/* * This file is part of Cleanflight. * * Cleanflight is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Cleanflight is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Cleanflight. If not, see . */ #include #include #include #include #include "build_config.h" #include "io.h" #include "system.h" #include "bus_i2c.h" #include "nvic.h" #include "io_impl.h" #include "rcc.h" #ifndef SOFT_I2C #define CLOCKSPEED 800000 // i2c clockspeed 400kHz default (conform specs), 800kHz and 1200kHz (Betaflight default) static void i2c_er_handler(I2CDevice device); static void i2c_ev_handler(I2CDevice device); static void i2cUnstick(IO_t scl, IO_t sda); #define GPIO_AF_I2C GPIO_AF_I2C1 #ifdef STM32F4 #if defined(USE_I2C_PULLUP) #define IOCFG_I2C IO_CONFIG(GPIO_Mode_AF, 0, GPIO_OType_OD, GPIO_PuPd_UP) #else #define IOCFG_I2C IOCFG_AF_OD #endif #ifndef I2C1_SCL #define I2C1_SCL PB8 #endif #ifndef I2C1_SDA #define I2C1_SDA PB9 #endif #else #ifndef I2C1_SCL #define I2C1_SCL PB6 #endif #ifndef I2C1_SDA #define I2C1_SDA PB7 #endif #endif #ifndef I2C2_SCL #define I2C2_SCL PB10 #endif #ifndef I2C2_SDA #define I2C2_SDA PB11 #endif #ifdef STM32F4 #ifndef I2C3_SCL #define I2C3_SCL PA8 #endif #ifndef I2C3_SDA #define I2C3_SDA PB4 #endif #endif static i2cDevice_t i2cHardwareMap[] = { { .dev = I2C1, .scl = IO_TAG(I2C1_SCL), .sda = IO_TAG(I2C1_SDA), .rcc = RCC_APB1(I2C1), .overClock = I2C1_OVERCLOCK, .ev_irq = I2C1_EV_IRQn, .er_irq = I2C1_ER_IRQn }, { .dev = I2C2, .scl = IO_TAG(I2C2_SCL), .sda = IO_TAG(I2C2_SDA), .rcc = RCC_APB1(I2C2), .overClock = I2C2_OVERCLOCK, .ev_irq = I2C2_EV_IRQn, .er_irq = I2C2_ER_IRQn }, #ifdef STM32F4 { .dev = I2C3, .scl = IO_TAG(I2C3_SCL), .sda = IO_TAG(I2C3_SDA), .rcc = RCC_APB1(I2C3), .overClock = I2C2_OVERCLOCK, .ev_irq = I2C3_EV_IRQn, .er_irq = I2C3_ER_IRQn } #endif }; static volatile uint16_t i2cErrorCount = 0; static i2cState_t i2cState[] = { { false, false, 0, 0, 0, 0, 0, 0, 0 }, { false, false, 0, 0, 0, 0, 0, 0, 0 }, { false, false, 0, 0, 0, 0, 0, 0, 0 } }; void I2C1_ER_IRQHandler(void) { i2c_er_handler(I2CDEV_1); } void I2C1_EV_IRQHandler(void) { i2c_ev_handler(I2CDEV_1); } void I2C2_ER_IRQHandler(void) { i2c_er_handler(I2CDEV_2); } void I2C2_EV_IRQHandler(void) { i2c_ev_handler(I2CDEV_2); } #ifdef STM32F4 void I2C3_ER_IRQHandler(void) { i2c_er_handler(I2CDEV_3); } void I2C3_EV_IRQHandler(void) { i2c_ev_handler(I2CDEV_3); } #endif static bool i2cHandleHardwareFailure(I2CDevice device) { i2cErrorCount++; // reinit peripheral + clock out garbage i2cInit(device); return false; } bool i2cWriteBuffer(I2CDevice device, uint8_t addr_, uint8_t reg_, uint8_t len_, uint8_t *data) { if (device == I2CINVALID) return false; uint32_t timeout = I2C_DEFAULT_TIMEOUT; I2C_TypeDef *I2Cx; I2Cx = i2cHardwareMap[device].dev; i2cState_t *state; state = &(i2cState[device]); state->addr = addr_ << 1; state->reg = reg_; state->writing = 1; state->reading = 0; state->write_p = data; state->read_p = data; state->bytes = len_; state->busy = 1; state->error = false; if (!(I2Cx->CR2 & I2C_IT_EVT)) { // if we are restarting the driver if (!(I2Cx->CR1 & I2C_CR1_START)) { // ensure sending a start while (I2Cx->CR1 & I2C_CR1_STOP && --timeout > 0) {; } // wait for any stop to finish sending if (timeout == 0) return i2cHandleHardwareFailure(device); I2C_GenerateSTART(I2Cx, ENABLE); // send the start for the new job } I2C_ITConfig(I2Cx, I2C_IT_EVT | I2C_IT_ERR, ENABLE); // allow the interrupts to fire off again } timeout = I2C_DEFAULT_TIMEOUT; while (state->busy && --timeout > 0) {; } if (timeout == 0) return i2cHandleHardwareFailure(device); return !