#include "board.h" #include "mw.h" int16_t gyroADC[3], accADC[3], accSmooth[3], magADC[3]; int32_t accSum[3]; uint32_t accTimeSum = 0; // keep track for integration of acc int accSumCount = 0; int16_t accZ_25deg = 0; int32_t baroPressure = 0; int32_t baroTemperature = 0; uint32_t baroPressureSum = 0; int32_t BaroAlt = 0; int32_t sonarAlt; // to think about the unit int32_t EstAlt; // in cm int32_t BaroPID = 0; int32_t AltHold; int32_t errorAltitudeI = 0; int32_t vario = 0; // variometer in cm/s int16_t throttleAngleCorrection = 0; // correction of throttle in lateral wind, float magneticDeclination = 0.0f; // calculated at startup from config float accVelScale; // ************** // gyro+acc IMU // ************** int16_t gyroData[3] = { 0, 0, 0 }; int16_t gyroZero[3] = { 0, 0, 0 }; int16_t angle[2] = { 0, 0 }; // absolute angle inclination in multiple of 0.1 degree 180 deg = 1800 float anglerad[2] = { 0.0f, 0.0f }; // absolute angle inclination in radians static void getEstimatedAttitude(void); void imuInit(void) { accZ_25deg = acc_1G * cosf(RAD * 25.0f); accVelScale = 9.80665f / acc_1G / 10000.0f; #ifdef MAG // if mag sensor is enabled, use it if (sensors(SENSOR_MAG)) Mag_init(); #endif } void computeIMU(void) { uint32_t axis; static int16_t gyroYawSmooth = 0; Gyro_getADC(); if (sensors(SENSOR_ACC)) { ACC_getADC(); getEstimatedAttitude(); } else { accADC[X] = 0; accADC[Y] = 0; accADC[Z] = 0; } if (feature(FEATURE_GYRO_SMOOTHING)) { static uint8_t Smoothing[3] = { 0, 0, 0 }; static int16_t gyroSmooth[3] = { 0, 0, 0 }; if (Smoothing[0] == 0) { // initialize Smoothing[ROLL] = (mcfg.gyro_smoothing_factor >> 16) & 0xff; Smoothing[PITCH] = (mcfg.gyro_smoothing_factor >> 8) & 0xff; Smoothing[YAW] = (mcfg.gyro_smoothing_factor) & 0xff; } for (axis = 0; axis < 3; axis++) { gyroData[axis] = (int16_t)(((int32_t)((int32_t)gyroSmooth[axis] * (Smoothing[axis] - 1)) + gyroADC[axis] + 1) / Smoothing[axis]); gyroSmooth[axis] = gyroData[axis]; } } else if (mcfg.mixerConfiguration == MULTITYPE_TRI) { gyroData[YAW] = (gyroYawSmooth * 2 + gyroADC[YAW]) / 3; gyroYawSmooth = gyroData[YAW]; gyroData[ROLL] = gyroADC[ROLL]; gyroData[PITCH] = gyroADC[PITCH]; } else { for (axis = 0; axis < 3; axis++) gyroData[axis] = gyroADC[axis]; } } // ************************************************** // Simplified IMU based on "Complementary Filter" // Inspired by http://starlino.com/imu_guide.html // // adapted by ziss_dm : http://www.multiwii.com/forum/viewtopic.php?f=8&t=198 // // The following ideas was used in this project: // 1) Rotation matrix: http://en.wikipedia.org/wiki/Rotation_matrix // // Currently Magnetometer uses separate CF which is used only // for heading approximation. // // ************************************************** #define INV_GYR_CMPF_FACTOR (1.0f / ((float)mcfg.gyro_cmpf_factor + 1.0f)) #define INV_GYR_CMPFM_FACTOR (1.0f / ((float)mcfg.gyro_cmpfm_factor + 1.0f)) typedef struct fp_vector { float X; float Y; float Z; } t_fp_vector_def; typedef union { float A[3]; t_fp_vector_def