/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see .
*/
#include
#include
#include
#include
#include "build/debug.h"
#include "common/axis.h"
#include "common/maths.h"
#include "common/filter.h"
#include "fc/rc_controls.h"
#include "fc/runtime_config.h"
#include "flight/pid.h"
#include "flight/imu.h"
#include "flight/navigation.h"
#include "flight/gtune.h"
#include "sensors/gyro.h"
#include "sensors/acceleration.h"
extern float rcInput[3];
extern float setpointRate[3];
uint32_t targetPidLooptime;
static bool pidStabilisationEnabled;
float axisPIDf[3];
// PIDweight is a scale factor for PIDs which is derived from the throttle and TPA setting, and 100 = 100% scale means no PID reduction
uint8_t PIDweight[3];
#ifdef BLACKBOX
int32_t axisPID_P[3], axisPID_I[3], axisPID_D[3];
#endif
static float errorGyroIf[3];
void setTargetPidLooptime(uint32_t pidLooptime)
{
targetPidLooptime = pidLooptime;
}
void pidResetErrorGyroState(void)
{
for (int axis = 0; axis < 3; axis++) {
errorGyroIf[axis] = 0.0f;
}
}
void pidStabilisationState(pidStabilisationState_e pidControllerState)
{
pidStabilisationEnabled = (pidControllerState == PID_STABILISATION_ON) ? true : false;
}
const angle_index_t rcAliasToAngleIndexMap[] = { AI_ROLL, AI_PITCH };
pt1Filter_t deltaFilter[3];
pt1Filter_t yawFilter;
biquadFilter_t dtermFilterLpf[3];
biquadFilter_t dtermFilterNotch[3];
bool dtermNotchInitialised;
bool dtermBiquadLpfInitialised;
firFilterDenoise_t dtermDenoisingState[3];
static void pidInitFilters(const pidProfile_t *pidProfile)
{
static uint8_t lowpassFilterType;
if (pidProfile->dterm_notch_hz && !dtermNotchInitialised) {
float notchQ = filterGetNotchQ(pidProfile->dterm_notch_hz, pidProfile->dterm_notch_cutoff);
for (int axis = 0; axis < 3; axis++) biquadFilterInit(&dtermFilterNotch[axis], pidProfile->dterm_notch_hz, targetPidLooptime, notchQ, FILTER_NOTCH);
dtermNotchInitialised = true;
}
if ((pidProfile->dterm_filter_type != lowpassFilterType) && pidProfile->dterm_lpf_hz) {
if (pidProfile->dterm_filter_type == FILTER_BIQUAD) {
for (int axis = 0; axis < 3; axis++) biquadFilterInitLPF(&dtermFilterLpf[axis], pidProfile->dterm_lpf_hz, targetPidLooptime);
}
if (pidProfile->dterm_filter_type == FILTER_FIR) {
for (int axis = 0; axis < 3; axis++) firFilterDenoiseInit(&dtermDenoisingState[axis], pidProfile->dterm_lpf_hz, targetPidLooptime);
}
lowpassFilterType = pidProfile->dterm_filter_type;
}
}
// Betaflight pid controller, which will be maintained in the future with additional features specialised for current (mini) multirotor usage.