(state->error); } bool i2cWrite(I2CDevice device, uint8_t addr_, uint8_t reg_, uint8_t data) { return i2cWriteBuffer(device, addr_, reg_, 1, &data); } bool i2cRead(I2CDevice device, uint8_t addr_, uint8_t reg_, uint8_t len, uint8_t* buf) { if (device == I2CINVALID) return false; uint32_t timeout = I2C_DEFAULT_TIMEOUT; I2C_TypeDef *I2Cx; I2Cx = i2cHardwareMap[device].dev; i2cState_t *state; state = &(i2cState[device]); state->addr = addr_ << 1; state->reg = reg_; state->writing = 0; state->reading = 1; state->read_p = buf; state->write_p = buf; state->bytes = len; state->busy = 1; state->error = false; if (!(I2Cx->CR2 & I2C_IT_EVT)) { // if we are restarting the driver if (!(I2Cx->CR1 & I2C_CR1_START)) { // ensure sending a start while (I2Cx->CR1 & I2C_CR1_STOP && --timeout > 0) {; } // wait for any stop to finish sending if (timeout == 0) return i2cHandleHardwareFailure(device); I2C_GenerateSTART(I2Cx, ENABLE); // send the start for the new job } I2C_ITConfig(I2Cx, I2C_IT_EVT | I2C_IT_ERR, ENABLE); // allow the interrupts to fire off again } timeout = I2C_DEFAULT_TIMEOUT; while (state->busy && --timeout > 0) {; } if (timeout == 0) return i2cHandleHardwareFailure(device); return !(state->error); } static void i2c_er_handler(I2CDevice device) { I2C_TypeDef *I2Cx; I2Cx = i2cHardwareMap[device].dev; i2cState_t *state; state = &(i2cState[device]); // Read the I2C1 status register volatile uint32_t SR1Register = I2Cx->SR1; if (SR1Register & 0x0F00) // an error state->error = true; // If AF, BERR or ARLO, abandon the current job and commence new if there are jobs if (SR1Register & 0x0700) { (void)I2Cx->SR2; // read second status register to clear ADDR if it is set (note that BTF will not be set after a NACK) I2C_ITConfig(I2Cx, I2C_IT_BUF, DISABLE); // disable the RXNE/TXE interrupt - prevent the ISR tailchaining onto the ER (hopefully) if (!(SR1Register & I2C_SR1_ARLO) && !(I2Cx->CR1 & I2C_CR1_STOP)) { // if we dont have an ARLO error, ensure sending of a stop if (I2Cx->CR1 & I2C_CR1_START) { // We are currently trying to send a start, this is very bad as start, stop will hang the peripheral while (I2Cx->CR1 & I2C_CR1_START) {; } // wait for any start to finish sending I2C_GenerateSTOP(I2Cx, ENABLE); // send stop to finalise bus transaction while (I2Cx->CR1 & I2C_CR1_STOP) {; } // wait for stop to finish sending i2cInit(device); // reset and configure the hardware } else { I2C_GenerateSTOP(I2Cx, ENABLE); // stop to free up the bus I2C_ITConfig(I2Cx, I2C_IT_EVT | I2C_IT_ERR, DISABLE); // Disable EVT and ERR interrupts while bus inactive } } } I2Cx->SR1 &= ~0x0F00; // reset all the error bits to clear the interrupt state->busy = 0; } void i2c_ev_handler(I2CDevice device) { I2C_TypeDef *I2Cx; I2Cx = i2cHardwareMap[device].dev; i2cState_t *state; state = &(i2cState[device]); static uint8_t subaddress_sent, final_stop; // flag to indicate if subaddess sent, flag to indicate final bus condition static int8_t index; // index is signed -1 == send the subaddress uint8_t SReg_1 = I2Cx->SR1; // read the status register here if (SReg_1 & I2C_SR1_SB) { // we just sent a start - EV5 in ref manual I2Cx->CR1 &= ~I2C_CR1_POS; // reset the POS bit so ACK/NACK applied to the current byte I2C_AcknowledgeConfig(I2Cx, ENABLE); // make sure ACK is on index = 0; // reset the index if (state->reading && (subaddress_sent || 