/* * This file is part of Cleanflight. * * Cleanflight is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Cleanflight is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Cleanflight. If not, see . */ #include #include #include #include #include "build_config.h" #include "debug.h" #include "common/axis.h" #include "common/maths.h" #include "common/filter.h" #include "drivers/sensor.h" #include "drivers/gyro_sync.h" #include "drivers/accgyro.h" #include "sensors/sensors.h" #include "sensors/gyro.h" #include "sensors/acceleration.h" #include "rx/rx.h" #include "io/rc_controls.h" #include "io/gps.h" #include "flight/pid.h" #include "flight/imu.h" #include "flight/navigation.h" #include "flight/gtune.h" #include "config/runtime_config.h" extern uint8_t motorCount; extern bool motorLimitReached; uint32_t targetPidLooptime; int16_t axisPID[3]; #ifdef BLACKBOX int32_t axisPID_P[3], axisPID_I[3], axisPID_D[3]; #endif // PIDweight is a scale factor for PIDs which is derived from the throttle and TPA setting, and 100 = 100% scale means no PID reduction uint8_t PIDweight[3]; static int32_t errorGyroI[3], errorGyroILimit[3]; #ifndef SKIP_PID_LUXFLOAT static float errorGyroIf[3], errorGyroIfLimit[3]; #endif static void pidMultiWiiRewrite(const pidProfile_t *pidProfile, const controlRateConfig_t *controlRateConfig, uint16_t max_angle_inclination, const rollAndPitchTrims_t *angleTrim, const rxConfig_t *rxConfig); pidControllerFuncPtr pid_controller = pidMultiWiiRewrite; // which pid controller are we using, defaultMultiWii void setTargetPidLooptime(uint8_t pidProcessDenom) { targetPidLooptime = targetLooptime * pidProcessDenom; } float calculateRate(int axis, const controlRateConfig_t *controlRateConfig) { float angleRate; if (isSuperExpoActive()) { float rcFactor = (axis == YAW) ? (ABS(rcCommand[axis]) / 500.0f) : (ABS(rcCommand[axis]) / (500.0f * (controlRateConfig->rcRate8 / 100.0f))); rcFactor = 1.0f / (1.0f - (rcFactor * (controlRateConfig->rates[axis] / 100.0f))); angleRate = rcFactor * ((27 * rcCommand[axis]) / 16.0f); } else { angleRate = (float)((controlRateConfig->rates[axis] + 27) * rcCommand[axis]) / 16.0f; } return angleRate; } uint16_t getDynamicKp(int axis, const pidProfile_t *pidProfile) { uint16_t dynamicKp; uint32_t dynamicFactor = constrain(ABS(rcCommand[axis] << 8) / DYNAMIC_PTERM_STICK_THRESHOLD, 0, 1 << 7); dynamicKp = ((pidProfile->P8[axis] << 8) + (pidProfile->P8[axis] * dynamicFactor)) >> 8; return dynamicKp; } uint16_t getDynamicKi(int axis, const pidProfile_t *pidProfile) { uint16_t dynamicKi; uint16_t resetRate; resetRate = (axis == YAW) ? pidProfile->yawItermIgnoreRate : pidProfile->rollPitchItermIgnoreRate; uint32_t dynamicFactor = ((resetRate << 16) / (resetRate + ABS(gyroADC[axis]))) >> 8; dynamicKi = (pidProfile->I8[axis] * dynamicFactor) >> 8; return dynamicKi; } void pidResetErrorGyroState(void) { int axis; for (axis = 0; axis < 3; axis++) { errorGyroI[axis] = 0; #ifndef SKIP_PID_LUXFLOAT errorGyroIf[axis] = 0.0f; #endif } } float getdT (void) { static float dT; if (!dT) dT = (float)targetPidLooptime * 0.000001f; return dT; } const angle_index_t rcAliasToAngleIndexMap[] = { AI_ROLL, AI_PITCH }; static filterStatePt1_t deltaFilterState[3]; static filterStatePt1_t yawFilterState; #ifndef SKIP_PID_LUXFLOAT static void pidLuxFloat(const pidProfile_t *pidProfile, const controlRateConfig_t *controlRateConfig, uint16_t max_angle_inclination, const rollAndPitchTrims_t *angleTrim, const rxConfig_t *rxConfig) { float RateError, AngleRate, gyroRate; float ITerm,PTerm,DTerm; static float lastRate[3]; float delta; int axis; float horizonLevelStrength = 1; float tpaFactor = PIDweight[0] / 100.0f; // tpa is now float // Scaling factors for Pids to match rewrite and use same defaults static const float luxPTermScale = 1.0f / 128; static const float luxITermScale = 1000000.0f / 0x1000000; static const float luxDTermScale = (0.000001f * (float)0xFFFF) / 508; if (FLIGHT_MODE(HORIZON_MODE)) { // Figure out the raw stick positions const int32_t stickPosAil = ABS(getRcStickDeflection(FD_ROLL, rxConfig->midrc)); const int32_t stickPosEle = ABS(getRcStickDeflection(FD_PITCH, rxConfig->midrc)); const int32_t mostDeflectedPos = MAX(stickPosAil, stickPosEle); // Progressively turn off the horizon self level strength as the stick is banged over horizonLevelStrength = (float)(500 - mostDeflectedPos) / 500; // 1 at centre stick, 0 = max stick deflection if(pidProfile->D8[PIDLEVEL] == 0){ horizonLevelStrength = 0; } else { horizonLevelStrength = constrainf(((horizonLevelStrength - 1) * (100 / pidProfile->D8[PIDLEVEL])) + 1, 0, 1); } } // ----------PID controller---------- for (axis = 0; axis < 3; axis++) { // ACRO mode, control is GYRO based, direct sticks control is applied to rate PID AngleRate = calculateRate(axis, controlRateConfig); if ((FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) && axis != YAW) { // calculate error angle and limit the angle to the max inclination #ifdef GPS const float errorAngle = (constrain(2 * rcCommand[axis] + GPS_angle[axis], -((int) max_angle_inclination), +max_angle_inclination) - attitude.raw[axis] + angleTrim->raw[axis]); // 16 bits is ok here #else const float errorAngle = (constrain(2 * rcCommand[axis], -((int) max_angle_inclination), +max_angle_inclination) - attitude.raw[axis] + angleTrim->raw[axis]); // 16 bits is ok here #endif if (FLIGHT_MODE(ANGLE_MODE)) { // ANGLE mode - control is angle based, so control loop is needed AngleRate = errorAngle * pidProfile->P8[PIDLEVEL] / 16.0f; } else { // HORIZON mode - direct sticks control is applied to rate PID // mix up angle error to desired AngleRate to add a little auto-level feel AngleRate += errorAngle * pidProfile->I8[PIDLEVEL] * horizonLevelStrength / 16.0f; } } gyroRate = gyroADCf[axis] / 4.0f; // gyro output scaled to rewrite scale // --------low-level gyro-based PID. ---------- // Used in stand-alone mode for ACRO, controlled by higher level regulators in other modes // -----calculate scaled error.AngleRates // multiplication of rcCommand corresponds to changing the sticks scaling here RateError = AngleRate - gyroRate; uint16_t kP = (pidProfile->dynamic_pid) ? getDynamicKp(axis, pidProfile) : pidProfile->P8[axis]; // -----calculate P component PTerm = luxPTermScale * RateError * kP * tpaFactor; // Constrain YAW by yaw_p_limit value if not servo driven in that case servolimits apply if((motorCount >= 4 && pidProfile->yaw_p_limit) && axis == YAW) { PTerm = constrainf(PTerm, -pidProfile->yaw_p_limit, pidProfile->yaw_p_limit); } // -----calculate I component. uint16_t kI = (pidProfile->dynamic_pid) ? getDynamicKi(axis, pidProfile) : pidProfile->I8[axis]; errorGyroIf[axis] = constrainf(errorGyroIf[axis] + luxITermScale * RateError * getdT() * kI, -250.0f, 250.0f); if (motorLimitReached) { errorGyroIf[axis] = constrainf(errorGyroIf[axis], -errorGyroIfLimit[axis], errorGyroIfLimit[axis]); } else { errorGyroIfLimit[axis] = ABS(errorGyroIf[axis]); } // limit