/* * This file is part of Cleanflight and Betaflight. * * Cleanflight and Betaflight are free software. You can redistribute * this software and/or modify this software under the terms of the * GNU General Public License as published by the Free Software * Foundation, either version 3 of the License, or (at your option) * any later version. * * Cleanflight and Betaflight are distributed in the hope that they * will be useful, but WITHOUT ANY WARRANTY; without even the implied * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this software. * * If not, see . */ // Inertial Measurement Unit (IMU) #include #include #include #include "platform.h" #include "build/build_config.h" #include "build/debug.h" #include "common/axis.h" #include "pg/pg.h" #include "pg/pg_ids.h" #include "drivers/time.h" #include "fc/runtime_config.h" #include "flight/gps_rescue.h" #include "flight/imu.h" #include "flight/mixer.h" #include "flight/pid.h" #include "io/gps.h" #include "sensors/acceleration.h" #include "sensors/barometer.h" #include "sensors/compass.h" #include "sensors/gyro.h" #include "sensors/sensors.h" #if defined(SIMULATOR_BUILD) && defined(SIMULATOR_MULTITHREAD) #include #include static pthread_mutex_t imuUpdateLock; #if defined(SIMULATOR_IMU_SYNC) static uint32_t imuDeltaT = 0; static bool imuUpdated = false; #endif #define IMU_LOCK pthread_mutex_lock(&imuUpdateLock) #define IMU_UNLOCK pthread_mutex_unlock(&imuUpdateLock) #else #define IMU_LOCK #define IMU_UNLOCK #endif // the limit (in degrees/second) beyond which we stop integrating // omega_I. At larger spin rates the DCM PI controller can get 'dizzy' // which results in false gyro drift. See // http://gentlenav.googlecode.com/files/fastRotations.pdf #define SPIN_RATE_LIMIT 20 #define ATTITUDE_RESET_QUIET_TIME 250000 // 250ms - gyro quiet period after disarm before attitude reset #define ATTITUDE_RESET_GYRO_LIMIT 15 // 15 deg/sec - gyro limit for quiet period #define ATTITUDE_RESET_KP_GAIN 25.0 // dcmKpGain value to use during attitude reset #define ATTITUDE_RESET_ACTIVE_TIME 500000 // 500ms - Time to wait for attitude to converge at high gain #define GPS_COG_MIN_GROUNDSPEED 500 // 500cm/s minimum groundspeed for a gps heading to be considered valid int32_t accSum[XYZ_AXIS_COUNT]; float accAverage[XYZ_AXIS_COUNT]; uint32_t accTimeSum = 0; // keep track for integration of acc int accSumCount = 0; bool canUseGPSHeading = true; static float throttleAngleScale; static int throttleAngleValue; static float fc_acc; static float smallAngleCosZ = 0; static imuRuntimeConfig_t imuRuntimeConfig; STATIC_UNIT_TESTED float rMat[3][3]; STATIC_UNIT_TESTED bool attitudeIsEstablished = false; // quaternion of sensor frame relative to earth frame STATIC_UNIT_TESTED quaternion q = QUATERNION_INITIALIZE; STATIC_UNIT_TESTED quaternionProducts qP = QUATERNION_PRODUCTS_INITIALIZE; // headfree quaternions quaternion headfree = QUATERNION_INITIALIZE; quaternion offset = QUATERNION_INITIALIZE; // absolute angle inclination in multiple of 0.1 degree 180 deg = 1800 attitudeEulerAngles_t attitude = EULER_INITIALIZE; PG_REGISTER_WITH_RESET_TEMPLATE(imuConfig_t, imuConfig, PG_IMU_CONFIG, 1); PG_RESET_TEMPLATE(imuConfig_t, imuConfig, .dcm_kp = 2500, // 1.0 * 10000 .dcm_ki = 0, // 0.003 * 10000 .small_angle = 25, ); static void imuQuaternionComputeProducts(quaternion *quat, quaternionProducts *quatProd) { quatProd->ww = quat->w * quat->w; quatProd->wx = quat->w * quat->x; quatProd->wy = quat->w * quat->y; quatProd->wz = quat->w * quat->z; quatProd->xx = quat->x * quat->x; quatProd->xy = quat->x * quat->y; quatProd->xz = quat->x * quat->z; quatProd->yy = quat->y * quat->y; quatProd->yz = quat->y * quat->z; quatProd->zz = quat->z * quat->z; } STATIC_UNIT_TESTED void imuComputeRotationMatrix(void){ imuQuaternionComputeProducts(&q, &qP); rMat[0][0] = 1.0f - 2.0f * qP.yy - 2.0f * qP.zz; rMat[0][1] = 2.0f * (qP.xy + -qP.wz); rMat[0][2] = 2.0f * (qP.xz - -qP.wy); rMat[1][0] = 2.0f * (qP.xy - -qP.wz); rMat[1][1] = 1.0f - 2.0f * qP.xx - 2.0f * qP.zz; rMat[1][2] = 2.0f * (qP.yz + -qP.wx); rMat[2][0] = 2.0f * (qP.xz + -qP.wy); rMat[2][1] = 2.0f * (qP.yz - -qP.wx); rMat[2][2] = 1.0f - 2.0f * qP.xx - 2.0f * qP.yy; #if defined(SIMULATOR_BUILD) && !defined(USE_IMU_CALC) && !defined(SET_IMU_FROM_EULER) rMat[1][0] = -2.0f * (qP.xy - -qP.wz); rMat[2][0] = -2.0f * (qP.xz + -qP.wy); #endif } /* * Calculate RC time constant used in the accZ lpf. */ static float calculateAccZLowPassFilterRCTimeConstant(float accz_lpf_cutoff) { return 0.5f / (M_PIf * accz_lpf_cutoff); } static float calculateThrottleAngleScale(uint16_t throttle_correction_angle) { return (1800.0f / M_PIf) * (900.0f / throttle_correction_angle); } void imuConfigure(uint16_t throttle_correction_angle, uint8_t throttle_correction_value) { imuRuntimeConfig.dcm_kp = imuConfig()->dcm_kp / 10000.0f; imuRuntimeConfig.dcm_ki = imuConfig()->dcm_ki / 10000.0f; smallAngleCosZ = cos_approx(degreesToRadians(imuConfig()->small_angle)); fc_acc = calculateAccZLowPassFilterRCTimeConstant(5.0f); // Set to fix value throttleAngleScale = calculateThrottleAngleScale(throttle_correction_angle); throttleAngleValue = throttle_correction_value; } void imuInit(void) { #ifdef USE_GPS canUseGPSHeading = true; #else canUseGPSHeading = false; #endif imuComputeRotationMatrix(); #if defined(SIMULATOR_BUILD) && defined(SIMULATOR_MULTITHREAD) if (pthread_mutex_init(&imuUpdateLock, NULL) != 0) { printf("Create imuUpdateLock error!\n"); } #endif } void imuResetAccelerationSum(void) { accSum[0] = 0; accSum[1] = 0; accSum[2] = 0; accSumCount = 0; accTimeSum = 0; } #if defined(USE_ACC) static float invSqrt(float x) { return 1.0f / sqrtf(x); } static void imuMahonyAHRSupdate(float dt, float gx, float gy, float gz, bool useAcc, float ax, float ay, float az, bool useMag, bool useCOG, float courseOverGround, const float dcmKpGain) { static float integralFBx = 0.0f, integralFBy = 0.0f, integralFBz = 0.0f; // integral error terms scaled by Ki // Calculate general spin rate (rad/s) const float spin_rate = sqrtf(sq(gx) + sq(gy) + sq(gz)); // Use raw heading error (from GPS or whatever else) float ex = 0, ey = 0, ez = 0; if (useCOG) { while (courseOverGround > M_PIf) { courseOverGround -= (2.0f * M_PIf); } while (courseOverGround < -M_PIf) { courseOverGround += (2.0f * M_PIf); } const float ez_ef = (- sin_approx(courseOverGround) * rMat[0][0] - cos_approx(courseOverGround) * rMat[1][0]); ex = rMat[2][0] * ez_ef; ey = rMat[2][1] * ez_ef; ez = rMat[2][2] * ez_ef; } #ifdef USE_MAG // Use measured magnetic field vector float mx = mag.magADC[X]; float my = mag.magADC[Y]; float mz = mag.magADC[Z]; float recipMagNorm = sq(mx) + sq(my) + sq(mz); if (useMag && recipMagNorm > 0.01f) { // Normalise magnetometer measurement recipMagNorm = invSqrt(recipMagNorm); mx *= recipMagNorm; my *= recipMagNorm; mz *= recipMagNorm; // For magnetometer correction we make an assumption that magnetic field is perpendicular to gravity (ignore Z-component in EF). // This