0xFF == state->reg)) { // we have sent the subaddr subaddress_sent = 1; // make sure this is set in case of no subaddress, so following code runs correctly if (state->bytes == 2) I2Cx->CR1 |= I2C_CR1_POS; // set the POS bit so NACK applied to the final byte in the two byte read I2C_Send7bitAddress(I2Cx, state->addr, I2C_Direction_Receiver); // send the address and set hardware mode } else { // direction is Tx, or we havent sent the sub and rep start I2C_Send7bitAddress(I2Cx, state->addr, I2C_Direction_Transmitter); // send the address and set hardware mode if (state->reg != 0xFF) // 0xFF as subaddress means it will be ignored, in Tx or Rx mode index = -1; // send a subaddress } } else if (SReg_1 & I2C_SR1_ADDR) { // we just sent the address - EV6 in ref manual // Read SR1,2 to clear ADDR __DMB(); // memory fence to control hardware if (state->bytes == 1 && state->reading && subaddress_sent) { // we are receiving 1 byte - EV6_3 I2C_AcknowledgeConfig(I2Cx, DISABLE); // turn off ACK __DMB(); (void)I2Cx->SR2; // clear ADDR after ACK is turned off I2C_GenerateSTOP(I2Cx, ENABLE); // program the stop final_stop = 1; I2C_ITConfig(I2Cx, I2C_IT_BUF, ENABLE); // allow us to have an EV7 } else { // EV6 and EV6_1 (void)I2Cx->SR2; // clear the ADDR here __DMB(); if (state->bytes == 2 && state->reading && subaddress_sent) { // rx 2 bytes - EV6_1 I2C_AcknowledgeConfig(I2Cx, DISABLE); // turn off ACK I2C_ITConfig(I2Cx, I2C_IT_BUF, DISABLE); // disable TXE to allow the buffer to fill } else if (state->bytes == 3 && state->reading && subaddress_sent) // rx 3 bytes I2C_ITConfig(I2Cx, I2C_IT_BUF, DISABLE); // make sure RXNE disabled so we get a BTF in two bytes time else // receiving greater than three bytes, sending subaddress, or transmitting I2C_ITConfig(I2Cx, I2C_IT_BUF, ENABLE); } } else if (SReg_1 & I2C_SR1_BTF) { // Byte transfer finished - EV7_2, EV7_3 or EV8_2 final_stop = 1; if (state->reading && subaddress_sent) { // EV7_2, EV7_3 if (state->bytes > 2) { // EV7_2 I2C_AcknowledgeConfig(I2Cx, DISABLE); // turn off ACK state->read_p[index++] = (uint8_t)I2Cx->DR; // read data N-2 I2C_GenerateSTOP(I2Cx, ENABLE); // program the Stop final_stop = 1; // required to fix hardware state->read_p[index++] = (uint8_t)I2Cx->DR; // read data N - 1 I2C_ITConfig(I2Cx, I2C_IT_BUF, ENABLE); // enable TXE to allow the final EV7 } else { // EV7_3 if (final_stop) I2C_GenerateSTOP(I2Cx, ENABLE); // program the Stop else I2C_GenerateSTART(I2Cx, ENABLE); // program a rep start state->read_p[index++] = (uint8_t)I2Cx->DR; // read data N - 1 state->read_p[index++] = (uint8_t)I2Cx->DR; // read data N index++; // to show job completed } } else { // EV8_2, which may be due to a subaddress sent or a write completion if (subaddress_sent || (state->writing)) { if (final_stop) I2C_GenerateSTOP(I2Cx, ENABLE); // program the Stop else I2C_GenerateSTART(I2Cx, ENABLE); // program a rep start index++; // to show that the job is complete } else { // We need to send a subaddress I2C_GenerateSTART(I2Cx, ENABLE); // program the repeated Start subaddress_sent = 1; // this is set back to zero upon completion of the current task } } // we must wait for the start to clear, otherwise we get constant BTF while (I2Cx->CR1 & 0x0100) {; } } else if (SReg_1 & I2C_SR1_RXNE) { // Byte received - EV7 state->read_p[index++] = (uint8_t)I2Cx->DR; if (state->bytes == (index + 3)) I2C_ITConfig(I2Cx, I2C_IT_BUF, DISABLE); // disable TXE to allow the buffer to flush so we can get an EV7_2 if (state->bytes == index) // We have completed a final EV7 index++; // to show job is complete } else if (SReg_1 & I2C_SR1_TXE) { // Byte transmitted EV8 / EV8_1 if (index != -1) { // we dont have a subaddress to send I2Cx->DR = state->write_p[index++]; if (state->bytes == index) // we have sent all the data I2C_ITConfig(I2Cx, I2C_IT_BUF, DISABLE); // disable TXE to allow the buffer to flush } else { index++; I2Cx->DR = state->reg; // send the subaddress if (state->reading || !