/* * This file is part of Betaflight. * * Betaflight is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Betaflight is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Betaflight. If not, see . */ #include #include #include #include "platform.h" #include "io.h" #include "timer.h" #include "pwm_output.h" #include "nvic.h" #include "dma.h" #include "system.h" #include "rcc.h" #ifdef USE_DSHOT #define MAX_DMA_TIMERS 8 #define MOTOR_DSHOT600_MHZ 24 #define MOTOR_DSHOT300_MHZ 12 #define MOTOR_DSHOT150_MHZ 6 #define MOTOR_BIT_0 14 #define MOTOR_BIT_1 29 #define MOTOR_BITLENGTH 39 static uint8_t dmaMotorTimerCount = 0; static motorDmaTimer_t dmaMotorTimers[MAX_DMA_TIMERS]; static motorDmaOutput_t dmaMotors[MAX_SUPPORTED_MOTORS]; uint8_t getTimerIndex(TIM_TypeDef *timer) { for (int i = 0; i < dmaMotorTimerCount; i++) { if (dmaMotorTimers[i].timer == timer) { return i; } } dmaMotorTimers[dmaMotorTimerCount++].timer = timer; return dmaMotorTimerCount-1; } void pwmWriteDigital(uint8_t index, uint16_t value) { motorDmaOutput_t * const motor = &dmaMotors[index]; uint16_t packet = (value << 1) | 0; // Here goes telemetry bit (false for now) // compute checksum int csum = 0; int csum_data = packet; for (int i = 0; i < 3; i++) { csum ^= csum_data; // xor data by nibbles csum_data >>= 4; } csum &= 0xf; // append checksum packet = (packet << 4) | csum; // generate pulses for whole packet for (int i = 0; i < 16; i++) { motor->dmaBuffer[i] = (packet & 0x8000) ? MOTOR_BIT_1 : MOTOR_BIT_0; // MSB first packet <<= 1; } DMA_SetCurrDataCounter(motor->timerHardware->dmaChannel, MOTOR_DMA_BUFFER_SIZE); DMA_Cmd(motor->timerHardware->dmaChannel, ENABLE); } void pwmCompleteDigitalMotorUpdate(uint8_t motorCount) { UNUSED(motorCount); for (uint8_t i = 0; i < dmaMotorTimerCount; i++) { TIM_SetCounter(dmaMotorTimers[i].timer, 0); TIM_DMACmd(dmaMotorTimers[i].timer, dmaMotorTimers[i].timerDmaSources, ENABLE); } } static void motor_DMA_IRQHandler(dmaChannelDescriptor_t *descriptor) { if (DMA_GET_FLAG_STATUS(descriptor, DMA_IT_TCIF)) { motorDmaOutput_t * const motor = &dmaMotors[descriptor->userParam]; DMA_Cmd(descriptor->channel, DISABLE); TIM_DMACmd(motor->timerHardware->tim, motor->timerDmaSource, DISABLE); DMA_CLEAR_FLAG(descriptor, DMA_IT_TCIF); } } void pwmDigitalMotorHardwareConfig(const timerHardware_t *timerHardware, uint8_t motorIndex, motorPwmProtocolTypes_e pwmProtocolType) { TIM_OCInitTypeDef TIM_OCInitStructure; DMA_InitTypeDef DMA_InitStructure; motorDmaOutput_t * const motor = &dmaMotors[motorIndex]; motor->timerHardware = timerHardware; TIM_TypeDef *timer = timerHardware->tim; const IO_t motorIO = IOGetByTag(timerHardware->tag); const uint8_t timerIndex = getTimerIndex(timer); const bool configureTimer = (timerIndex == dmaMotorTimerCount-1); IOInit(motorIO, OWNER_MOTOR, RESOURCE_OUTPUT, 0); IOConfigGPIOAF(motorIO, IO_CONFIG(GPIO_Mode_AF, GPIO_Speed_50MHz, GPIO_OType_PP, GPIO_PuPd_UP), timerHardware->alternateFunction); if (configureTimer) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; RCC_ClockCmd(timerRCC(timer), ENABLE); TIM_Cmd(timer, DISABLE); uint32_t hz; switch (pwmProtocolType) { case(PWM_TYPE_DSHOT600): hz = MOTOR_DSHOT600_MHZ * 1000000; break; case(PWM_TYPE_DSHOT300): hz = MOTOR_DSHOT300_MHZ * 1000000; break; default: case(PWM_TYPE_DSHOT150): hz = MOTOR_DSHOT150_MHZ * 1000000; } TIM_TimeBaseStructure.TIM_Prescaler = (uint16_t)((SystemCoreClock / timerClockDivisor(timer) / hz) - 1); TIM_TimeBaseStructure.TIM_Period = MOTOR_BITLENGTH; TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(timer, &TIM_TimeBaseStructure); } TIM_OCStructInit(&TIM_OCInitStructure); TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; if (timerHardware->output & TIMER_OUTPUT_N_CHANNEL) { TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Disable; TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable; TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set; TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Reset; TIM_OCInitStructure.TIM_OCPolarity = TIM_OCNPolarity_Low; TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_Low; } else { TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Disable; TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset; TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Set; TIM_OCInitStructure.TIM_OCPolarity = TIM_OCNPolarity_High; TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_High; } TIM_OCInitStructure.TIM_Pulse = 0; timerOCInit(timer, timerHardware->channel, &TIM_OCInitStructure); timerOCPreloadConfig(timer, timerHardware->channel, TIM_OCPreload_Enable); motor->timerDmaSource = timerDmaSource(timerHardware->channel); dmaMotorTimers[timerIndex].timerDmaSources |= motor->timerDmaSource; TIM_CCxCmd(timer, timerHardware->channel, TIM_CCx_Enable); if (configureTimer) { TIM_CtrlPWMOutputs(timer, ENABLE); TIM_ARRPreloadConfig(timer, ENABLE); TIM_Cmd(timer, ENABLE); } DMA_Channel_TypeDef *channel = timerHardware->dmaChannel; dmaSetHandler(timerHardware->dmaIrqHandler, motor_DMA_IRQHandler, NVIC_BUILD_PRIORITY(1, 2), motorIndex); DMA_Cmd(channel, DISABLE); DMA_DeInit(channel); DMA_StructInit(&DMA_InitStructure); DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)timerChCCR(timerHardware); DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)motor->dmaBuffer; DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST; DMA_InitStructure.DMA_BufferSize = MOTOR_DMA_BUFFER_SIZE; DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Word; DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Word; DMA_InitStructure.DMA_Mode = DMA_Mode_Normal; DMA_InitStructure.DMA_Priority = DMA_Priority_High; DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; DMA_Init(channel, &DMA_InitStructure); DMA_ITConfig(channel, DMA_IT_TC, ENABLE); } #endif