivers/rcc.h" #include "drivers/time.h" #include "drivers/timer.h" #include "drivers/system.h" #if defined(STM32F4) #include "stm32f4xx.h" #elif defined(STM32F3) #include "stm32f30x.h" #endif #include "pwm_output.h" #include "drivers/dshot.h" #include "drivers/dshot_dpwm.h" #include "drivers/dshot_command.h" #include "pwm_output_dshot_shared.h" #ifdef USE_DSHOT_TELEMETRY void dshotEnableChannels(uint8_t motorCount) { for (int i = 0; i < motorCount; i++) { if (dmaMotors[i].output & TIMER_OUTPUT_N_CHANNEL) { TIM_CCxNCmd(dmaMotors[i].timerHardware->tim, dmaMotors[i].timerHardware->channel, TIM_CCxN_Enable); } else { TIM_CCxCmd(dmaMotors[i].timerHardware->tim, dmaMotors[i].timerHardware->channel, TIM_CCx_Enable); } } } #endif FAST_CODE void pwmDshotSetDirectionOutput( motorDmaOutput_t * const motor #ifndef USE_DSHOT_TELEMETRY ,TIM_OCInitTypeDef *pOcInit, DMA_InitTypeDef* pDmaInit #endif ) { #ifdef USE_DSHOT_TELEMETRY TIM_OCInitTypeDef* pOcInit = &motor->ocInitStruct; DMA_InitTypeDef* pDmaInit = &motor->dmaInitStruct; #endif const timerHardware_t * const timerHardware = motor->timerHardware; TIM_TypeDef *timer = timerHardware->tim; dmaResource_t *dmaRef = motor->dmaRef; #if defined(USE_DSHOT_DMAR) && !defined(USE_DSHOT_TELEMETRY) if (useBurstDshot) { dmaRef = timerHardware->dmaTimUPRef; } #endif xDMA_DeInit(dmaRef); #ifdef USE_DSHOT_TELEMETRY motor->isInput = false; #endif timerOCPreloadConfig(timer, timerHardware->channel, TIM_OCPreload_Disable); timerOCInit(timer, timerHardware->channel, pOcInit); timerOCPreloadConfig(timer, timerHardware->channel, TIM_OCPreload_Enable); #ifdef USE_DSHOT_DMAR if (useBurstDshot) { #if defined(STM32F3) pDmaInit->DMA_DIR = DMA_DIR_PeripheralDST; #else pDmaInit->DMA_DIR = DMA_DIR_MemoryToPeripheral; #endif } else #endif { #if defined(STM32F3) pDmaInit->DMA_DIR = DMA_DIR_PeripheralDST; pDmaInit->DMA_M2M = DMA_M2M_Disable; #elif defined(STM32F4) pDmaInit->DMA_DIR = DMA_DIR_MemoryToPeripheral; #endif } xDMA_Init(dmaRef, pDmaInit); xDMA_ITConfig(dmaRef, DMA_IT_TC, ENABLE); } #ifdef USE_DSHOT_TELEMETRY #if defined(STM32F3) CCM_CODE #else FAST_CODE #endif static void pwmDshotSetDirectionInput( motorDmaOutput_t * const motor ) { DMA_InitTypeDef* pDmaInit = &motor->dmaInitStruct; const timerHardware_t * const timerHardware = motor->timerHardware; TIM_TypeDef *timer = timerHardware->tim; dmaResource_t *dmaRef = motor->dmaRef; xDMA_DeInit(dmaRef); motor->isInput = true; if (!inputStampUs) { inputStampUs = micros(); } TIM_ARRPreloadConfig(timer, ENABLE); timer->ARR = 0xffffffff; TIM_ICInit(timer, &motor->icInitStruct); #if defined(STM32F3) motor->dmaInitStruct.DMA_DIR = DMA_DIR_PeripheralSRC; motor->dmaInitStruct.DMA_M2M = DMA_M2M_Disable; #elif defined(STM32F4) motor->dmaInitStruct.DMA_DIR = DMA_DIR_PeripheralToMemory; #endif xDMA_Init(dmaRef, pDmaInit); } #endif void pwmCompleteDshotMotorUpdate(void) { /* If there is a dshot command loaded up, time it correctly with motor update*/ if (!dshotCommandQueueEmpty()) { if (!dshotCommandOutputIsEnabled(dshotPwmDevice.count)) { return; } } for (int i = 0; i < dmaMotorTimerCount; i++) { #ifdef USE_DSHOT_DMAR if (useBurstDshot) { xDMA_SetCurrDataCounter(dmaMotorTimers[i].dmaBurstRef, dmaMotorTimers[i].dmaBurstLength); xDMA_Cmd(dmaMotorTimers[i].dmaBurstRef, ENABLE); TIM_DMAConfig(dmaMotorTimers[i].timer, TIM_DMABase_CCR1, TIM_DMABurstLength_4Transfers); TIM_DMACmd(dmaMotorTimers[i].timer, TIM_DMA_Update, ENABLE); } else #endif { TIM_ARRPreloadConfig(dmaMotorTimers[i].timer, DISABLE); dmaMotorTimers[i].timer->ARR = dmaMotorTimers[i].outputPeriod; TIM_ARRPreloadConfig(dmaMotorTimers[i].timer, ENABLE); TIM_SetCounter(dmaMotorTimers[i].timer, 0); TIM_DMACmd(dmaMotorTimers[i].timer, dmaMotorTimers[i].timerDmaSources, ENABLE); dmaMotorTimers[i].timerDmaSources = 0; } } } #if defined(STM32F3) CCM_CODE #else FAST_CODE #endif static void motor_DMA_IRQHandler(dmaChannelDescriptor_t *descriptor) { if (DMA_GET_FLAG_STATUS(descriptor, DMA_IT_TCIF)) { motorDmaOutput_t * const motor = &dmaMotors[descriptor->userParam]; #ifdef USE_DSHOT_TELEMETRY dshotDMAHandlerCycleCounters.irqAt = getCycleCounter(); #endif #ifdef USE_DSHOT_DMAR if (useBurstDshot) { xDMA_Cmd(motor->timerHardware->dmaTimUPRef, DISABLE); TIM_DMACmd(motor->timerHardware->tim, TIM_DMA_Update, DISABLE); } else #endif { xDMA_Cmd(motor->dmaRef, DISABLE); TIM_DMACmd(motor->timerHardware->tim, motor->timerDmaSource, DISABLE); } #ifdef USE_DSHOT_TELEMETRY if (useDshotTelemetry) { pwmDshotSetDirectionInput(motor); xDMA_SetCurrDataCounter(motor->dmaRef, GCR_TELEMETRY_INPUT_LEN); xDMA_Cmd(motor->dmaRef, ENABLE); TIM_DMACmd(motor->timerHardware->tim, motor->timerDmaSource, ENABLE); dshotDMAHandlerCycleCounters.changeDirectionCompletedAt = getCycleCounter(); } #endif DMA_CLEAR_FLAG(descriptor, DMA_IT_TCIF); } } bool pwmDshotMotorHardwareConfig(const timerHardware_t *timerHardware, uint8_t motorIndex, uint8_t reorderedMotorIndex, motorPwmProtocolTypes_e pwmProtocolType, uint8_t output) { #ifdef USE_DSHOT_TELEMETRY #define OCINIT motor->ocInitStruct #define DMAINIT motor->dmaInitStruct #else TIM_OCInitTypeDef ocInitStruct; DMA_InitTypeDef dmaInitStruct; #define OCINIT ocInitStruct #define DMAINIT dmaInitStruct #endif dmaResource_t *dmaRef = NULL; #if defined(STM32F4) uint32_t dmaChannel = 0; #endif #if defined(USE_DMA_SPEC) const dmaChannelSpec_t *dmaSpec = dmaGetChannelSpecByTimer(timerHardware); if (dmaSpec != NULL) { dmaRef = dmaSpec->ref; #if defined(STM32F4) dmaChannel = dmaSpec->channel; #endif } #else dmaRef = timerHardware->dmaRef; #if defined(STM32F4) dmaChannel = timerHardware->dmaChannel; #endif #endif #ifdef USE_DSHOT_DMAR if (useBurstDshot) { dmaRef = timerHardware->dmaTimUPRef; #if defined(STM32F4) dmaChannel = timerHardware->dmaTimUPChannel; #endif } #endif if (dmaRef == NULL) { return false; } dmaIdentifier_e dmaIdentifier = dmaGetIdentifier(dmaRef); bool dmaIsConfigured = false; #ifdef USE_DSHOT_DMAR if (useBurstDshot) { const resourceOwner_t *owner = dmaGetOwner(dmaIdentifier); if (owner->owner == OWNER_TIMUP && owner->resourceIndex == timerGetTIMNumber(timerHardware->tim)) { dmaIsConfigured = true; } else if (!dmaAllocate(dmaIdentifier, OWNER_TIMUP, timerGetTIMNumber(timerHardware->tim))) { return false; } } else #endif { if (!dmaAllocate(dmaIdentifier, OWNER_MOTOR, RESOURCE_INDEX(reorderedMotorIndex))) { return