// Based on 2DOF reference design (matlab)
void pidController(const pidProfile_t *pidProfile, uint16_t max_angle_inclination,
const rollAndPitchTrims_t *angleTrim, uint16_t midrc)
{
static float lastRateError[2];
static float Kp[3], Ki[3], Kd[3], c[3];
static float rollPitchMaxVelocity, yawMaxVelocity;
static float previousSetpoint[3], relaxFactor[3];
static float dT;
if (!dT) {
dT = (float)targetPidLooptime * 0.000001f;
}
pidInitFilters(pidProfile);
float horizonLevelStrength = 1;
if (FLIGHT_MODE(HORIZON_MODE)) {
// Figure out the raw stick positions
const int32_t stickPosAil = ABS(getRcStickDeflection(FD_ROLL, midrc));
const int32_t stickPosEle = ABS(getRcStickDeflection(FD_PITCH, midrc));
const int32_t mostDeflectedPos = MAX(stickPosAil, stickPosEle);
// Progressively turn off the horizon self level strength as the stick is banged over
horizonLevelStrength = (float)(500 - mostDeflectedPos) / 500; // 1 at centre stick, 0 = max stick deflection
if(pidProfile->D8[PIDLEVEL] == 0){
horizonLevelStrength = 0;
} else {
horizonLevelStrength = constrainf(((horizonLevelStrength - 1) * (100 / pidProfile->D8[PIDLEVEL])) + 1, 0, 1);
}
}
// Yet Highly experimental and under test and development
// Throttle coupled to Igain like inverted TPA // 50hz calculation (should cover all rx protocols)
static float kiThrottleGain = 1.0f;
if (pidProfile->itermThrottleGain) {
const uint16_t maxLoopCount = 20000 / targetPidLooptime;
const float throttleItermGain = (float)pidProfile->itermThrottleGain * 0.001f;
static int16_t previousThrottle;
static uint16_t loopIncrement;
if (loopIncrement >= maxLoopCount) {
kiThrottleGain = 1.0f + constrainf((float)(ABS(rcCommand[THROTTLE] - previousThrottle)) * throttleItermGain, 0.0f, 5.0f); // Limit to factor 5
previousThrottle = rcCommand[THROTTLE];
loopIncrement = 0;
} else {
loopIncrement++;
}
}
// ----------PID controller----------
const float tpaFactor = PIDweight[0] / 100.0f; // tpa is now float
for (int axis = 0; axis < 3; axis++) {
static uint8_t configP[3], configI[3], configD[3];
// Prevent unnecessary computing and check for changed PIDs. No need for individual checks. Only pids is fine for now
// Prepare all parameters for PID controller
if ((pidProfile->P8[axis] != configP[axis]) || (pidProfile->I8[axis] != configI[axis]) || (pidProfile->D8[axis] != configD[axis])) {
Kp[axis] = PTERM_SCALE * pidProfile->P8[axis];
Ki[axis] = ITERM_SCALE * pidProfile->I8[axis];
Kd[axis] = DTERM_SCALE * pidProfile->D8[axis];
c[axis] = pidProfile->dtermSetpointWeight / 100.0f;
relaxFactor[axis] = 1.0f - (pidProfile->setpointRelaxRatio / 100.0f);
yawMaxVelocity = pidProfile->yawRateAccelLimit * 1000 * dT;
rollPitchMaxVelocity = pidProfile->rateAccelLimit * 1000 * dT;
configP[axis] = pidProfile->P8[axis];
configI[axis] = pidProfile->I8[axis];
configD[axis] = pidProfile->D8[axis];
}
// Limit abrupt yaw inputs / stops
float maxVelocity = (axis == YAW) ? yawMaxVelocity : rollPitchMaxVelocity;
if (maxVelocity) {
float currentVelocity = setpointRate[axis] - previousSetpoint[axis];
if (ABS(currentVelocity) > maxVelocity) {
setpointRate[axis] = (currentVelocity > 0) ? previousSetpoint[axis] + maxVelocity : previousSetpoint[axis] - maxVelocity;
}
previousSetpoint[axis] = setpointRate[axis];
}
// Yaw control is GYRO based, direct sticks control is applied to rate PID
if ((FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) && axis != YAW) {
// calculate error angle and limit the angle to the max inclination
#ifdef GPS
const float errorAngle = (constrainf(pidProfile->levelSensitivity * rcCommand[axis] + GPS_angle[axis], -((int) max_angle_inclination),
+max_angle_inclination) - attitude.raw[axis] + angleTrim->raw[axis]) / 10.0f; // 16 bits is ok here
#else
const float errorAngle = (constrainf(pidProfile->levelSensitivity * rcCommand[axis], -((int) max_angle_inclination),
+max_angle_inclination) - attitude.raw[axis] + angleTrim->raw[axis]) / 10.0f; // 16 bits is ok here
#endif
if (FLIGHT_MODE(ANGLE_MODE)) {
// ANGLE mode - control is angle based, so control loop is needed
setpointRate[axis] = errorAngle * pidProfile->P8[PIDLEVEL] / 10.0f;
} else {
// HORIZON mode - direct sticks control is applied to rate PID
// mix up angle error to desired AngleRate to add a little auto-level feel
setpointRate[axis] = setpointRate[axis] + (errorAngle * pidProfile->I8[PIDLEVEL] * horizonLevelStrength / 10.0f);
}
}
const float PVRate = gyroADCf[axis] / 16.4f; // Process variable from gyro output in deg/sec
// --------low-level gyro-based PID based on 2DOF PID controller. ----------
// ---------- 2-DOF PID controller with optional filter on derivative term. b = 1 and only c can be tuned (amount derivative on measurement or error). ----------
// Used in stand-alone mode for ACRO, controlled by higher level regulators in other modes
// ----- calculate error / angle rates ----------
const float errorRate = setpointRate[axis] - PVRate; // r - y
// -----calculate P component and add Dynamic Part based on stick input
float PTerm = Kp[axis] * errorRate * tpaFactor;
// -----calculate I component.