V; } t_fp_vector; t_fp_vector EstG; // Normalize a vector void normalizeV(struct fp_vector *src, struct fp_vector *dest) { float length; length = sqrtf(src->X * src->X + src->Y * src->Y + src->Z * src->Z); if (length != 0) { dest->X = src->X / length; dest->Y = src->Y / length; dest->Z = src->Z / length; } } // Rotate Estimated vector(s) with small angle approximation, according to the gyro data void rotateV(struct fp_vector *v, float *delta) { struct fp_vector v_tmp = *v; // This does a "proper" matrix rotation using gyro deltas without small-angle approximation float mat[3][3]; float cosx, sinx, cosy, siny, cosz, sinz; float coszcosx, coszcosy, sinzcosx, coszsinx, sinzsinx; cosx = cosf(delta[ROLL]); sinx = sinf(delta[ROLL]); cosy = cosf(delta[PITCH]); siny = sinf(delta[PITCH]); cosz = cosf(delta[YAW]); sinz = sinf(delta[YAW]); coszcosx = cosz * cosx; coszcosy = cosz * cosy; sinzcosx = sinz * cosx; coszsinx = sinx * cosz; sinzsinx = sinx * sinz; mat[0][0] = coszcosy; mat[0][1] = -cosy * sinz; mat[0][2] = siny; mat[1][0] = sinzcosx + (coszsinx * siny); mat[1][1] = coszcosx - (sinzsinx * siny); mat[1][2] = -sinx * cosy; mat[2][0] = (sinzsinx) - (coszcosx * siny); mat[2][1] = (coszsinx) + (sinzcosx * siny); mat[2][2] = cosy * cosx; v->X = v_tmp.X * mat[0][0] + v_tmp.Y * mat[1][0] + v_tmp.Z * mat[2][0]; v->Y = v_tmp.X * mat[0][1] + v_tmp.Y * mat[1][1] + v_tmp.Z * mat[2][1]; v->Z = v_tmp.X * mat[0][2] + v_tmp.Y * mat[1][2] + v_tmp.Z * mat[2][2]; } int32_t applyDeadband(int32_t value, int32_t deadband) { if (abs(value) < deadband) { value = 0; } else if (value > 0) { value -= deadband; } else if (value < 0) { value += deadband; } return value; } #define F_CUT_ACCZ 20.0f static const float fc_acc = 0.5f / (M_PI * F_CUT_ACCZ); // rotate acc into Earth frame and calculate acceleration in it void acc_calc(uint32_t deltaT) { static int32_t accZoffset = 0; static float accz_smooth; float rpy[3]; t_fp_vector accel_ned; // the accel values have to be rotated into the earth frame rpy[0] = -(float)anglerad[ROLL]; rpy[1] = -(float)anglerad[PITCH]; rpy[2] = -(float)heading * RAD; accel_ned.V.X = accSmooth[0]; accel_ned.V.Y = accSmooth[1]; accel_ned.V.Z = accSmooth[2]; rotateV(&accel_ned.V, rpy); if (cfg.acc_unarmedcal == 1) { if (!f.ARMED) { accZoffset -= accZoffset / 64; accZoffset += accel_ned.V.Z; } accel_ned.V.Z -= accZoffset / 64; // compensate for gravitation on z-axis } else accel_ned.V.Z -= acc_1G; accz_smooth = accz_smooth + (deltaT / (fc_acc + deltaT)) * (accel_ned.V.Z - accz_smooth); // low pass filter // apply Deadband to reduce integration drift and vibration influence accel_ned.V.Z = applyDeadband(lrintf(accz_smooth), cfg.accz_deadband); accel_ned.V.X = applyDeadband(lrintf(accel_ned.V.X), cfg.accxy_deadband); accel_ned.V.Y = applyDeadband(lrintf(accel_ned.V.Y), cfg.accxy_deadband); // sum up Values for later integration to get velocity and distance accTimeSum += deltaT; accSumCount++; accSum[X] += lrintf(accel_ned.V.X); accSum[Y] += lrintf(accel_ned.V.Y); accSum[Z] += lrintf(accel_ned.V.Z); } void