false; } } motorDmaOutput_t * const motor = &dmaMotors[motorIndex]; TIM_TypeDef *timer = timerHardware->tim; // Boolean configureTimer is always true when different channels of the same timer are processed in sequence, // causing the timer and the associated DMA initialized more than once. // To fix this, getTimerIndex must be expanded to return if a new timer has been requested. // However, since the initialization is idempotent, it is left as is in a favor of flash space (for now). const uint8_t timerIndex = getTimerIndex(timer); const bool configureTimer = (timerIndex == dmaMotorTimerCount-1); motor->timer = &dmaMotorTimers[timerIndex]; motor->index = motorIndex; motor->timerHardware = timerHardware; const IO_t motorIO = IOGetByTag(timerHardware->tag); uint8_t pupMode = 0; pupMode = (output & TIMER_OUTPUT_INVERTED) ? GPIO_PuPd_DOWN : GPIO_PuPd_UP; #ifdef USE_DSHOT_TELEMETRY if (useDshotTelemetry) { output ^= TIMER_OUTPUT_INVERTED; } #endif motor->iocfg = IO_CONFIG(GPIO_Mode_AF, GPIO_Speed_50MHz, GPIO_OType_PP, pupMode); IOConfigGPIOAF(motorIO, motor->iocfg, timerHardware->alternateFunction); if (configureTimer) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_TimeBaseStructInit(&TIM_TimeBaseStructure); RCC_ClockCmd(timerRCC(timer), ENABLE); TIM_Cmd(timer, DISABLE); TIM_TimeBaseStructure.TIM_Prescaler = (uint16_t)(lrintf((float) timerClock(timer) / getDshotHz(pwmProtocolType) + 0.01f) - 1); TIM_TimeBaseStructure.TIM_Period = (pwmProtocolType == PWM_TYPE_PROSHOT1000 ? (MOTOR_NIBBLE_LENGTH_PROSHOT) : MOTOR_BITLENGTH) - 1; TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseStructure.TIM_RepetitionCounter = 0; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(timer, &TIM_TimeBaseStructure); } TIM_OCStructInit(&OCINIT); OCINIT.TIM_OCMode = TIM_OCMode_PWM1; if (output & TIMER_OUTPUT_N_CHANNEL) { OCINIT.TIM_OutputNState = TIM_OutputNState_Enable; OCINIT.TIM_OCNIdleState = TIM_OCNIdleState_Reset; OCINIT.TIM_OCNPolarity = (output & TIMER_OUTPUT_INVERTED) ? TIM_OCNPolarity_Low : TIM_OCNPolarity_High; } else { OCINIT.TIM_OutputState = TIM_OutputState_Enable; OCINIT.TIM_OCIdleState = TIM_OCIdleState_Set; OCINIT.TIM_OCPolarity = (output & TIMER_OUTPUT_INVERTED) ? TIM_OCPolarity_Low : TIM_OCPolarity_High; } OCINIT.TIM_Pulse = 0; #ifdef USE_DSHOT_TELEMETRY TIM_ICStructInit(&motor->icInitStruct); motor->icInitStruct.TIM_ICSelection = TIM_ICSelection_DirectTI; motor->icInitStruct.TIM_ICPolarity = TIM_ICPolarity_BothEdge; motor->icInitStruct.TIM_ICPrescaler = TIM_ICPSC_DIV1; motor->icInitStruct.TIM_Channel = timerHardware->channel; motor->icInitStruct.TIM_ICFilter = 2; #endif #ifdef USE_DSHOT_DMAR if (useBurstDshot) { motor->timer->dmaBurstRef = dmaRef; } else #endif { motor->timerDmaSource = timerDmaSource(timerHardware->channel); motor->timer->timerDmaSources &= ~motor->timerDmaSource; } xDMA_Cmd(dmaRef, DISABLE); xDMA_DeInit(dmaRef); if (!dmaIsConfigured) { dmaEnable(dmaIdentifier); } DMA_StructInit(&DMAINIT); #ifdef USE_DSHOT_DMAR if (useBurstDshot) { motor->timer->dmaBurstBuffer = &dshotBurstDmaBuffer[timerIndex][0]; #if defined(STM32F3) DMAINIT.DMA_MemoryBaseAddr = (uint32_t)motor->timer->dmaBurstBuffer; DMAINIT.DMA_DIR = DMA_DIR_PeripheralDST; #else DMAINIT.DMA_Channel = timerHardware->dmaTimUPChannel; DMAINIT.DMA_Memory0BaseAddr = (uint32_t)motor->timer->dmaBurstBuffer; DMAINIT.DMA_DIR = DMA_DIR_MemoryToPeripheral; DMAINIT.DMA_FIFOMode = DMA_FIFOMode_Enable; DMAINIT.DMA_FIFOThreshold = DMA_FIFOThreshold_Full; DMAINIT.DMA_MemoryBurst = DMA_MemoryBurst_Single; DMAINIT.DMA_PeripheralBurst = DMA_PeripheralBurst_Single; #endif DMAINIT.DMA_PeripheralBaseAddr = (uint32_t)&timerHardware->tim->DMAR; DMAINIT.DMA_BufferSize = (pwmProtocolType == PWM_TYPE_PROSHOT1000) ? PROSHOT_DMA_BUFFER_SIZE : DSHOT_DMA_BUFFER_SIZE; // XXX DMAINIT.DMA_PeripheralInc = DMA_PeripheralInc_Disable; DMAINIT.DMA_MemoryInc = DMA_MemoryInc_Enable; DMAINIT.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Word; DMAINIT.DMA_MemoryDataSize = DMA_MemoryDataSize_Word; DMAINIT.DMA_Mode = DMA_Mode_Normal; DMAINIT.DMA_Priority = DMA_Priority_High; } else #endif { motor->dmaBuffer = &dshotDmaBuffer[motorIndex][0]; #if defined(STM32F3) DMAINIT.DMA_MemoryBaseAddr = (uint32_t)motor->dmaBuffer; DMAINIT.DMA_DIR = DMA_DIR_PeripheralDST; DMAINIT.DMA_M2M = DMA_M2M_Disable; #elif defined(STM32F4) DMAINIT.DMA_Channel = dmaChannel; DMAINIT.DMA_Memory0BaseAddr = (uint32_t)motor->dmaBuffer; DMAINIT.DMA_DIR = DMA_DIR_MemoryToPeripheral; DMAINIT.DMA_FIFOMode = DMA_FIFOMode_Enable; DMAINIT.DMA_FIFOThreshold = DMA_FIFOThreshold_1QuarterFull; DMAINIT.DMA_MemoryBurst = DMA_MemoryBurst_Single; DMAINIT.DMA_PeripheralBurst = DMA_PeripheralBurst_Single; #endif DMAINIT.DMA_PeripheralBaseAddr = (uint32_t)timerChCCR(timerHardware); DMAINIT.DMA_PeripheralInc = DMA_PeripheralInc_Disable; DMAINIT.DMA_MemoryInc = DMA_MemoryInc_Enable; DMAINIT.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Word; DMAINIT.DMA_MemoryDataSize = DMA_MemoryDataSize_Word; DMAINIT.DMA_Mode = DMA_Mode_Normal; DMAINIT.DMA_Priority = DMA_Priority_High; } // XXX Consolidate common settings in the next refactor motor->dmaRef = dmaRef; #ifdef USE_DSHOT_TELEMETRY motor->dshotTelemetryDeadtimeUs = DSHOT_TELEMETRY_DEADTIME_US + 1000000 * (16 * MOTOR_BITLENGTH) / getDshotHz(pwmProtocolType); motor->timer->outputPeriod = (pwmProtocolType == PWM_TYPE_PROSHOT1000 ? (MOTOR_NIBBLE_LENGTH_PROSHOT) : MOTOR_BITLENGTH) - 1; pwmDshotSetDirectionOutput(motor); #else pwmDshotSetDirectionOutput(motor, &OCINIT, &DMAINIT); #endif #ifdef USE_DSHOT_DMAR if (useBurstDshot) { if (!dmaIsConfigured) { dmaSetHandler(dmaIdentifier, motor_DMA_IRQHandler, NVIC_PRIO_DSHOT_DMA, motor->index); } } else #endif { dmaSetHandler(dmaIdentifier, motor_DMA_IRQHandler, NVIC_PRIO_DSHOT_DMA, motor->index); } TIM_Cmd(timer, ENABLE); if (output & TIMER_OUTPUT_N_CHANNEL) { TIM_CCxNCmd(timer, timerHardware->channel, TIM_CCxN_Enable); } else { TIM_CCxCmd(timer, timerHardware->channel, TIM_CCx_Enable); } if (configureTimer) { TIM_ARRPreloadConfig(timer, ENABLE); TIM_CtrlPWMOutputs(timer, ENABLE); TIM_Cmd(timer, ENABLE); } #ifdef USE_DSHOT_TELEMETRY if (useDshotTelemetry) { // avoid high line during startup to prevent bootloader activation *timerChCCR(timerHardware) = 0xffff; } #endif motor->configured = true; return true; } #endif