way magnetic field will only affect heading and wont mess roll/pitch angles // (hx; hy; 0) - measured mag field vector in EF (assuming Z-component is zero) // (bx; 0; 0) - reference mag field vector heading due North in EF (assuming Z-component is zero) const float hx = rMat[0][0] * mx + rMat[0][1] * my + rMat[0][2] * mz; const float hy = rMat[1][0] * mx + rMat[1][1] * my + rMat[1][2] * mz; const float bx = sqrtf(hx * hx + hy * hy); // magnetometer error is cross product between estimated magnetic north and measured magnetic north (calculated in EF) const float ez_ef = -(hy * bx); // Rotate mag error vector back to BF and accumulate ex += rMat[2][0] * ez_ef; ey += rMat[2][1] * ez_ef; ez += rMat[2][2] * ez_ef; } #else UNUSED(useMag); #endif // Use measured acceleration vector float recipAccNorm = sq(ax) + sq(ay) + sq(az); if (useAcc && recipAccNorm > 0.01f) { // Normalise accelerometer measurement recipAccNorm = invSqrt(recipAccNorm); ax *= recipAccNorm; ay *= recipAccNorm; az *= recipAccNorm; // Error is sum of cross product between estimated direction and measured direction of gravity ex += (ay * rMat[2][2] - az * rMat[2][1]); ey += (az * rMat[2][0] - ax * rMat[2][2]); ez += (ax * rMat[2][1] - ay * rMat[2][0]); } // Compute and apply integral feedback if enabled if (imuRuntimeConfig.dcm_ki > 0.0f) { // Stop integrating if spinning beyond the certain limit if (spin_rate < DEGREES_TO_RADIANS(SPIN_RATE_LIMIT)) { const float dcmKiGain = imuRuntimeConfig.dcm_ki; integralFBx += dcmKiGain * ex * dt; // integral error scaled by Ki integralFBy += dcmKiGain * ey * dt; integralFBz += dcmKiGain * ez * dt; } } else { integralFBx = 0.0f; // prevent integral windup integralFBy = 0.0f; integralFBz = 0.0f; } // Apply proportional and integral feedback gx += dcmKpGain * ex + integralFBx; gy += dcmKpGain * ey + integralFBy; gz += dcmKpGain * ez + integralFBz; // Integrate rate of change of quaternion gx *= (0.5f * dt); gy *= (0.5f * dt); gz *= (0.5f * dt); quaternion buffer; buffer.w = q.w; buffer.x = q.x; buffer.y = q.y; buffer.z = q.z; q.w += (-buffer.x * gx - buffer.y * gy - buffer.z * gz); q.x += (+buffer.w * gx + buffer.y * gz - buffer.z * gy); q.y += (+buffer.w * gy - buffer.x * gz + buffer.z * gx); q.z += (+buffer.w * gz + buffer.x * gy - buffer.y * gx); // Normalise quaternion float recipNorm = invSqrt(sq(q.w) + sq(q.x) + sq(q.y) + sq(q.z)); q.w *= recipNorm; q.x *= recipNorm; q.y *= recipNorm; q.z *= recipNorm; // Pre-compute rotation matrix from quaternion imuComputeRotationMatrix(); attitudeIsEstablished = true; } STATIC_UNIT_TESTED void imuUpdateEulerAngles(void) { quaternionProducts buffer; if (FLIGHT_MODE(HEADFREE_MODE)) { imuQuaternionComputeProducts(&headfree, &buffer); attitude.values.roll = lrintf(atan2_approx((+2.0f * (buffer.wx + buffer.yz)), (+1.0f - 2.0f * (buffer.xx + buffer.yy))) * (1800.0f / M_PIf)); attitude.values.pitch = lrintf(((0.5f * M_PIf) - acos_approx(+2.0f * (buffer.wy - buffer.xz))) * (1800.0f / M_PIf)); attitude.values.yaw = lrintf((-atan2_approx((+2.0f * (buffer.wz + buffer.xy)), (+1.0f - 2.0f * (buffer.yy + buffer.zz))) * (1800.0f / M_PIf))); } else { attitude.values.roll = lrintf(atan2_approx(rMat[2][1], rMat[2][2]) * (1800.0f / M_PIf)); attitude.values.pitch = lrintf(((0.5f * M_PIf) - acos_approx(-rMat[2][0])) * (1800.0f / M_PIf)); attitude.values.yaw = lrintf((-atan2_approx(rMat[1][0], rMat[0][0]) * (1800.0f / M_PIf))); } if (attitude.values.yaw < 0) { attitude.values.yaw += 3600; } } static bool