accSum_reset(void) { accSum[0] = 0; accSum[1] = 0; accSum[2] = 0; accSumCount = 0; accTimeSum = 0; } // baseflight calculation by Luggi09 originates from arducopter static int16_t calculateHeading(t_fp_vector *vec) { int16_t head; float cosineRoll = cosf(anglerad[ROLL]); float sineRoll = sinf(anglerad[ROLL]); float cosinePitch = cosf(anglerad[PITCH]); float sinePitch = sinf(anglerad[PITCH]); float Xh = vec->A[X] * cosinePitch + vec->A[Y] * sineRoll * sinePitch + vec->A[Z] * sinePitch * cosineRoll; float Yh = vec->A[Y] * cosineRoll - vec->A[Z] * sineRoll; float hd = (atan2f(Yh, Xh) * 1800.0f / M_PI + magneticDeclination) / 10.0f; head = lrintf(hd); if (head < 0) head += 360; return head; } static void getEstimatedAttitude(void) { uint32_t axis; int32_t accMag = 0; static t_fp_vector EstM; static t_fp_vector EstN = { .A = { 1000.0f, 0.0f, 0.0f } }; static float accLPF[3]; static uint32_t previousT; uint32_t currentT = micros(); uint32_t deltaT; float scale, deltaGyroAngle[3]; deltaT = currentT - previousT; scale = deltaT * gyro.scale; previousT = currentT; // Initialization for (axis = 0; axis < 3; axis++) { deltaGyroAngle[axis] = gyroADC[axis] * scale; if (cfg.acc_lpf_factor > 0) { accLPF[axis] = accLPF[axis] * (1.0f - (1.0f / cfg.acc_lpf_factor)) + accADC[axis] * (1.0f / cfg.acc_lpf_factor); accSmooth[axis] = accLPF[axis]; } else { accSmooth[axis] = accADC[axis]; } accMag += (int32_t)accSmooth[axis] * accSmooth[axis]; } accMag = accMag * 100 / ((int32_t)acc_1G * acc_1G); rotateV(&EstG.V, deltaGyroAngle); if (sensors(SENSOR_MAG)) rotateV(&EstM.V, deltaGyroAngle); else rotateV(&EstN.V, deltaGyroAngle); // Apply complimentary filter (Gyro drift correction) // If accel magnitude >1.15G or <0.85G and ACC vector outside of the limit range => we neutralize the effect of accelerometers in the angle estimation. // To do that, we just skip filter, as EstV already rotated by Gyro if (72 < (uint16_t)accMag && (uint16_t)accMag < 133) { for (axis = 0; axis < 3; axis++) EstG.A[axis] = (EstG.A[axis] * (float)mcfg.gyro_cmpf_factor + accSmooth[axis]) * INV_GYR_CMPF_FACTOR; } if (sensors(SENSOR_MAG)) { for (axis = 0; axis < 3; axis++) EstM.A[axis] = (EstM.A[axis] * (float)mcfg.gyro_cmpfm_factor + magADC[axis]) * INV_GYR_CMPFM_FACTOR; } if (EstG.A[Z] > accZ_25deg) f.SMALL_ANGLES_25 = 1; else f.SMALL_ANGLES_25 = 0; // Attitude of the estimated vector anglerad[ROLL] = atan2f(EstG.V.Y, EstG.V.Z); anglerad[PITCH] = atan2f(-EstG.V.X, sqrtf(EstG.V.Y * EstG.V.Y + EstG.V.Z * EstG.V.Z)); angle[ROLL] = lrintf(anglerad[ROLL] * (1800.0f / M_PI)); angle[PITCH] = lrintf(anglerad[PITCH] * (1800.0f / M_PI)); if (sensors(SENSOR_MAG)) heading = calculateHeading(&EstM); else heading = calculateHeading(&EstN); acc_calc(deltaT); // rotate acc vector into earth frame if (cfg.throttle_angle_correction) { int cosZ = EstG.V.Z / (acc_1G * 100.0f); throttleAngleCorrection = cfg.throttle_angle_correction * constrain(100 - cosZ, 0, 100) / 8; } } #ifdef BARO #define