/* * This file is part of Cleanflight and Betaflight. * * Cleanflight and Betaflight are free software. You can redistribute * this software and/or modify this software under the terms of the * GNU General Public License as published by the Free Software * Foundation, either version 3 of the License, or (at your option) * any later version. * * Cleanflight and Betaflight are distributed in the hope that they * will be useful, but WITHOUT ANY WARRANTY; without even the implied * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this software. * * If not, see . */ #include #include #include #include "platform.h" #ifdef USE_ADC #include "drivers/dma.h" #include "drivers/dma_reqmap.h" #include "drivers/io.h" #include "drivers/io_impl.h" #include "drivers/rcc.h" #include "drivers/sensor.h" #include "drivers/adc.h" #include "drivers/adc_impl.h" #include "pg/adc.h" // Copied from stm32f7xx_ll_adc.h #define VREFINT_CAL_VREF ( 3300U) /* Analog voltage reference (Vref+) value with which temperature sensor has been calibrated in production (tolerance: +-10 mV) (unit: mV). */ #define TEMPSENSOR_CAL1_TEMP (( int32_t) 30) /* Internal temperature sensor, temperature at which temperature sensor has been calibrated in production for data into TEMPSENSOR_CAL1_ADDR (tolerance: +-5 DegC) (unit: DegC). */ #define TEMPSENSOR_CAL2_TEMP (( int32_t) 110) /* Internal temperature sensor, temperature at which temperature sensor has been calibrated in production for data into TEMPSENSOR_CAL2_ADDR (tolerance: +-5 DegC) (unit: DegC). */ #define TEMPSENSOR_CAL_VREFANALOG ( 3300U) /* Analog voltage reference (Vref+) voltage with which temperature sensor has been calibrated in production (+-10 mV) (unit: mV). */ // These addresses are incorrectly defined in stm32f7xx_ll_adc.h #if defined(STM32F745xx) || defined(STM32F746xx) || defined(STM32F765xx) // F745xx_F746xx and F765xx_F767xx_F769xx #define VREFINT_CAL_ADDR ((uint16_t*) (0x1FF0F44A)) #define TEMPSENSOR_CAL1_ADDR ((uint16_t*) (0x1FF0F44C)) #define TEMPSENSOR_CAL2_ADDR ((uint16_t*) (0x1FF0F44E)) #elif defined(STM32F722xx) // F72x_F73x #define VREFINT_CAL_ADDR ((uint16_t*) (0x1FF07A2A)) #define TEMPSENSOR_CAL1_ADDR ((uint16_t*) (0x1FF07A2C)) #define TEMPSENSOR_CAL2_ADDR ((uint16_t*) (0x1FF07A2E)) #endif const adcDevice_t adcHardware[] = { { .ADCx = ADC1, .rccADC = RCC_APB2(ADC1), #if !defined(USE_DMA_SPEC) .dmaResource = (dmaResource_t *)ADC1_DMA_STREAM, .channel = DMA_CHANNEL_0 #endif }, { .ADCx = ADC2, .rccADC = RCC_APB2(ADC2), #if !defined(USE_DMA_SPEC) .dmaResource = (dmaResource_t *)ADC2_DMA_STREAM, .channel = DMA_CHANNEL_1 #endif }, { .ADCx = ADC3, .rccADC = RCC_APB2(ADC3), #if !defined(USE_DMA_SPEC) .dmaResource = (dmaResource_t *)ADC3_DMA_STREAM, .channel = DMA_CHANNEL_2 #endif } }; /* note these