(state->bytes)) // if receiving or sending 0 bytes, flush now I2C_ITConfig(I2Cx, I2C_IT_BUF, DISABLE); // disable TXE to allow the buffer to flush } } if (index == state->bytes + 1) { // we have completed the current job subaddress_sent = 0; // reset this here if (final_stop) // If there is a final stop and no more jobs, bus is inactive, disable interrupts to prevent BTF I2C_ITConfig(I2Cx, I2C_IT_EVT | I2C_IT_ERR, DISABLE); // Disable EVT and ERR interrupts while bus inactive state->busy = 0; } } void i2cInit(I2CDevice device) { if (device == I2CINVALID) return; i2cDevice_t *i2c; i2c = &(i2cHardwareMap[device]); NVIC_InitTypeDef nvic; I2C_InitTypeDef i2cInit; IO_t scl = IOGetByTag(i2c->scl); IO_t sda = IOGetByTag(i2c->sda); IOInit(scl, OWNER_SYSTEM, RESOURCE_I2C); IOInit(sda, OWNER_SYSTEM, RESOURCE_I2C); // Enable RCC RCC_ClockCmd(i2c->rcc, ENABLE); I2C_ITConfig(i2c->dev, I2C_IT_EVT | I2C_IT_ERR, DISABLE); i2cUnstick(scl, sda); // Init pins #ifdef STM32F4 IOConfigGPIOAF(scl, IOCFG_I2C, GPIO_AF_I2C); IOConfigGPIOAF(sda, IOCFG_I2C, GPIO_AF_I2C); #else IOConfigGPIO(scl, IOCFG_AF_OD); IOConfigGPIO(sda, IOCFG_AF_OD); #endif I2C_DeInit(i2c->dev); I2C_StructInit(&i2cInit); I2C_ITConfig(i2c->dev, I2C_IT_EVT | I2C_IT_ERR, DISABLE); // Disable EVT and ERR interrupts - they are enabled by the first request i2cInit.I2C_Mode = I2C_Mode_I2C; i2cInit.I2C_DutyCycle = I2C_DutyCycle_2; i2cInit.I2C_OwnAddress1 = 0; i2cInit.I2C_Ack = I2C_Ack_Enable; i2cInit.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit; if (i2c->overClock) { i2cInit.I2C_ClockSpeed = 800000; // 800khz Maximum speed tested on various boards without issues } else { i2cInit.I2C_ClockSpeed = 400000; // 400khz Operation according specs } I2C_Cmd(i2c->dev, ENABLE); I2C_Init(i2c->dev, &i2cInit); // I2C ER Interrupt nvic.NVIC_IRQChannel = i2c->er_irq; nvic.NVIC_IRQChannelPreemptionPriority = NVIC_PRIORITY_BASE(NVIC_PRIO_I2C_ER); nvic.NVIC_IRQChannelSubPriority = NVIC_PRIORITY_SUB(NVIC_PRIO_I2C_ER); nvic.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&nvic); // I2C EV Interrupt nvic.NVIC_IRQChannel = i2c->ev_irq; nvic.NVIC_IRQChannelPreemptionPriority = NVIC_PRIORITY_BASE(NVIC_PRIO_I2C_EV); nvic.NVIC_IRQChannelSubPriority = NVIC_PRIORITY_SUB(NVIC_PRIO_I2C_EV); NVIC_Init(&nvic); } uint16_t i2cGetErrorCounter(void) { return i2cErrorCount; } static void i2cUnstick(IO_t scl, IO_t sda) { int i; int timeout = 100; IOHi(scl); IOHi(sda); IOConfigGPIO(scl, IOCFG_OUT_OD); IOConfigGPIO(sda, IOCFG_OUT_OD); for (i = 0; i < 8; i++) { // Wait for any clock stretching to finish while (!IORead(scl) && timeout) { delayMicroseconds(10); timeout--; } // Pull low IOLo(scl); // Set bus low delayMicroseconds(10); IOHi(scl); // Set bus high delayMicroseconds(10); } // Generate a start then stop condition IOLo(sda); // Set bus data low delayMicroseconds(10); IOLo(scl); // Set bus scl low delayMicroseconds(10); IOHi(scl); // Set bus scl high delayMicroseconds(10); IOHi(sda); // Set bus sda high } #endif