/* * Copyright (c) 2020 Raspberry Pi (Trading) Ltd. * * SPDX-License-Identifier: BSD-3-Clause */ #include "hardware/address_mapped.h" #include "hardware/platform_defs.h" #include "hardware/uart.h" #include "hardware/structs/uart.h" #include "hardware/resets.h" #include "hardware/clocks.h" static inline uint32_t uart_clock_get_hz(__unused uart_inst_t *inst) { return clock_get_hz(UART_CLOCK_NUM(inst)); } #include "hardware/timer.h" #include "pico/assert.h" #include "pico.h" check_hw_layout(uart_hw_t, fr, UART_UARTFR_OFFSET); check_hw_layout(uart_hw_t, dmacr, UART_UARTDMACR_OFFSET); #if PICO_UART_ENABLE_CRLF_SUPPORT short uart_char_to_line_feed[NUM_UARTS]; #endif /// \tag::uart_reset[] static inline void uart_reset(uart_inst_t *uart) { reset_block_num(uart_get_reset_num(uart)); } static inline void uart_unreset(uart_inst_t *uart) { unreset_block_num_wait_blocking(uart_get_reset_num(uart)); } /// \end::uart_reset[] /// \tag::uart_init[] uint uart_init(uart_inst_t *uart, uint baudrate) { invalid_params_if(HARDWARE_UART, uart != uart0 && uart != uart1); if (uart_clock_get_hz(uart) == 0) { return 0; } uart_reset(uart); uart_unreset(uart); #if PICO_UART_ENABLE_CRLF_SUPPORT uart_set_translate_crlf(uart, PICO_UART_DEFAULT_CRLF); #endif // Any LCR writes need to take place before enabling the UART uint baud = uart_set_baudrate(uart, baudrate); // inline the uart_set_format() call, as we don't need the CR disable/re-enable // protection, and also many people will never call it again, so having // the generic function is not useful, and much bigger than this inlined // code which is only a handful of instructions. // // The UART_UARTLCR_H_FEN_BITS setting is combined as well as it is the same register #if 0 uart_set_format(uart, 8, 1, UART_PARITY_NONE); // Enable FIFOs (must be before setting UARTEN, as this is an LCR access) hw_set_bits(&uart_get_hw(uart)->lcr_h, UART_UARTLCR_H_FEN_BITS); #else uint data_bits = 8; uint stop_bits = 1; uint parity = UART_PARITY_NONE; hw_write_masked(&uart_get_hw(uart)->lcr_h, ((data_bits - 5u) << UART_UARTLCR_H_WLEN_LSB) | ((stop_bits - 1u) << UART_UARTLCR_H_STP2_LSB) | (bool_to_bit(parity != UART_PARITY_NONE) << UART_UARTLCR_H_PEN_LSB) | (bool_to_bit(parity == UART_PARITY_EVEN) << UART_UARTLCR_H_EPS_LSB) | UART_UARTLCR_H_FEN_BITS, UART_UARTLCR_H_WLEN_BITS | UART_UARTLCR_H_STP2_BITS | UART_UARTLCR_H_PEN_BITS | UART_UARTLCR_H_EPS_BITS | UART_UARTLCR_H_FEN_BITS); #endif // Enable the UART, both TX and RX uart_get_hw(uart)->cr = UART_UARTCR_UARTEN_BITS | UART_UARTCR_TXE_BITS | UART_UARTCR_RXE_BITS; #if !PICO_UART_NO_DMACR_ENABLE // Always enable DREQ signals -- no harm in this if DMA is not listening uart_get_hw(uart)->dmacr = UART_UARTDMACR_TXDMAE_BITS | UART_UARTDMACR_RXDMAE_BITS; #endif return baud; } /// \end::uart_init[] void uart_deinit(uart_inst_t *uart) { invalid_params_if(HARDWARE_UART, uart != uart0 && uart != uart1); uart_reset(uart); } static uint32_t uart_disable_before_lcr_write(uart_inst_t *uart) { // Notes from PL011 reference manual: // // - Before writing the LCR, if the UART is enabled it needs to be // disabled and any current TX + RX activity has to be completed // // - There is a BUSY flag which waits for the current TX char, but this is // OR'd with TX FIFO !FULL, so not usable when FIFOs are enabled and // potentially nonempty // // - FIFOs can't be set to disabled whilst a character is in progress // (else "FIFO integrity is not guaranteed") // // Combination of these means there is no general way to halt and poll for // end of TX character, if FIFOs may be enabled. Either way, there is no // way to poll for end of RX character. // // So, insert a 15 Baud period delay before changing