could be packed up for saving space */ const adcTagMap_t adcTagMap[] = { /* { DEFIO_TAG_E__PF3, ADC_DEVICES_3, ADC_CHANNEL_9 }, { DEFIO_TAG_E__PF4, ADC_DEVICES_3, ADC_CHANNEL_14 }, { DEFIO_TAG_E__PF5, ADC_DEVICES_3, ADC_CHANNEL_15 }, { DEFIO_TAG_E__PF6, ADC_DEVICES_3, ADC_CHANNEL_4 }, { DEFIO_TAG_E__PF7, ADC_DEVICES_3, ADC_CHANNEL_5 }, { DEFIO_TAG_E__PF8, ADC_DEVICES_3, ADC_CHANNEL_6 }, { DEFIO_TAG_E__PF9, ADC_DEVICES_3, ADC_CHANNEL_7 }, { DEFIO_TAG_E__PF10,ADC_DEVICES_3, ADC_CHANNEL_8 }, */ { DEFIO_TAG_E__PC0, ADC_DEVICES_123, ADC_CHANNEL_10 }, { DEFIO_TAG_E__PC1, ADC_DEVICES_123, ADC_CHANNEL_11 }, { DEFIO_TAG_E__PC2, ADC_DEVICES_123, ADC_CHANNEL_12 }, { DEFIO_TAG_E__PC3, ADC_DEVICES_123, ADC_CHANNEL_13 }, { DEFIO_TAG_E__PC4, ADC_DEVICES_12, ADC_CHANNEL_14 }, { DEFIO_TAG_E__PC5, ADC_DEVICES_12, ADC_CHANNEL_15 }, { DEFIO_TAG_E__PB0, ADC_DEVICES_12, ADC_CHANNEL_8 }, { DEFIO_TAG_E__PB1, ADC_DEVICES_12, ADC_CHANNEL_9 }, { DEFIO_TAG_E__PA0, ADC_DEVICES_123, ADC_CHANNEL_0 }, { DEFIO_TAG_E__PA1, ADC_DEVICES_123, ADC_CHANNEL_1 }, { DEFIO_TAG_E__PA2, ADC_DEVICES_123, ADC_CHANNEL_2 }, { DEFIO_TAG_E__PA3, ADC_DEVICES_123, ADC_CHANNEL_3 }, { DEFIO_TAG_E__PA4, ADC_DEVICES_12, ADC_CHANNEL_4 }, { DEFIO_TAG_E__PA5, ADC_DEVICES_12, ADC_CHANNEL_5 }, { DEFIO_TAG_E__PA6, ADC_DEVICES_12, ADC_CHANNEL_6 }, { DEFIO_TAG_E__PA7, ADC_DEVICES_12, ADC_CHANNEL_7 }, }; void adcInitDevice(adcDevice_t *adcdev, int channelCount) { adcdev->ADCHandle.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV8; adcdev->ADCHandle.Init.ContinuousConvMode = ENABLE; adcdev->ADCHandle.Init.Resolution = ADC_RESOLUTION_12B; adcdev->ADCHandle.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_CC1; adcdev->ADCHandle.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; adcdev->ADCHandle.Init.DataAlign = ADC_DATAALIGN_RIGHT; adcdev->ADCHandle.Init.NbrOfConversion = channelCount; #ifdef USE_ADC_INTERNAL // Multiple injected channel seems to require scan conversion mode to be // enabled even if main (non-injected) channel count is 1. adcdev->ADCHandle.Init.ScanConvMode = ENABLE; #else adcdev->ADCHandle.Init.ScanConvMode = channelCount > 1 ? ENABLE : DISABLE; // 1=scan more that one channel in group #endif adcdev->ADCHandle.Init.DiscontinuousConvMode = DISABLE; adcdev->ADCHandle.Init.NbrOfDiscConversion = 0; adcdev->ADCHandle.Init.DMAContinuousRequests = ENABLE; adcdev->ADCHandle.Init.EOCSelection = DISABLE; adcdev->ADCHandle.Instance = adcdev->ADCx; if (HAL_ADC_Init(&adcdev->ADCHandle) != HAL_OK) { /* Initialization Error */ } } static adcDevice_t adc; #ifdef USE_ADC_INTERNAL static adcDevice_t adcInternal; static ADC_HandleTypeDef *adcInternalHandle; void adcInitInternalInjected(adcDevice_t *adcdev) { adcInternalHandle = &adcdev->ADCHandle; ADC_InjectionConfTypeDef