maximum integrator value to prevent WindUp - accumulating extreme values when system is saturated. // I coefficient (I8) moved before integration to make limiting independent from PID settings ITerm = errorGyroIf[axis]; //-----calculate D-term if (axis == YAW) { if (pidProfile->yaw_lpf_hz) PTerm = filterApplyPt1(PTerm, &yawFilterState, pidProfile->yaw_lpf_hz, getdT()); axisPID[axis] = lrintf(PTerm + ITerm); if (motorCount >= 4) { int16_t yaw_jump_prevention_limit = constrain(YAW_JUMP_PREVENTION_LIMIT_HIGH - (pidProfile->D8[axis] << 3), YAW_JUMP_PREVENTION_LIMIT_LOW, YAW_JUMP_PREVENTION_LIMIT_HIGH); // prevent "yaw jump" during yaw correction axisPID[YAW] = constrain(axisPID[YAW], -yaw_jump_prevention_limit - ABS(rcCommand[YAW]), yaw_jump_prevention_limit + ABS(rcCommand[YAW])); } DTerm = 0.0f; // needed for blackbox } else { delta = -(gyroRate - lastRate[axis]); lastRate[axis] = gyroRate; // Divide delta by targetLooptime to get differential (ie dr/dt) delta *= (1.0f / getdT()); // Filter delta if (pidProfile->dterm_lpf_hz) delta = filterApplyPt1(delta, &deltaFilterState[axis], pidProfile->dterm_lpf_hz, getdT()); DTerm = constrainf(luxDTermScale * delta * (float)pidProfile->D8[axis] * tpaFactor, -300.0f, 300.0f); // -----calculate total PID output axisPID[axis] = constrain(lrintf(PTerm + ITerm + DTerm), -1000, 1000); } #ifdef GTUNE if (FLIGHT_MODE(GTUNE_MODE) && ARMING_FLAG(ARMED)) { calculate_Gtune(axis); } #endif #ifdef BLACKBOX axisPID_P[axis] = PTerm; axisPID_I[axis] = ITerm; axisPID_D[axis] = DTerm; #endif } } #endif static void pidMultiWiiRewrite(const pidProfile_t *pidProfile, const controlRateConfig_t *controlRateConfig, uint16_t max_angle_inclination, const rollAndPitchTrims_t *angleTrim, const rxConfig_t *rxConfig) { int axis; int32_t PTerm, ITerm, DTerm, delta; static int32_t lastRate[3]; int32_t AngleRateTmp, RateError, gyroRate; int8_t horizonLevelStrength = 100; if (FLIGHT_MODE(HORIZON_MODE)) { // Figure out the raw stick positions const int32_t stickPosAil = ABS(getRcStickDeflection(FD_ROLL, rxConfig->midrc)); const int32_t stickPosEle = ABS(getRcStickDeflection(FD_PITCH, rxConfig->midrc)); const int32_t mostDeflectedPos = MAX(stickPosAil, stickPosEle); // Progressively turn off the horizon self level strength as the stick is banged over horizonLevelStrength = (500 - mostDeflectedPos) / 5; // 100 at centre stick, 0 = max stick deflection // Using Level D as a Sensitivity for Horizon. 0 more level to 255 more rate. Default value of 100 seems to work fine. // For more rate mode increase D and slower flips and rolls will be possible horizonLevelStrength = constrain((10 * (horizonLevelStrength - 100) * (10 * pidProfile->D8[PIDLEVEL] / 80) / 100) + 100, 0, 100); } // ----------PID controller---------- for (axis = 0; axis < 3; axis++) { // -----Get the desired angle rate depending on flight mode AngleRateTmp = (int32_t)calculateRate(axis, controlRateConfig); if ((FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) && axis != YAW) { // calculate error angle and limit the angle to max configured inclination #ifdef GPS const int32_t errorAngle = constrain(2 * rcCommand[axis] + GPS_angle[axis], -((int) max_angle_inclination), +max_angle_inclination) - attitude.raw[axis] + angleTrim->raw[axis]; #else const int32_t errorAngle = constrain(2 * rcCommand[axis], -((int) max_angle_inclination), +max_angle_inclination) - attitude.raw[axis] + angleTrim->raw[axis]; #endif if (FLIGHT_MODE(ANGLE_MODE)) { // ANGLE