the settings. // 15 Baud is comfortably higher than start + max data + parity + stop. // Anything else would require API changes to permit a non-enabled UART // state after init() where settings can be changed safely. uint32_t cr_save = uart_get_hw(uart)->cr; if (cr_save & UART_UARTCR_UARTEN_BITS) { hw_clear_bits(&uart_get_hw(uart)->cr, UART_UARTCR_UARTEN_BITS | UART_UARTCR_TXE_BITS | UART_UARTCR_RXE_BITS); uint32_t current_ibrd = uart_get_hw(uart)->ibrd; uint32_t current_fbrd = uart_get_hw(uart)->fbrd; // Note: Maximise precision here. Show working, the compiler will mop this up. // Create a 16.6 fixed-point fractional division ratio; then scale to 32-bits. uint32_t brdiv_ratio = 64u * current_ibrd + current_fbrd; brdiv_ratio <<= 10; // 3662 is ~(15 * 244.14) where 244.14 is 16e6 / 2^16 uint32_t scaled_freq = uart_clock_get_hz(uart) / 3662ul; uint32_t wait_time_us = brdiv_ratio / scaled_freq; busy_wait_us(wait_time_us); } return cr_save; } static void uart_write_lcr_bits_masked(uart_inst_t *uart, uint32_t values, uint32_t write_mask) { invalid_params_if(HARDWARE_UART, uart != uart0 && uart != uart1); // (Potentially) Cleanly handle disabling the UART before touching LCR uint32_t cr_save = uart_disable_before_lcr_write(uart); hw_write_masked(&uart_get_hw(uart)->lcr_h, values, write_mask); uart_get_hw(uart)->cr = cr_save; } /// \tag::uart_set_baudrate[] uint uart_set_baudrate(uart_inst_t *uart, uint baudrate) { invalid_params_if(HARDWARE_UART, baudrate == 0); uint32_t baud_rate_div = (8 * uart_clock_get_hz(uart) / baudrate) + 1; uint32_t baud_ibrd = baud_rate_div >> 7; uint32_t baud_fbrd; if (baud_ibrd == 0) { baud_ibrd = 1; baud_fbrd = 0; } else if (baud_ibrd >= 65535) { baud_ibrd = 65535; baud_fbrd = 0; } else { baud_fbrd = (baud_rate_div & 0x7f) >> 1; } uart_get_hw(uart)->ibrd = baud_ibrd; uart_get_hw(uart)->fbrd = baud_fbrd; // PL011 needs a (dummy) LCR_H write to latch in the divisors. // We don't want to actually change LCR_H contents here. uart_write_lcr_bits_masked(uart, 0, 0); // See datasheet return (4 * uart_clock_get_hz(uart)) / (64 * baud_ibrd + baud_fbrd); } /// \end::uart_set_baudrate[] void uart_set_format(uart_inst_t *uart, uint data_bits, uint stop_bits, uart_parity_t parity) { invalid_params_if(HARDWARE_UART, data_bits < 5 || data_bits > 8); invalid_params_if(HARDWARE_UART, stop_bits != 1 && stop_bits != 2); invalid_params_if(HARDWARE_UART, parity != UART_PARITY_NONE && parity != UART_PARITY_EVEN && parity != UART_PARITY_ODD); uart_write_lcr_bits_masked(uart, ((data_bits - 5u) << UART_UARTLCR_H_WLEN_LSB) | ((stop_bits - 1u) << UART_UARTLCR_H_STP2_LSB) | (bool_to_bit(parity != UART_PARITY_NONE) << UART_UARTLCR_H_PEN_LSB) | (bool_to_bit(parity == UART_PARITY_EVEN) << UART_UARTLCR_H_EPS_LSB), UART_UARTLCR_H_WLEN_BITS | UART_UARTLCR_H_STP2_BITS | UART_UARTLCR_H_PEN_BITS | UART_UARTLCR_H_EPS_BITS); } void uart_set_fifo_enabled(uart_inst_t *uart, bool enabled) { uint32_t lcr_h_fen_bits = 0; if (enabled) { lcr_h_fen_bits = UART_UARTLCR_H_FEN_BITS; } uart_write_lcr_bits_masked(uart, lcr_h_fen_bits, UART_UARTLCR_H_FEN_BITS); } void uart_set_break(uart_inst_t *uart, bool en) { uint32_t lcr_h_brk_bits = 0; if (en) { lcr_h_brk_bits = UART_UARTLCR_H_BRK_BITS; } uart_write_lcr_bits_masked(uart, lcr_h_brk_bits, UART_UARTLCR_H_BRK_BITS); } void uart_set_translate_crlf(uart_inst_t *uart, bool crlf) { #if PICO_UART_ENABLE_CRLF_SUPPORT uart_char_to_line_feed[uart_get_index(uart)] = crlf ? '\n' : 0x100; #else panic_unsupported(); #endif } bool uart_is_readable_within_us(uart_inst_t *uart, uint32_t us) { uint32_t t = time_us_32(); do { if (uart_is_readable(uart)) { return true; } } while ((time_us_32() - t) <= us); return false; }