iConfig; iConfig.InjectedChannel = ADC_CHANNEL_VREFINT; iConfig.InjectedRank = 1; iConfig.InjectedSamplingTime = ADC_SAMPLETIME_480CYCLES; iConfig.InjectedOffset = 0; iConfig.InjectedNbrOfConversion = 2; iConfig.InjectedDiscontinuousConvMode = DISABLE; iConfig.AutoInjectedConv = DISABLE; iConfig.ExternalTrigInjecConv = 0; // Don't care iConfig.ExternalTrigInjecConvEdge = 0; // Don't care if (HAL_ADCEx_InjectedConfigChannel(adcInternalHandle, &iConfig) != HAL_OK) { /* Channel Configuration Error */ } iConfig.InjectedChannel = ADC_CHANNEL_TEMPSENSOR; iConfig.InjectedRank = 2; if (HAL_ADCEx_InjectedConfigChannel(adcInternalHandle, &iConfig) != HAL_OK) { /* Channel Configuration Error */ } adcVREFINTCAL = *(uint16_t *)VREFINT_CAL_ADDR; adcTSCAL1 = *TEMPSENSOR_CAL1_ADDR; adcTSCAL2 = *TEMPSENSOR_CAL2_ADDR; adcTSSlopeK = (TEMPSENSOR_CAL2_TEMP - TEMPSENSOR_CAL1_TEMP) * 1000 / (adcTSCAL2 - adcTSCAL1); } // Note on sampling time for temperature sensor and vrefint: // Both sources have minimum sample time of 10us. // With prescaler = 8: // 168MHz : fAPB2 = 84MHz, fADC = 10.5MHz, tcycle = 0.090us, 10us = 105cycle < 144cycle // 240MHz : fAPB2 = 120MHz, fADC = 15.0MHz, tcycle = 0.067usk 10us = 150cycle < 480cycle // // 480cycles@15.0MHz = 32us static bool adcInternalConversionInProgress = false; bool adcInternalIsBusy(void) { if (adcInternalConversionInProgress) { if (HAL_ADCEx_InjectedPollForConversion(adcInternalHandle, 0) == HAL_OK) { adcInternalConversionInProgress = false; } } return adcInternalConversionInProgress; } void adcInternalStartConversion(void) { HAL_ADCEx_InjectedStart(adcInternalHandle); adcInternalConversionInProgress = true; } uint16_t adcInternalReadVrefint(void) { return HAL_ADCEx_InjectedGetValue(adcInternalHandle, ADC_INJECTED_RANK_1); } uint16_t adcInternalReadTempsensor(void) { return HAL_ADCEx_InjectedGetValue(adcInternalHandle, ADC_INJECTED_RANK_2); } #endif void adcInit(const adcConfig_t *config) { uint8_t i; uint8_t configuredAdcChannels = 0; memset(&adcOperatingConfig, 0, sizeof(adcOperatingConfig)); if (config->vbat.enabled) { adcOperatingConfig[ADC_BATTERY].tag = config->vbat.ioTag; } if (config->rssi.enabled) { adcOperatingConfig[ADC_RSSI].tag = config->rssi.ioTag; //RSSI_ADC_CHANNEL; } if (config->external1.enabled) { adcOperatingConfig[ADC_EXTERNAL1].tag = config->external1.ioTag; //EXTERNAL1_ADC_CHANNEL; } if (config->current.enabled) { adcOperatingConfig[ADC_CURRENT].tag = config->current.ioTag; //CURRENT_METER_ADC_CHANNEL; } ADCDevice device = ADC_CFG_TO_DEV(config->device); if (device == ADCINVALID) { return; } adc = adcHardware[device]; bool adcActive = false; for (int i = 0; i < ADC_CHANNEL_COUNT; i++) { if (adcVerifyPin(adcOperatingConfig[i].tag, device)) { adcActive = true; IOInit(IOGetByTag(adcOperatingConfig[i].tag), OWNER_ADC_BATT + i, 0); IOConfigGPIO(IOGetByTag(adcOperatingConfig[i].tag), IO_CONFIG(GPIO_MODE_ANALOG, 0, GPIO_NOPULL)); adcOperatingConfig[i].adcChannel = adcChannelByTag(adcOperatingConfig[i].tag); adcOperatingConfig[i].dmaIndex = configuredAdcChannels++; adcOperatingConfig[i].sampleTime = ADC_SAMPLETIME_480CYCLES; adcOperatingConfig[i].enabled = true; } } #ifndef USE_ADC_INTERNAL if (!adcActive) { return; } #endif RCC_ClockCmd(adc.rccADC, ENABLE); adcInitDevice(&adc, configuredAdcChannels); #ifdef USE_ADC_INTERNAL // If device is not ADC1 or there's no active channel, then initialize ADC1 here. if (device != ADCDEV_1 || !adcActive) { adcInternal = adcHardware[ADCDEV_1]; RCC_ClockCmd(adcInternal.rccADC, ENABLE); adcInitDevice(&adcInternal, 0); adcInitInternalInjected(&adcInternal); } else { adcInitInternalInjected(&adc); } #endif uint8_t rank = 1; for (i = 0; i < ADC_CHANNEL_COUNT; i++) { if (adcOperatingConfig[i].enabled) { ADC_ChannelConfTypeDef sConfig; sConfig.Channel = adcOperatingConfig[i].adcChannel; sConfig.Rank = rank++; sConfig.SamplingTime = adcOperatingConfig[i].sampleTime; sConfig.Offset = 0; if (HAL_ADC_ConfigChannel(&adc.ADCHandle, &sConfig) != HAL_OK) { /* Channel Configuration Error */ } } } #ifdef USE_DMA_SPEC const dmaChannelSpec_t *dmaspec = dmaGetChannelSpecByPeripheral(DMA_PERIPH_ADC, device, config->dmaopt[device]); if (!dmaspec) { return; } dmaInit(dmaGetIdentifier(dmaspec->ref), OWNER_ADC, 0); adc.DmaHandle.Init.Channel = dmaspec->channel; adc.DmaHandle.Instance = (DMA_ARCH_TYPE *)dmaspec->ref; #else dmaInit(dmaGetIdentifier(adc.dmaResource), OWNER_ADC, 0); adc.DmaHandle.Init.Channel = adc.channel; adc.DmaHandle.Instance = (DMA_ARCH_TYPE *)adc.dmaResource; #endif adc.DmaHandle.Init.Direction = DMA_PERIPH_TO_MEMORY; adc.DmaHandle.Init.PeriphInc = DMA_PINC_DISABLE; adc.DmaHandle.Init.MemInc = configuredAdcChannels > 1 ? DMA_MINC_ENABLE : DMA_MINC_DISABLE; adc.DmaHandle.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD; adc.DmaHandle.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD; adc.DmaHandle.Init.Mode = DMA_CIRCULAR; adc.DmaHandle.Init.Priority = DMA_PRIORITY_HIGH; adc.DmaHandle.Init.FIFOMode = DMA_FIFOMODE_DISABLE; adc.DmaHandle.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL; adc.DmaHandle.Init.MemBurst = DMA_MBURST_SINGLE; adc.DmaHandle.Init.PeriphBurst = DMA_PBURST_SINGLE; if (HAL_DMA_Init(&adc.DmaHandle) != HAL_OK) { /* Initialization Error */ } __HAL_LINKDMA(&adc.ADCHandle, DMA_Handle, adc.DmaHandle); //HAL_CLEANINVALIDATECACHE((uint32_t*)&adcValues, configuredAdcChannels); if (HAL_ADC_Start_DMA(&adc.ADCHandle, (uint32_t*)&adcValues, configuredAdcChannels) != HAL_OK) { /* Start Conversion Error */ } } void adcGetChannelValues(void) { // Nothing to do } #endif