/*
* This file is part of Betaflight.
*
* Betaflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Betaflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Betaflight. If not, see .
*/
#include
#include
#include
#include "platform.h"
#include "io.h"
#include "timer.h"
#include "pwm_output.h"
#include "nvic.h"
#include "dma.h"
#include "system.h"
#include "rcc.h"
#ifdef USE_DSHOT
#define MAX_DMA_TIMERS 8
#define MOTOR_DSHOT600_MHZ 24
#define MOTOR_DSHOT300_MHZ 12
#define MOTOR_DSHOT150_MHZ 6
#define MOTOR_BIT_0 14
#define MOTOR_BIT_1 29
#define MOTOR_BITLENGTH 39
static uint8_t dmaMotorTimerCount = 0;
static motorDmaTimer_t dmaMotorTimers[MAX_DMA_TIMERS];
static motorDmaOutput_t dmaMotors[MAX_SUPPORTED_MOTORS];
uint8_t getTimerIndex(TIM_TypeDef *timer)
{
for (int i = 0; i < dmaMotorTimerCount; i++) {
if (dmaMotorTimers[i].timer == timer) {
return i;
}
}
dmaMotorTimers[dmaMotorTimerCount++].timer = timer;
return dmaMotorTimerCount-1;
}
void pwmWriteDigital(uint8_t index, uint16_t value)
{
motorDmaOutput_t * const motor = &dmaMotors[index];
uint16_t packet = (value << 1) | 0; // Here goes telemetry bit (false for now)
// compute checksum
int csum = 0;
int csum_data = packet;
for (int i = 0; i < 3; i++) {
csum ^= csum_data; // xor data by nibbles
csum_data >>= 4;
}
csum &= 0xf;
// append checksum
packet = (packet << 4) | csum;
// generate pulses for whole packet
for (int i = 0; i < 16; i++) {
motor->dmaBuffer[i] = (packet & 0x8000) ? MOTOR_BIT_1 : MOTOR_BIT_0; // MSB first
packet <<= 1;
}
DMA_SetCurrDataCounter(motor->timerHardware->dmaChannel, MOTOR_DMA_BUFFER_SIZE);
DMA_Cmd(motor->timerHardware->dmaChannel, ENABLE);
}
void pwmCompleteDigitalMotorUpdate(uint8_t motorCount)
{
UNUSED(motorCount);
for (uint8_t i = 0; i < dmaMotorTimerCount; i++) {
TIM_SetCounter(dmaMotorTimers[i].timer, 0);
TIM_DMACmd(dmaMotorTimers[i].timer, dmaMotorTimers[i].timerDmaSources, ENABLE);
}
}
static void motor_DMA_IRQHandler(dmaChannelDescriptor_t *descriptor)
{
if (DMA_GET_FLAG_STATUS(descriptor, DMA_IT_TCIF)) {
motorDmaOutput_t * const motor = &dmaMotors[descriptor->userParam];
DMA_Cmd(descriptor->channel, DISABLE);
TIM_DMACmd(motor->timerHardware->tim, motor->timerDmaSource, DISABLE);
DMA_CLEAR_FLAG(descriptor, DMA_IT_TCIF);
}
}
void pwmDigitalMotorHardwareConfig(const timerHardware_t *timerHardware, uint8_t motorIndex, motorPwmProtocolTypes_e pwmProtocolType)
{
TIM_OCInitTypeDef TIM_OCInitStructure;
DMA_InitTypeDef DMA_InitStructure;
motorDmaOutput_t * const motor = &dmaMotors[motorIndex];
motor->timerHardware = timerHardware;
TIM_TypeDef *timer = timerHardware->tim;
const IO_t motorIO = IOGetByTag(timerHardware->tag);
const uint8_t timerIndex = getTimerIndex(timer);
const bool configureTimer = (timerIndex == dmaMotorTimerCount-1);
IOInit(motorIO, OWNER_MOTOR, RESOURCE_OUTPUT, 0);
IOConfigGPIOAF(motorIO, IO_CONFIG(GPIO_Mode_AF, GPIO_Speed_50MHz, GPIO_OType_PP, GPIO_PuPd_UP), timerHardware->alternateFunction);
if (configureTimer) {
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
RCC_ClockCmd(timerRCC(timer), ENABLE);
TIM_Cmd(timer, DISABLE);
uint32_t hz;
switch (pwmProtocolType) {
case(PWM_TYPE_DSHOT600):
hz = MOTOR_DSHOT600_MHZ * 1000000;
break;
case(PWM_TYPE_DSHOT300):
hz = MOTOR_DSHOT300_MHZ * 1000000;
break;
default:
case(PWM_TYPE_DSHOT150):
hz = MOTOR_DSHOT150_MHZ * 1000000;
}
TIM_TimeBaseStructure.TIM_Prescaler = (uint16_t)((SystemCoreClock / timerClockDivisor(timer) / hz) - 1);
TIM_TimeBaseStructure.TIM_Period = MOTOR_BITLENGTH;
TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(timer, &TIM_TimeBaseStructure);
}
TIM_OCStructInit(&TIM_OCInitStructure);
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
if (timerHardware->output & TIMER_OUTPUT_N_CHANNEL) {
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Disable;
TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set;
TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Reset;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCNPolarity_Low;
TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_Low;
} else {
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Disable;
TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset;
TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Set;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCNPolarity_High;
TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_High;
}
TIM_OCInitStructure.TIM_Pulse = 0;
timerOCInit(timer, timerHardware->channel, &TIM_OCInitStructure);
timerOCPreloadConfig(timer, timerHardware->channel, TIM_OCPreload_Enable);
motor->timerDmaSource = timerDmaSource(timerHardware->channel);
dmaMotorTimers[timerIndex].timerDmaSources |= motor->timerDmaSource;
TIM_CCxCmd(timer, timerHardware->channel, TIM_CCx_Enable);
if (configureTimer) {
TIM_CtrlPWMOutputs(timer, ENABLE);
TIM_ARRPreloadConfig(timer, ENABLE);
TIM_Cmd(timer, ENABLE);
}
DMA_Channel_TypeDef *channel = timerHardware->dmaChannel;
dmaSetHandler(timerHardware->dmaIrqHandler, motor_DMA_IRQHandler, NVIC_BUILD_PRIORITY(1, 2), motorIndex);
DMA_Cmd(channel, DISABLE);
DMA_DeInit(channel);
DMA_StructInit(&DMA_InitStructure);
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)timerChCCR(timerHardware);
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)motor->dmaBuffer;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST;
DMA_InitStructure.DMA_BufferSize = MOTOR_DMA_BUFFER_SIZE;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Word;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Word;
DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(channel, &DMA_InitStructure);
DMA_ITConfig(channel, DMA_IT_TC, ENABLE);
}
#endif