// Reduce strong Iterm accumulation during higher stick inputs
float accumulationThreshold = (axis == YAW) ? pidProfile->yawItermIgnoreRate : pidProfile->rollPitchItermIgnoreRate;
float setpointRateScaler = constrainf(1.0f - (ABS(setpointRate[axis]) / accumulationThreshold), 0.0f, 1.0f);
// Handle All windup Scenarios
// limit maximum integrator value to prevent WindUp
float itermScaler = setpointRateScaler * kiThrottleGain;
errorGyroIf[axis] = constrainf(errorGyroIf[axis] + Ki[axis] * errorRate * dT * itermScaler, -250.0f, 250.0f);
// I coefficient (I8) moved before integration to make limiting independent from PID settings
const float ITerm = errorGyroIf[axis];
//-----calculate D-term (Yaw D not yet supported)
float DTerm;
if (axis != YAW) {
static float previousSetpoint[3];
float dynC = c[axis];
if (pidProfile->setpointRelaxRatio < 100) {
dynC = c[axis];
if (setpointRate[axis] > 0) {
if ((setpointRate[axis] - previousSetpoint[axis]) < previousSetpoint[axis])
dynC = dynC * powerf(rcInput[axis], 2) * relaxFactor[axis] + dynC * (1-relaxFactor[axis]);
} else if (setpointRate[axis] < 0) {
if ((setpointRate[axis] - previousSetpoint[axis]) > previousSetpoint[axis])
dynC = dynC * powerf(rcInput[axis], 2) * relaxFactor[axis] + dynC * (1-relaxFactor[axis]);
}
}
previousSetpoint[axis] = setpointRate[axis];
const float rD = dynC * setpointRate[axis] - PVRate; // cr - y
float delta = rD - lastRateError[axis];
lastRateError[axis] = rD;
// Divide delta by targetLooptime to get differential (ie dr/dt)
delta *= (1.0f / dT);
if (debugMode == DEBUG_DTERM_FILTER) debug[axis] = Kd[axis] * delta * tpaFactor;
// Filter delta
if (dtermNotchInitialised) delta = biquadFilterApply(&dtermFilterNotch[axis], delta);
if (pidProfile->dterm_lpf_hz) {
if (pidProfile->dterm_filter_type == FILTER_BIQUAD)
delta = biquadFilterApply(&dtermFilterLpf[axis], delta);
else if (pidProfile->dterm_filter_type == FILTER_PT1)
delta = pt1FilterApply4(&deltaFilter[axis], delta, pidProfile->dterm_lpf_hz, dT);
else
delta = firFilterDenoiseUpdate(&dtermDenoisingState[axis], delta);
}
DTerm = Kd[axis] * delta * tpaFactor;
// -----calculate total PID output
axisPIDf[axis] = PTerm + ITerm + DTerm;
} else {
if (pidProfile->yaw_lpf_hz) PTerm = pt1FilterApply4(&yawFilter, PTerm, pidProfile->yaw_lpf_hz, dT);
axisPIDf[axis] = PTerm + ITerm;
DTerm = 0.0f; // needed for blackbox
}
// Disable PID control at zero throttle
if (!pidStabilisationEnabled) axisPIDf[axis] = 0;
#ifdef GTUNE
if (FLIGHT_MODE(GTUNE_MODE) && ARMING_FLAG(ARMED)) {
calculate_Gtune(axis);
}
#endif
#ifdef BLACKBOX
axisPID_P[axis] = PTerm;
axisPID_I[axis] = ITerm;
axisPID_D[axis] = DTerm;
#endif
}
}