/* * This file is part of Cleanflight. * * Cleanflight is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Cleanflight is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Cleanflight. If not, see . */ #include #include #include #include #include "platform.h" #include "blackbox/blackbox.h" #include "common/axis.h" #include "common/color.h" #include "common/maths.h" #include "common/printf.h" #include "drivers/nvic.h" #include "drivers/sensor.h" #include "drivers/system.h" #include "drivers/dma.h" #include "drivers/gpio.h" #include "drivers/io.h" #include "drivers/light_led.h" #include "drivers/sound_beeper.h" #include "drivers/timer.h" #include "drivers/serial.h" #include "drivers/serial_softserial.h" #include "drivers/serial_uart.h" #include "drivers/accgyro.h" #include "drivers/compass.h" #include "drivers/pwm_rx.h" #include "drivers/pwm_output.h" #include "drivers/adc.h" #include "drivers/bus_i2c.h" #include "drivers/bus_spi.h" #include "drivers/inverter.h" #include "drivers/flash_m25p16.h" #include "drivers/sonar_hcsr04.h" #include "drivers/sdcard.h" #include "drivers/usb_io.h" #include "drivers/transponder_ir.h" #include "drivers/io.h" #include "drivers/exti.h" #include "drivers/vtx_soft_spi_rtc6705.h" #ifdef USE_BST #include "bus_bst.h" #endif #include "fc/config.h" #include "fc/fc_tasks.h" #include "fc/fc_msp.h" #include "fc/rc_controls.h" #include "fc/runtime_config.h" #include "msp/msp_serial.h" #include "rx/rx.h" #include "rx/spektrum.h" #include "io/beeper.h" #include "io/serial.h" #include "io/flashfs.h" #include "io/gps.h" #include "io/motors.h" #include "io/servos.h" #include "io/gimbal.h" #include "io/ledstrip.h" #include "io/display.h" #include "io/asyncfatfs/asyncfatfs.h" #include "io/serial_cli.h" #include "io/transponder_ir.h" #include "io/cms_types.h" #include "io/cms.h" #include "io/osd.h" #include "io/vtx.h" #include "scheduler/scheduler.h" #include "sensors/sensors.h" #include "sensors/sonar.h" #include "sensors/barometer.h" #include "sensors/compass.h" #include "sensors/acceleration.h" #include "sensors/gyro.h" #include "sensors/battery.h" #include "sensors/boardalignment.h" #include "sensors/initialisation.h" #include "telemetry/telemetry.h" #include "flight/pid.h" #include "flight/imu.h" #include "flight/mixer.h" #include "flight/failsafe.h" #include "flight/navigation.h" #include "config/config_eeprom.h" #include "config/config_profile.h" #include "config/config_master.h" #include "config/feature.h" #ifdef USE_HARDWARE_REVISION_DETECTION #include "hardware_revision.h" #endif #include "build/build_config.h" #include "build/debug.h" extern uint8_t motorControlEnable; #ifdef SOFTSERIAL_LOOPBACK serialPort_t *loopbackPort; #endif #ifdef USE_DPRINTF #include "common/printf.h" #define DPRINTF_SERIAL_PORT SERIAL_PORT_USART3 serialPort_t *debugSerialPort = NULL; #define dprintf(x) if (debugSerialPort) printf x #else #define dprintf(x) #endif typedef enum { SYSTEM_STATE_INITIALISING = 0, SYSTEM_STATE_CONFIG_LOADED = (1 << 0), SYSTEM_STATE_SENSORS_READY = (1 << 1), SYSTEM_STATE_MOTORS_READY = (1 << 2), SYSTEM_STATE_TRANSPONDER_ENABLED = (1 << 3), SYSTEM_STATE_READY = (1 << 7) } systemState_e; static uint8_t systemState = SYSTEM_STATE_INITIALISING; void init(void) { printfSupportInit(); initEEPROM(); ensureEEPROMContainsValidData(); readEEPROM(); systemState |= SYSTEM_STATE_CONFIG_LOADED; systemInit(); //i2cSetOverclock(masterConfig.i2c_overclock); // initialize IO (needed for all IO operations) IOInitGlobal(); debugMode = masterConfig.debug_mode; #ifdef USE_HARDWARE_REVISION_DETECTION detectHardwareRevision(); #endif // Latch active features to be used for feature() in the remainder of init(). latchActiveFeatures(); #ifdef ALIENFLIGHTF3 ledInit(hardwareRevision == AFF3_REV_1 ? false : true); #else ledInit(false); #endif LED2_ON; #ifdef USE_EXTI EXTIInit(); #endif #if defined(BUTTONS) gpio_config_t buttonAGpioConfig = { BUTTON_A_PIN, Mode_IPU, Speed_2MHz }; gpioInit(BUTTON_A_PORT, &buttonAGpioConfig); gpio_config_t buttonBGpioConfig = { BUTTON_B_PIN, Mode_IPU, Speed_2MHz }; gpioInit(BUTTON_B_PORT, &buttonBGpioConfig); // Check status of bind plug and exit if not active delayMicroseconds(10); // allow GPIO configuration to settle if (!isMPUSoftReset()) { uint8_t secondsRemaining = 5; bool bothButtonsHeld; do { bothButtonsHeld = !digitalIn(BUTTON_A_PORT, BUTTON_A_PIN) && !digitalIn(BUTTON_B_PORT, BUTTON_B_PIN); if (bothButtonsHeld) { if (--secondsRemaining == 0) { resetEEPROM(); systemReset(); } delay(1000); LED0_TOGGLE; } } while (bothButtonsHeld); } #endif #ifdef SPEKTRUM_BIND if (feature(FEATURE_RX_SERIAL)) { switch (masterConfig.rxConfig.serialrx_provider) { case SERIALRX_SPEKTRUM1024: case SERIALRX_SPEKTRUM2048: // Spektrum satellite binding if enabled on startup. // Must be called before that 100ms sleep so that we don't lose satellite's binding window after startup. // The rest of Spektrum initialization will happen later - via spektrumInit() spektrumBind(&masterConfig.rxConfig); break; } } #endif delay(100); timerInit(); // timer must be initialized before any channel is allocated dmaInit(); #if defined(AVOID_UART1_FOR_PWM_PPM) serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL), feature(FEATURE_RX_PPM) || feature(FEATURE_RX_PARALLEL_PWM) ? SERIAL_PORT_USART1 : SERIAL_PORT_NONE); #elif defined(AVOID_UART2_FOR_PWM_PPM) serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL), feature(FEATURE_RX_PPM) || feature(FEATURE_RX_PARALLEL_PWM) ? SERIAL_PORT_USART2 : SERIAL_PORT_NONE); #elif defined(AVOID_UART3_FOR_PWM_PPM) serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL), feature(FEATURE_RX_PPM) || feature(FEATURE_RX_PARALLEL_PWM) ? SERIAL_PORT_USART3 : SERIAL_PORT_NONE); #else serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL), SERIAL_PORT_NONE); #endif #ifdef USE_DPRINTF // Setup debugSerialPort debugSerialPort = openSerialPort(DPRINTF_SERIAL_PORT, FUNCTION_NONE, NULL, 115200, MODE_RXTX, 0); if (debugSerialPort) { setPrintfSerialPort(debugSerialPort); dprintf(("debugSerialPort: OK\r\n")); } #endif mixerInit(masterConfig.mixerMode, masterConfig.customMotorMixer); #ifdef USE_SERVOS servoMixerInit(masterConfig.customServoMixer); #endif uint16_t idlePulse = masterConfig.motorConfig.mincommand; if (feature(FEATURE_3D)) { idlePulse = masterConfig.flight3DConfig.neutral3d; } if (masterConfig.motorConfig.motorPwmProtocol == PWM_TYPE_BRUSHED) { featureClear(FEATURE_3D); idlePulse = 0; // brushed motors } #ifdef USE_QUAD_MIXER_ONLY motorInit(&masterConfig.motorConfig, idlePulse, QUAD_MOTOR_COUNT); #else motorInit(&masterConfig.motorConfig, idlePulse, mixers[masterConfig.mixerMode].motorCount); #endif #ifdef USE_SERVOS