imuIsAccelerometerHealthy(float *accAverage) { float accMagnitudeSq = 0; for (int axis = 0; axis < 3; axis++) { const float a = accAverage[axis]; accMagnitudeSq += a * a; } accMagnitudeSq = accMagnitudeSq * sq(acc.dev.acc_1G_rec); // Accept accel readings only in range 0.9g - 1.1g return (0.81f < accMagnitudeSq) && (accMagnitudeSq < 1.21f); } // Calculate the dcmKpGain to use. When armed, the gain is imuRuntimeConfig.dcm_kp * 1.0 scaling. // When disarmed after initial boot, the scaling is set to 10.0 for the first 20 seconds to speed up initial convergence. // After disarming we want to quickly reestablish convergence to deal with the attitude estimation being incorrect due to a crash. // - wait for a 250ms period of low gyro activity to ensure the craft is not moving // - use a large dcmKpGain value for 500ms to allow the attitude estimate to quickly converge // - reset the gain back to the standard setting static float imuCalcKpGain(timeUs_t currentTimeUs, bool useAcc, float *gyroAverage) { static bool lastArmState = false; static timeUs_t gyroQuietPeriodTimeEnd = 0; static timeUs_t attitudeResetTimeEnd = 0; static bool attitudeResetCompleted = false; float ret; bool attitudeResetActive = false; const bool armState = ARMING_FLAG(ARMED); if (!armState) { if (lastArmState) { // Just disarmed; start the gyro quiet period gyroQuietPeriodTimeEnd = currentTimeUs + ATTITUDE_RESET_QUIET_TIME; attitudeResetTimeEnd = 0; attitudeResetCompleted = false; } // If gyro activity exceeds the threshold then restart the quiet period. // Also, if the attitude reset has been complete and there is subsequent gyro activity then // start the reset cycle again. This addresses the case where the pilot rights the craft after a crash. if ((attitudeResetTimeEnd > 0) || (gyroQuietPeriodTimeEnd > 0) || attitudeResetCompleted) { if ((fabsf(gyroAverage[X]) > ATTITUDE_RESET_GYRO_LIMIT) || (fabsf(gyroAverage[Y]) > ATTITUDE_RESET_GYRO_LIMIT) || (fabsf(gyroAverage[Z]) > ATTITUDE_RESET_GYRO_LIMIT) || (!useAcc)) { gyroQuietPeriodTimeEnd = currentTimeUs + ATTITUDE_RESET_QUIET_TIME; attitudeResetTimeEnd = 0; } } if (attitudeResetTimeEnd > 0) { // Resetting the attitude estimation if (currentTimeUs >= attitudeResetTimeEnd) { gyroQuietPeriodTimeEnd = 0; attitudeResetTimeEnd = 0; attitudeResetCompleted = true; } else { attitudeResetActive = true; } } else if ((gyroQuietPeriodTimeEnd > 0) && (currentTimeUs >= gyroQuietPeriodTimeEnd)) { // Start the high gain period to bring the estimation into convergence attitudeResetTimeEnd = currentTimeUs + ATTITUDE_RESET_ACTIVE_TIME; gyroQuietPeriodTimeEnd = 0; } } lastArmState = armState; if (attitudeResetActive) { ret = ATTITUDE_RESET_KP_GAIN; } else { ret = imuRuntimeConfig.dcm_kp; if (!armState) { ret = ret * 10.0f; // Scale the kP to generally converge faster when disarmed. } } return ret; } static void imuComputeQuaternionFromRPY(quaternionProducts *quatProd, int16_t initialRoll, int16_t initialPitch, int16_t initialYaw) { if (initialRoll > 1800) { initialRoll -= 3600; } if (initialPitch > 1800) { initialPitch -= 3600; } if (initialYaw > 1800) { initialYaw -= 3600; } const float cosRoll = cos_approx(DECIDEGREES_TO_RADIANS(initialRoll) * 0.5f); const float sinRoll = sin_approx(DECIDEGREES_TO_RADIANS(initialRoll) * 0.5f); const float cosPitch = cos_approx(DECIDEGREES_TO_RADIANS(initialPitch) * 0.5f); const float sinPitch = sin_approx(DECIDEGREES_TO_RADIANS(initialPitch) * 0.5f); const float cosYaw = cos_approx(DECIDEGREES_TO_RADIANS(-initialYaw) * 0.5f); const float sinYaw = sin_approx(DECIDEGREES_TO_RADIANS(-initialYaw) * 0.5f); const float q0 = cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw; const float q1 = sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw; const float q2 = cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw; const float q3 = cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw; quatProd->xx = sq(q1); quatProd->yy = sq(q2); quatProd->zz = sq(q3); quatProd->xy = q1 * q2; quatProd->xz = q1 * q3; quatProd->yz = q2 * q3; quatProd->wx = q0 * q1; quatProd->wy = q0 * q2; quatProd->wz = q0 * q3; imuComputeRotationMatrix(); attitudeIsEstablished = true; } static void imuCalculateEstimatedAttitude(timeUs_t currentTimeUs) { static timeUs_t previousIMUUpdateTime; bool useAcc = false; bool useMag = false; bool useCOG = false; // Whether or not correct yaw via imuMahonyAHRSupdate from our ground course float courseOverGround = 0; // To be used when useCOG is true. Stored in Radians const timeDelta_t deltaT = currentTimeUs - previousIMUUpdateTime; previousIMUUpdateTime = currentTimeUs; #ifdef USE_MAG if (sensors(SENSOR_MAG) && compassIsHealthy() #ifdef USE_GPS_RESCUE && !gpsRescueDisableMag() #endif ) { useMag = true; } #endif #if defined(USE_GPS) if (!useMag && sensors(SENSOR_GPS) && STATE(GPS_FIX) && gpsSol.numSat >= 5 && gpsSol.groundSpeed >= GPS_COG_MIN_GROUNDSPEED) { // Use GPS course over ground to correct attitude.values.yaw if (isFixedWing()) { courseOverGround = DECIDEGREES_TO_RADIANS(gpsSol.groundCourse); useCOG = true; } else { courseOverGround = DECIDEGREES_TO_RADIANS(gpsSol.groundCourse); useCOG = true; } if (useCOG && shouldInitializeGPSHeading()) { // Reset our reference and reinitialize quaternion. This will likely ideally happen more than once per flight, but for now, // shouldInitializeGPSHeading() returns true only once. imuComputeQuaternionFromRPY(&qP, attitude.values.roll, attitude.values.pitch, gpsSol.groundCourse); useCOG = false; // Don't use the COG when we first reinitialize. Next time around though, yes. } } #endif #if defined(SIMULATOR_BUILD) && !defined(USE_IMU_CALC) UNUSED(imuMahonyAHRSupdate); UNUSED(imuIsAccelerometerHealthy); UNUSED(useAcc); UNUSED(useMag); UNUSED(useCOG); UNUSED(canUseGPSHeading); UNUSED(courseOverGround); UNUSED(deltaT); UNUSED(imuCalcKpGain); #else #if defined(SIMULATOR_BUILD) && defined(SIMULATOR_IMU_SYNC) // printf("[imu]deltaT = %u, imuDeltaT = %u, currentTimeUs = %u, micros64_real = %lu\n", deltaT, imuDeltaT, currentTimeUs, micros64_real()); deltaT = imuDeltaT; #endif float gyroAverage[XYZ_AXIS_COUNT]; gyroGetAccumulationAverage(gyroAverage); if (accGetAccumulationAverage(accAverage)) { useAcc = imuIsAccelerometerHealthy(accAverage); } imuMahonyAHRSupdate(deltaT * 1e-6f, DEGREES_TO_RADIANS(gyroAverage[X]), DEGREES_TO_RADIANS(gyroAverage[Y]), DEGREES_TO_RADIANS(gyroAverage[Z]), useAcc, accAverage[X], accAverage[Y], accAverage[Z], useMag, useCOG, courseOverGround, imuCalcKpGain(currentTimeUs, useAcc, gyroAverage)); imuUpdateEulerAngles(); #endif } static int calculateThrottleAngleCorrection(void) { /* * Use 0 as the throttle angle correction if we are inverted, vertical or with a * small angle < 0.86 deg * TODO: Define this small angle in config. */ if (getCosTiltAngle() <= 0.015f) { return 0; } int angle = lrintf(acos_approx(getCosTiltAngle()) * throttleAngleScale); if (angle > 900) angle = 900; return lrintf(throttleAngleValue * sin_approx(angle / (900.0f * M_PIf / 2.0f))); } void imuUpdateAttitude(timeUs_t currentTimeUs) { if (sensors(SENSOR_ACC) && acc.isAccelUpdatedAtLeastOnce) { IMU_LOCK; #if defined(SIMULATOR_BUILD) && defined(SIMULATOR_IMU_SYNC) if (imuUpdated == false) { IMU_UNLOCK; return; } imuUpdated = false; #endif imuCalculateEstimatedAttitude(currentTimeUs); IMU_UNLOCK; // Update the throttle correction for angle and supply it to the mixer int throttleAngleCorrection = 0; if (throttleAngleValue && (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) && ARMING_FLAG(ARMED)) { throttleAngleCorrection = calculateThrottleAngleCorrection(); } mixerSetThrottleAngleCorrection(throttleAngleCorrection); } else { acc.accADC[X] = 0; acc.accADC[Y] = 0; acc.accADC[Z] = 0; } } #endif // USE_ACC bool shouldInitializeGPSHeading() { static bool initialized = false; if (!initialized) { initialized = true; return true; } return false; } float getCosTiltAngle(void) { return rMat[2][2]; } void getQuaternion(quaternion *quat) { quat->w = q.w; quat->x = q.x; quat->y = q.y; quat->z = q.z; } #ifdef SIMULATOR_BUILD void imuSetAttitudeRPY(float roll, float pitch, float yaw) { IMU_LOCK; attitude.values.roll = roll * 10; attitude.values.pitch = pitch * 10; attitude.values.yaw = yaw * 10; IMU_UNLOCK; } void imuSetAttitudeQuat(float w, float x, float y, float z) { IMU_LOCK; q.w = w; q.x = x; q.y = y; q.z = z; imuComputeRotationMatrix(); attitudeIsEstablished = true; imuUpdateEulerAngles(); IMU_UNLOCK; } #endif #if defined(SIMULATOR_BUILD) && defined(SIMULATOR_IMU_SYNC) void imuSetHasNewData(uint32_t dt) { IMU_LOCK; imuUpdated = true; imuDeltaT = dt; IMU_UNLOCK; } #endif bool imuQuaternionHeadfreeOffsetSet(void) { if ((ABS(attitude.values.roll) < 450) && (ABS(attitude.values.pitch) < 450)) { const float yaw = -atan2_approx((+2.0f * (qP.wz + qP.xy)), (+1.0f - 2.0f * (qP.yy + qP.zz))); offset.w = cos_approx(yaw/2); offset.x = 0; offset.y = 0; offset.z = sin_approx(yaw/2); return true; } else { return false; } } void imuQuaternionMultiplication(quaternion *q1, quaternion *q2, quaternion *result) { const float A = (q1->w + q1->x) * (q2->w + q2->x); const float B = (q1->z - q1->y) * (q2->y - q2->z); const float C = (q1->w - q1->x) * (q2->y + q2->z); const float D = (q1->y + q1->z) * (q2->w - q2->x); const float E = (q1->x + q1->z) * (q2->x + q2->y); const float F = (q1->x - q1->z) * (q2->x - q2->y); const float G = (q1->w + q1->y) * (q2->w - q2->z); const float H = (q1->w - q1->y) * (q2->w + q2->z); result->w = B + (- E - F + G + H) / 2.0f; result->x = A - (+ E + F + G + H) / 2.0f; result->y = C + (+ E - F + G - H) / 2.0f; result->z = D + (+ E - F - G + H) / 2.0f; } void imuQuaternionHeadfreeTransformVectorEarthToBody(t_fp_vector_def *v) { quaternionProducts buffer; imuQuaternionMultiplication(&offset, &q, &headfree); imuQuaternionComputeProducts(&headfree, &buffer); const float x = (buffer.ww + buffer.xx - buffer.yy - buffer.zz) * v->X + 2.0f * (buffer.xy + buffer.wz) * v->Y + 2.0f * (buffer.xz - buffer.wy) * v->Z; const float y = 2.0f * (buffer.xy - buffer.wz) * v->X + (buffer.ww - buffer.xx + buffer.yy - buffer.zz) * v->Y + 2.0f * (buffer.yz + buffer.wx) * v->Z; const float z = 2.0f * (buffer.xz + buffer.wy) * v->X + 2.0f * (buffer.yz - buffer.wx) * v->Y + (buffer.ww - buffer.xx - buffer.yy + buffer.zz) * v->Z; v->X = x; v->Y = y; v->Z = z; } bool isUpright(void) { #ifdef USE_ACC return !sensors(SENSOR_ACC) || (attitudeIsEstablished && getCosTiltAngle() > smallAngleCosZ); #else return true; #endif }