/* The MIT License (MIT) Copyright (c) 2015 Jacques-Henri Jourdan Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Taken from https://github.com/jhjourdan/SIMD-math-prims/blob/master/simd_math_prims.h Stripped down for BF use */ #include #include #include "platform.h" #include "common/maths.h" /* Workaround a lack of optimization in gcc */ float exp_cst1 = 2139095040.f; float exp_cst2 = 0.f; /* Relative error bounded by 1e-5 for normalized outputs Returns invalid outputs for nan inputs Continuous error */ float exp_approx(float val) { union { int32_t i; float f; } xu, xu2; float val2, val3, val4, b; int32_t val4i; val2 = 12102203.1615614f*val+1065353216.f; val3 = val2 < exp_cst1 ? val2 : exp_cst1; val4 = val3 > exp_cst2 ? val3 : exp_cst2; val4i = (int32_t) val4; xu.i = val4i & 0x7F800000; // mask exponent / round down to neareset 2^n (implicit mantisa bit) xu2.i = (val4i & 0x7FFFFF) | 0x3F800000; // force exponent to 0 b = xu2.f; /* Generated in Sollya with: > f=remez(1-x*exp(-(x-1)*log(2)), [|(x-1)*(x-2), (x-1)*(x-2)*x, (x-1)*(x-2)*x*x|], [1.000001,1.999999], exp(-(x-1)*log(2))); > plot(exp((x-1)*log(2))/(f+x)-1, [1,2]); > f+x; */ return xu.f * (0.509871020343597804469416f + b * (0.312146713032169896138863f + b * (0.166617139319965966118107f + b * (-2.19061993049215080032874e-3f + b * 1.3555747234758484073940937e-2f)))); } /* Absolute error bounded by 1e-6 for normalized inputs Returns a finite number for +inf input Returns -inf for nan and <= 0 inputs. Continuous error. */ float log_approx(float val) { union { float f; int32_t i; } valu; float exp, addcst, x; valu.f = val; exp = valu.i >> 23; /* 89.970756366f = 127 * log(2) - constant term of polynomial */ addcst = val > 0 ? -89.970756366f : -(float)INFINITY; valu.i = (valu.i & 0x7FFFFF) | 0x3F800000; x = valu.f; /* Generated in Sollya using: > f = remez(log(x)-(x-1)*log(2), [|1,(x-1)*(x-2), (x-1)*(x-2)*x, (x-1)*(x-2)*x*x, (x-1)*(x-2)*x*x*x|], [1,2], 1, 1e-8); > plot(f+(x-1)*log(2)-log(x), [1,2]); > f+(x-1)*log(2) */ return x * (3.529304993f + x * (-2.461222105f + x * (1.130626167f + x * (-0.288739945f + x * 3.110401639e-2f)))) + (addcst + 0.69314718055995f*exp); } float pow_approx(float a, float b) { return exp_approx(b * log_approx(a)); }