if (isMixerUsingServos()) { //pwm_params.useChannelForwarding = feature(FEATURE_CHANNEL_FORWARDING); servoInit(&masterConfig.servoConfig); } #endif #ifndef SKIP_RX_PWM_PPM if (feature(FEATURE_RX_PPM)) { ppmRxInit(&masterConfig.ppmConfig, masterConfig.motorConfig.motorPwmProtocol); } else if (feature(FEATURE_RX_PARALLEL_PWM)) { pwmRxInit(&masterConfig.pwmConfig); } pwmRxSetInputFilteringMode(masterConfig.inputFilteringMode); #endif mixerConfigureOutput(); systemState |= SYSTEM_STATE_MOTORS_READY; #ifdef BEEPER beeperInit(&masterConfig.beeperConfig); #endif #ifdef INVERTER initInverter(); #endif #ifdef USE_BST bstInit(BST_DEVICE); #endif #ifdef USE_SPI #ifdef USE_SPI_DEVICE_1 spiInit(SPIDEV_1); #endif #ifdef USE_SPI_DEVICE_2 spiInit(SPIDEV_2); #endif #ifdef USE_SPI_DEVICE_3 #ifdef ALIENFLIGHTF3 if (hardwareRevision == AFF3_REV_2) { spiInit(SPIDEV_3); } #else spiInit(SPIDEV_3); #endif #endif #endif #ifdef VTX vtxInit(); #endif #ifdef USE_HARDWARE_REVISION_DETECTION updateHardwareRevision(); #endif #if defined(NAZE) if (hardwareRevision == NAZE32_SP) { serialRemovePort(SERIAL_PORT_SOFTSERIAL2); } else { serialRemovePort(SERIAL_PORT_USART3); } #endif #if defined(SPRACINGF3) && defined(SONAR) && defined(USE_SOFTSERIAL2) if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) { serialRemovePort(SERIAL_PORT_SOFTSERIAL2); } #endif #if defined(SPRACINGF3MINI) || defined(OMNIBUS) || defined(X_RACERSPI) #if defined(SONAR) && defined(USE_SOFTSERIAL1) if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) { serialRemovePort(SERIAL_PORT_SOFTSERIAL1); } #endif #endif #ifdef USE_I2C #if defined(NAZE) if (hardwareRevision != NAZE32_SP) { i2cInit(I2C_DEVICE); } else { if (!doesConfigurationUsePort(SERIAL_PORT_USART3)) { i2cInit(I2C_DEVICE); } } #elif defined(CC3D) if (!doesConfigurationUsePort(SERIAL_PORT_USART3)) { i2cInit(I2C_DEVICE); } #else i2cInit(I2C_DEVICE); #endif #endif #ifdef USE_ADC drv_adc_config_t adc_params; adc_params.enableVBat = feature(FEATURE_VBAT); adc_params.enableRSSI = feature(FEATURE_RSSI_ADC); adc_params.enableCurrentMeter = feature(FEATURE_CURRENT_METER); adc_params.enableExternal1 = false; #ifdef OLIMEXINO adc_params.enableExternal1 = true; #endif #ifdef NAZE // optional ADC5 input on rev.5 hardware adc_params.enableExternal1 = (hardwareRevision >= NAZE32_REV5); #endif adcInit(&adc_params); #endif initBoardAlignment(&masterConfig.boardAlignment); #ifdef DISPLAY if (feature(FEATURE_DISPLAY)) { displayInit(&masterConfig.rxConfig); } #endif #ifdef USE_RTC6705 if (feature(FEATURE_VTX)) { rtc6705_soft_spi_init(); current_vtx_channel = masterConfig.vtx_channel; rtc6705_soft_spi_set_channel(vtx_freq[current_vtx_channel]); rtc6705_soft_spi_set_rf_power(masterConfig.vtx_power); } #endif #ifdef OSD if (feature(FEATURE_OSD)) { osdInit(); } #endif #ifdef CMS cmsInit(); #endif if (!sensorsAutodetect(&masterConfig.sensorAlignmentConfig, masterConfig.acc_hardware, masterConfig.mag_hardware, masterConfig.baro_hardware, masterConfig.mag_declination, masterConfig.gyro_lpf, masterConfig.gyro_sync_denom)) { // if gyro was not detected due to whatever reason, we give up now. failureMode(FAILURE_MISSING_ACC); } systemState |= SYSTEM_STATE_SENSORS_READY; LED1_ON; LED0_OFF; LED2_OFF; for (int i = 0; i < 10; i++) { LED1_TOGGLE; LED0_TOGGLE; delay(25); if (!