/* * This file is part of Cleanflight. * * Cleanflight is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Cleanflight is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Cleanflight. If not, see . */ #include #include #include #include "common/axis.h" #include "common/maths.h" #include "config/runtime_config.h" #include "rx/rx.h" #include "drivers/accgyro.h" #include "sensors/sensors.h" #include "sensors/gyro.h" #include "io/rc_controls.h" #include "flight/flight.h" #include "flight/autotune.h" #include "io/gps.h" extern uint16_t cycleTime; int16_t heading, magHold; int16_t axisPID[3]; uint8_t dynP8[3], dynI8[3], dynD8[3]; static int32_t errorGyroI[3] = { 0, 0, 0 }; static float errorGyroIf[3] = { 0.0f, 0.0f, 0.0f }; static int32_t errorAngleI[2] = { 0, 0 }; static void pidMultiWii(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig, uint16_t max_angle_inclination, rollAndPitchTrims_t *angleTrim); typedef void (*pidControllerFuncPtr)(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig, uint16_t max_angle_inclination, rollAndPitchTrims_t *angleTrim); // pid controller function prototype pidControllerFuncPtr pid_controller = pidMultiWii; // which pid controller are we using, defaultMultiWii void resetRollAndPitchTrims(rollAndPitchTrims_t *rollAndPitchTrims) { rollAndPitchTrims->values.roll = 0; rollAndPitchTrims->values.pitch = 0; } void resetErrorAngle(void) { errorAngleI[ROLL] = 0; errorAngleI[PITCH] = 0; } void resetErrorGyro(void) { errorGyroI[ROLL] = 0; errorGyroI[PITCH] = 0; errorGyroI[YAW] = 0; errorGyroIf[ROLL] = 0; errorGyroIf[PITCH] = 0; errorGyroIf[YAW] = 0; } const angle_index_t rcAliasToAngleIndexMap[] = { AI_ROLL, AI_PITCH }; bool shouldAutotune(void) { return f.ARMED && f.AUTOTUNE_MODE; } static void pidBaseflight(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig, uint16_t max_angle_inclination, rollAndPitchTrims_t *angleTrim) { float RateError, errorAngle, AngleRate, gyroRate; float ITerm,PTerm,DTerm; static float lastGyroRate[3]; static float delta1[3], delta2[3]; float delta, deltaSum; float dT; int axis; dT = (float)cycleTime * 0.000001f; // ----------PID controller---------- for (axis = 0; axis < 3; axis++) { // -----Get the desired angle rate depending on flight mode if (axis == FD_YAW) { // YAW is always gyro-controlled (MAG correction is applied to rcCommand) 100dps to 1100dps max yaw rate AngleRate = (float)((controlRateConfig->yawRate + 10) * rcCommand[YAW]) / 50.0f; } else { // calculate error and limit the angle to the max inclination errorAngle = (constrain(rcCommand[axis] + GPS_angle[axis], -((int) max_angle_inclination), +max_angle_inclination) - inclination.raw[axis] + angleTrim->raw[axis]) / 10.0f; // 16 bits is ok here if (shouldAutotune()) { errorAngle = autotune(rcAliasToAngleIndexMap[axis], &inclination, errorAngle); } if (f.ANGLE_MODE) { // it's the ANGLE mode - control is angle based, so control loop is needed AngleRate = errorAngle * pidProfile->A_level; } else { //control is GYRO based (ACRO and HORIZON - direct sticks control is applied to rate PID AngleRate = (float)((controlRateConfig->rollPitchRate + 20) * rcCommand[axis]) / 50.0f; // 200dps to 1200dps max yaw rate if (f.HORIZON_MODE) { // mix up angle error to desired AngleRate to add a little auto-level feel AngleRate += errorAngle * pidProfile->H_level; } } } gyroRate = gyroData[axis] * gyro.scale; // gyro output scaled to dps // --------low-level gyro-based PID. ---------- // Used in stand-alone mode for ACRO, controlled by higher level regulators in other modes // -----calculate scaled error.AngleRates // multiplication of rcCommand corresponds to changing the sticks scaling here RateError = AngleRate - gyroRate; // -----calculate P component PTerm = RateError * pidProfile->P_f[axis]; // -----calculate I component errorGyroIf[axis] = constrainf(errorGyroIf[axis] + RateError * dT * pidProfile->I_f[axis], -250.0f, 250.0f); // limit maximum integrator value to prevent WindUp - accumulating extreme values when system is saturated. // I coefficient (I8) moved before integration to make limiting independent from PID settings ITerm = errorGyroIf[axis]; //-----calculate D-term delta = gyroRate - lastGyroRate[axis]; // 16 bits is ok here, the dif between 2 consecutive gyro reads is limited to 800 lastGyroRate[axis] = gyroRate; // Correct difference by cycle time. Cycle time is jittery (can be different 2 times), so calculated difference // would be scaled by different dt each time. Division by dT fixes that. delta *= (1.0f / dT); // add moving average here to reduce noise deltaSum = delta1[axis] + delta2[axis] + delta; delta2[axis] = delta1[axis]; delta1[axis] = delta; DTerm = constrainf((deltaSum / 3.0f) * pidProfile->D_f[axis], -300.0f, 300.0f); // -----calculate total PID output axisPID[axis] = constrain(lrintf(PTerm + ITerm - DTerm), -1000, 1000); } } static void pidMultiWii(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig, uint16_t max_angle_inclination, rollAndPitchTrims_t *angleTrim) { int axis, prop; int32_t error, errorAngle; int32_t PTerm, ITerm, PTermACC = 0, ITermACC = 0, PTermGYRO = 0, ITermGYRO = 0, DTerm; static int16_t lastGyro[3] = { 0, 0, 0 }; static int32_t delta1[3], delta2[3]; int32_t deltaSum; int32_t delta; // **** PITCH & ROLL & YAW PID **** prop = max(abs(rcCommand[PITCH]), abs(rcCommand[ROLL])); // range [0;500] for (axis = 0; axis < 3; axis++) { if ((f.ANGLE_MODE || f.HORIZON_MODE) && (axis == FD_ROLL || axis == FD_PITCH)) { // MODE relying on ACC // observe max inclination errorAngle = constrain(2 * rcCommand[axis] + GPS_angle[axis], -((int) max_angle_inclination), +max_angle_inclination) - inclination.raw[axis] + angleTrim->raw[axis]; if (shouldAutotune()) { errorAngle = DEGREES_TO_DECIDEGREES(autotune(rcAliasToAngleIndexMap[axis], &inclination, DECIDEGREES_TO_DEGREES(errorAngle))); } PTermACC = errorAngle * pidProfile->P8[PIDLEVEL] / 100; // 32 bits is needed for calculation: errorAngle*P8[PIDLEVEL] could exceed 32768 16 bits is ok for result PTermACC = constrain(PTermACC, -pidProfile->D8[PIDLEVEL] * 5, +pidProfile->D8[PIDLEVEL] * 5); errorAngleI[axis] = constrain(errorAngleI[axis] + errorAngle, -10000, +10000); // WindUp ITermACC = (errorAngleI[axis] * pidProfile->I8[PIDLEVEL]) >> 12; } if (!f.ANGLE_MODE || f.HORIZON_MODE || axis == FD_YAW) { // MODE relying on GYRO or YAW axis error = (int32_t) rcCommand[axis] * 10 * 8 / pidProfile->P8[axis]; error -= gyroData[axis] / 4; PTermGYRO = rcCommand[axis]; errorGyroI[axis] = constrain(errorGyroI[axis] + error, -16000, +16000); // WindUp if ((abs(gyroData[axis]) > 640) || (abs(rcCommand[axis]) > 50)) errorGyroI[axis] = 0; ITermGYRO = (errorGyroI[axis] / 125 * pidProfile->I8[axis]) / 64; } if (f.HORIZON_MODE && (axis == FD_ROLL || axis == FD_PITCH)) { PTerm = (PTermACC * (500 - prop) + PTermGYRO * prop) / 500; ITerm = (ITermACC * (500 - prop) + ITermGYRO * prop) / 500; } else { if (f.ANGLE_MODE && (axis == FD_ROLL || axis == FD_PITCH)) { PTerm = PTermACC; ITerm = ITermACC; } else { PTerm = PTermGYRO; ITerm = ITermGYRO; } } PTerm -= ((int32_t)gyroData[axis] / 4) * dynP8[axis] / 10 / 8; // 32 bits is needed for calculation delta = (gyroData[axis] - lastGyro[axis]) / 4; lastGyro[axis] = gyroData[axis]; deltaSum = delta1[axis] + delta2[axis] + delta; delta2[axis] = delta1[axis]; delta1[axis] = delta; DTerm = (deltaSum * dynD8[axis]) / 32; axisPID[axis] = PTerm + ITerm - DTerm; } } #define GYRO_I_MAX 256 static void pidRewrite(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig, uint16_t max_angle_inclination, rollAndPitchTrims_t *angleTrim) { int32_t errorAngle; int axis; int32_t delta, deltaSum; static int32_t delta1[3], delta2[3]; int32_t PTerm, ITerm, DTerm; static int32_t lastError[3] = { 0, 0, 0 }; int32_t AngleRateTmp, RateError; // ----------PID controller---------- for (axis = 0; axis < 3; axis++) { // -----Get the desired angle rate depending on flight mode if (axis == FD_YAW) { // YAW is always gyro-controlled (MAG correction is applied to rcCommand) AngleRateTmp = (((int32_t)(controlRateConfig->yawRate + 27) * rcCommand[YAW]) >> 5); } else { // calculate error and limit the angle to max configured inclination errorAngle = constrain((rcCommand[axis] << 1) + GPS_angle[axis], -((int) max_angle_inclination), +max_angle_inclination) - inclination.raw[axis] + angleTrim->raw[axis]; // 16 bits is ok here if (shouldAutotune()) { errorAngle = DEGREES_TO_DECIDEGREES(autotune(rcAliasToAngleIndexMap[axis], &inclination, DECIDEGREES_TO_DEGREES(errorAngle))); } if (!f.ANGLE_MODE) { //control is GYRO based (ACRO and HORIZON - direct sticks control is applied to rate PID AngleRateTmp = ((int32_t)(controlRateConfig->rollPitchRate + 27) * rcCommand[axis]) >> 4; if (f.HORIZON_MODE) { // mix up angle error to desired AngleRateTmp to add a little auto-level feel AngleRateTmp += (errorAngle * pidProfile->I8[PIDLEVEL]) >> 8; } } else { // it's the ANGLE mode - control is angle based, so control loop is needed AngleRateTmp = (errorAngle * pidProfile->P8[PIDLEVEL]) >> 4; } } // --------low-level gyro-based PID. ---------- // Used in stand-alone mode for ACRO, controlled by higher level regulators in other modes // -----calculate scaled error.AngleRates // multiplication of rcCommand corresponds to changing the sticks scaling here RateError = AngleRateTmp - (gyroData[axis] / 4); // -----calculate P component PTerm = (RateError * pidProfile->P8[axis]) >> 7; // -----calculate I component // there should be no division before accumulating the error to integrator, because the precision would be reduced. // Precision is critical, as I prevents from long-time drift. Thus, 32 bits integrator is used. // Time correction (to avoid different I scaling for different builds based on average cycle time) // is normalized to cycle time = 2048. errorGyroI[axis] = errorGyroI[axis] + ((RateError * cycleTime) >> 11) * pidProfile->I8[axis]; // limit maximum integrator value to prevent WindUp - accumulating extreme values when system is saturated. // I coefficient (I8) moved before integration to make limiting independent from PID settings errorGyroI[axis] = constrain(errorGyroI[axis], (int32_t) - GYRO_I_MAX << 13, (int32_t) + GYRO_I_MAX << 13); ITerm = errorGyroI[axis] >> 13; //-----calculate D-term delta = RateError - lastError[axis]; // 16 bits is ok here, the dif between 2 consecutive gyro reads is limited to 800 lastError[axis] = RateError; // Correct difference by cycle time. Cycle time is jittery (can be different 2 times), so calculated difference // would be scaled by different dt each time. Division by dT fixes that. delta = (delta * ((uint16_t) 0xFFFF / (cycleTime >> 4))) >> 6; // add moving average here to reduce noise deltaSum = delta1[axis] + delta2[axis] + delta; delta2[axis] = delta1[axis]; delta1[axis] = delta; DTerm = (deltaSum * pidProfile->D8[axis]) >> 8; // -----calculate total PID output axisPID[axis] = PTerm + ITerm + DTerm; } } void setPIDController(int type) { switch (type) { case 0: default: pid_controller = pidMultiWii; break; case 1: pid_controller = pidRewrite; break; case 2: pid_controller = pidBaseflight; } }