UPDATE_INTERVAL 25000 // 40hz update rate (20hz LPF on acc) int getEstimatedAltitude(void) { static uint32_t previousT; uint32_t currentT = micros(); uint32_t dTime; int32_t error; int32_t baroVel; int32_t vel_tmp; int32_t BaroAlt_tmp; float dt; float vel_acc; static float vel = 0.0f; static float accAlt = 0.0f; static int32_t lastBaroAlt; static int32_t baroGroundAltitude = 0; static int32_t baroGroundPressure = 0; dTime = currentT - previousT; if (dTime < UPDATE_INTERVAL) return 0; previousT = currentT; if (calibratingB > 0) { baroGroundPressure -= baroGroundPressure / 8; baroGroundPressure += baroPressureSum / (cfg.baro_tab_size - 1); baroGroundAltitude = (1.0f - powf((baroGroundPressure / 8) / 101325.0f, 0.190295f)) * 4433000.0f; vel = 0; accAlt = 0; calibratingB--; } // calculates height from ground via baro readings // see: https://github.com/diydrones/ardupilot/blob/master/libraries/AP_Baro/AP_Baro.cpp#L140 BaroAlt_tmp = lrintf((1.0f - powf((float)(baroPressureSum / (cfg.baro_tab_size - 1)) / 101325.0f, 0.190295f)) * 4433000.0f); // in cm BaroAlt_tmp -= baroGroundAltitude; BaroAlt = lrintf((float)BaroAlt * cfg.baro_noise_lpf + (float)BaroAlt_tmp * (1.0f - cfg.baro_noise_lpf)); // additional LPF to reduce baro noise dt = accTimeSum * 1e-6f; // delta acc reading time in seconds // Integrator - velocity, cm/sec vel_acc = (float)accSum[2] * accVelScale * (float)accTimeSum / (float)accSumCount; // Integrator - Altitude in cm accAlt += (vel_acc * 0.5f) * dt + vel * dt; // integrate velocity to get distance (x= a/2 * t^2) accAlt = accAlt * cfg.baro_cf_alt + (float) BaroAlt *(1.0f - cfg.baro_cf_alt); // complementary filter for Altitude estimation (baro & acc) EstAlt = accAlt; vel += vel_acc; #if 0 debug[0] = accSum[2] / accSumCount; // acceleration debug[1] = vel; // velocity debug[2] = accAlt; // height #endif accSum_reset(); //P error = constrain(AltHold - EstAlt, -300, 300); error = applyDeadband(error, 10); // remove small P parametr to reduce noise near zero position BaroPID = constrain((cfg.P8[PIDALT] * error / 128), -200, +200); //I errorAltitudeI += cfg.I8[PIDALT] * error / 64; errorAltitudeI = constrain(errorAltitudeI, -50000, 50000); BaroPID += errorAltitudeI / 512; // I in range +/-100 baroVel = (BaroAlt - lastBaroAlt) * 1000000.0f / dTime; lastBaroAlt = BaroAlt; baroVel = constrain(baroVel, -300, 300); // constrain baro velocity +/- 300cm/s baroVel = applyDeadband(baroVel, 10); // to reduce noise near zero // apply Complimentary Filter to keep the calculated velocity based on baro velocity (i.e. near real velocity). // By using CF it's possible to correct the drift of integrated accZ (velocity) without loosing the phase, i.e without delay vel = vel * cfg.baro_cf_vel + baroVel * (1 - cfg.baro_cf_vel); vel = constrain(vel, -1000, 1000); // limit max velocity to +/- 10m/s (36km/h) // D vel_tmp = lrintf(vel); vel_tmp = applyDeadband(vel_tmp, 5); vario = vel_tmp; BaroPID -= constrain(cfg.D8[PIDALT] * vel_tmp / 16, -150, 150); return 1; } #endif /* BARO */