(getBeeperOffMask() & (1 << (BEEPER_SYSTEM_INIT - 1)))) BEEP_ON; delay(25); BEEP_OFF; } LED0_OFF; LED1_OFF; #ifdef MAG if (sensors(SENSOR_MAG)) compassInit(); #endif imuInit(); mspSerialInit(mspFcInit()); #ifdef USE_CLI cliInit(&masterConfig.serialConfig); #endif failsafeInit(&masterConfig.rxConfig, masterConfig.flight3DConfig.deadband3d_throttle); rxInit(&masterConfig.rxConfig, masterConfig.modeActivationConditions); #ifdef GPS if (feature(FEATURE_GPS)) { gpsInit( &masterConfig.serialConfig, &masterConfig.gpsConfig ); navigationInit( &masterConfig.gpsProfile, ¤tProfile->pidProfile ); } #endif #ifdef SONAR if (feature(FEATURE_SONAR)) { sonarInit(&masterConfig.sonarConfig); } #endif #ifdef LED_STRIP ledStripInit(masterConfig.ledConfigs, masterConfig.colors, masterConfig.modeColors, &masterConfig.specialColors); if (feature(FEATURE_LED_STRIP)) { ledStripEnable(); } #endif #ifdef TELEMETRY if (feature(FEATURE_TELEMETRY)) { telemetryInit(); } #endif #ifdef USB_CABLE_DETECTION usbCableDetectInit(); #endif #ifdef TRANSPONDER if (feature(FEATURE_TRANSPONDER)) { transponderInit(masterConfig.transponderData); transponderEnable(); transponderStartRepeating(); systemState |= SYSTEM_STATE_TRANSPONDER_ENABLED; } #endif #ifdef USE_FLASHFS #ifdef NAZE if (hardwareRevision == NAZE32_REV5) { m25p16_init(IO_TAG_NONE); } #elif defined(USE_FLASH_M25P16) m25p16_init(IO_TAG_NONE); #endif flashfsInit(); #endif #ifdef USE_SDCARD bool sdcardUseDMA = false; sdcardInsertionDetectInit(); #ifdef SDCARD_DMA_CHANNEL_TX #if defined(LED_STRIP) && defined(WS2811_DMA_CHANNEL) // Ensure the SPI Tx DMA doesn't overlap with the led strip #ifdef STM32F4 sdcardUseDMA = !feature(FEATURE_LED_STRIP) || SDCARD_DMA_CHANNEL_TX != WS2811_DMA_STREAM; #else sdcardUseDMA = !feature(FEATURE_LED_STRIP) || SDCARD_DMA_CHANNEL_TX != WS2811_DMA_CHANNEL; #endif #else sdcardUseDMA = true; #endif #endif sdcard_init(sdcardUseDMA); afatfs_init(); #endif if (masterConfig.gyro_lpf > 0 && masterConfig.gyro_lpf < 7) { masterConfig.pid_process_denom = 1; // When gyro set to 1khz always set pid speed 1:1 to sampling speed masterConfig.gyro_sync_denom = 1; } setTargetPidLooptime((gyro.targetLooptime + LOOPTIME_SUSPEND_TIME) * masterConfig.pid_process_denom); // Initialize pid looptime #ifdef BLACKBOX initBlackbox(); #endif if (masterConfig.mixerMode == MIXER_GIMBAL) { accSetCalibrationCycles(CALIBRATING_ACC_CYCLES); } gyroSetCalibrationCycles(); #ifdef BARO baroSetCalibrationCycles(CALIBRATING_BARO_CYCLES); #endif // start all timers // TODO - not implemented yet timerStart(); ENABLE_STATE(SMALL_ANGLE); DISABLE_ARMING_FLAG(PREVENT_ARMING); #ifdef SOFTSERIAL_LOOPBACK // FIXME this is a hack, perhaps add a FUNCTION_LOOPBACK to support it properly loopbackPort = (serialPort_t*)&(softSerialPorts[0]); if (!loopbackPort->vTable) { loopbackPort = openSoftSerial(0, NULL, 19200, SERIAL_NOT_INVERTED); } serialPrint(loopbackPort, "LOOPBACK\r\n"); #endif // Now that everything has powered up the voltage and cell count be determined. if (feature(FEATURE_VBAT | FEATURE_CURRENT_METER)) batteryInit(&masterConfig.batteryConfig); #ifdef DISPLAY if (feature(FEATURE_DISPLAY)) { #ifdef USE_OLED_GPS_DEBUG_PAGE_ONLY displayShowFixedPage(PAGE_GPS); #else displayResetPageCycling(); displayEnablePageCycling(); #endif } #endif #ifdef CJMCU LED2_ON; #endif // Latch active features AGAIN since some may be modified by init(). latchActiveFeatures(); motorControlEnable = true; fcTasksInit(); systemState |= SYSTEM_STATE_READY; } #ifdef SOFTSERIAL_LOOPBACK void processLoopback(void) { if (loopbackPort) { uint8_t bytesWaiting; while ((bytesWaiting = serialRxBytesWaiting(loopbackPort))) { uint8_t b = serialRead(loopbackPort); serialWrite(loopbackPort, b); }; } } #else #define processLoopback() #endif void main_step(void) { scheduler(); processLoopback(); } #ifndef NOMAIN int main(void) { init(); while (true) { main_step(); } } #endif #ifdef DEBUG_HARDFAULTS //from: https://mcuoneclipse.com/2012/11/24/debugging-hard-faults-on-arm-cortex-m/ /** * hard_fault_handler_c: * This is called from the HardFault_HandlerAsm with a pointer the Fault stack * as the parameter. We can then read the values from the stack and place them * into local variables for ease of reading. * We then read the various Fault Status and Address Registers to help decode * cause of the fault. * The function ends with a BKPT instruction to force control back into the debugger */ void hard_fault_handler_c(unsigned long *hardfault_args) { volatile unsigned long stacked_r0 ; volatile unsigned long stacked_r1 ; volatile unsigned long stacked_r2 ; volatile unsigned long stacked_r3 ; volatile unsigned long stacked_r12 ; volatile unsigned long stacked_lr ; volatile unsigned long stacked_pc ; volatile unsigned long stacked_psr ; volatile unsigned long _CFSR ; volatile unsigned long _HFSR ; volatile unsigned long _DFSR ; volatile unsigned long _AFSR ; volatile unsigned long _BFAR ; volatile unsigned long _MMAR ; stacked_r0 = ((unsigned long)hardfault_args[0]) ; stacked_r1 = ((unsigned long)hardfault_args[1]) ; stacked_r2 = ((unsigned long)hardfault_args[2]) ; stacked_r3 = ((unsigned long)hardfault_args[3]) ; stacked_r12 = ((unsigned long)hardfault_args[4]) ; stacked_lr = ((unsigned long)hardfault_args[5]) ; stacked_pc = ((unsigned long)hardfault_args[6]) ; stacked_psr = ((unsigned long)hardfault_args[7]) ; // Configurable Fault Status Register // Consists of MMSR, BFSR and UFSR _CFSR = (*((volatile unsigned long *)(0xE000ED28))) ; // Hard Fault Status Register _HFSR = (*((volatile unsigned long *)(0xE000ED2C))) ; // Debug Fault Status Register _DFSR = (*((volatile unsigned long *)(0xE000ED30))) ; // Auxiliary Fault Status Register _AFSR = (*((volatile unsigned long *)(0xE000ED3C))) ; // Read the Fault Address Registers. These may not contain valid values. // Check BFARVALID/MMARVALID to see if they are valid values // MemManage Fault Address Register _MMAR = (*((volatile unsigned long *)(0xE000ED34))) ; // Bus Fault Address Register _BFAR = (*((volatile unsigned long *)(0xE000ED38))) ; __asm("BKPT #0\n") ; // Break into the debugger } #else void HardFault_Handler(void) { LED2_ON; // fall out of the sky uint8_t requiredStateForMotors = SYSTEM_STATE_CONFIG_LOADED | SYSTEM_STATE_MOTORS_READY; if ((systemState & requiredStateForMotors) == requiredStateForMotors) { stopMotors(); } #ifdef TRANSPONDER // prevent IR LEDs from burning out. uint8_t requiredStateForTransponder = SYSTEM_STATE_CONFIG_LOADED | SYSTEM_STATE_TRANSPONDER_ENABLED; if ((systemState & requiredStateForTransponder) == requiredStateForTransponder) { transponderIrDisable(); } #endif LED1_OFF; LED0_OFF; while (1) { #ifdef LED2 delay(50); LED2_TOGGLE; #endif } } #endif