mode - control is angle based, so control loop is needed AngleRateTmp = (errorAngle * pidProfile->P8[PIDLEVEL]) >> 4; } else { // HORIZON mode - mix up angle error to desired AngleRateTmp to add a little auto-level feel, // horizonLevelStrength is scaled to the stick input AngleRateTmp += (errorAngle * pidProfile->I8[PIDLEVEL] * horizonLevelStrength / 100) >> 4; } } // --------low-level gyro-based PID. ---------- // Used in stand-alone mode for ACRO, controlled by higher level regulators in other modes // -----calculate scaled error.AngleRates // multiplication of rcCommand corresponds to changing the sticks scaling here gyroRate = gyroADC[axis] / 4; RateError = AngleRateTmp - gyroRate; uint16_t kP = (pidProfile->dynamic_pid) ? getDynamicKp(axis, pidProfile) : pidProfile->P8[axis]; // -----calculate P component PTerm = (RateError * kP * PIDweight[axis] / 100) >> 7; // Constrain YAW by yaw_p_limit value if not servo driven in that case servolimits apply if((motorCount >= 4 && pidProfile->yaw_p_limit) && axis == YAW) { PTerm = constrain(PTerm, -pidProfile->yaw_p_limit, pidProfile->yaw_p_limit); } // -----calculate I component // there should be no division before accumulating the error to integrator, because the precision would be reduced. // Precision is critical, as I prevents from long-time drift. Thus, 32 bits integrator is used. // Time correction (to avoid different I scaling for different builds based on average cycle time) // is normalized to cycle time = 2048. uint16_t kI = (pidProfile->dynamic_pid) ? getDynamicKi(axis, pidProfile) : pidProfile->I8[axis]; errorGyroI[axis] = errorGyroI[axis] + ((RateError * (uint16_t)targetPidLooptime) >> 11) * kI; // limit maximum integrator value to prevent WindUp - accumulating extreme values when system is saturated. // I coefficient (I8) moved before integration to make limiting independent from PID settings errorGyroI[axis] = constrain(errorGyroI[axis], (int32_t) - GYRO_I_MAX << 13, (int32_t) + GYRO_I_MAX << 13); if (motorLimitReached) { errorGyroI[axis] = constrain(errorGyroI[axis], -errorGyroILimit[axis], errorGyroILimit[axis]); } else { errorGyroILimit[axis] = ABS(errorGyroI[axis]); } ITerm = errorGyroI[axis] >> 13; //-----calculate D-term if (axis == YAW) { if (pidProfile->yaw_lpf_hz) PTerm = filterApplyPt1(PTerm, &yawFilterState, pidProfile->yaw_lpf_hz, getdT()); axisPID[axis] = PTerm + ITerm; if (motorCount >= 4) { int16_t yaw_jump_prevention_limit = constrain(YAW_JUMP_PREVENTION_LIMIT_HIGH - (pidProfile->D8[axis] << 3), YAW_JUMP_PREVENTION_LIMIT_LOW, YAW_JUMP_PREVENTION_LIMIT_HIGH); // prevent "yaw jump" during yaw correction axisPID[YAW] = constrain(axisPID[YAW], -yaw_jump_prevention_limit - ABS(rcCommand[YAW]), yaw_jump_prevention_limit + ABS(rcCommand[YAW])); } DTerm = 0; // needed for blackbox } else { delta = -(gyroRate - lastRate[axis]); lastRate[axis] = gyroRate; // Divide delta by targetLooptime to get differential (ie dr/dt) delta = (delta * ((uint16_t) 0xFFFF / ((uint16_t)targetPidLooptime >> 4))) >> 5; // Filter delta if (pidProfile->dterm_lpf_hz) delta = filterApplyPt1((float)delta, &deltaFilterState[axis], pidProfile->dterm_lpf_hz, getdT()); DTerm = (delta * pidProfile->D8[axis] * PIDweight[axis] / 100) >> 8; // -----calculate total PID output axisPID[axis] = PTerm + ITerm + DTerm; } #ifdef GTUNE if (FLIGHT_MODE(GTUNE_MODE) && ARMING_FLAG(ARMED)) { calculate_Gtune(axis); } #endif #ifdef BLACKBOX axisPID_P[axis] = PTerm; axisPID_I[axis] = ITerm; axisPID_D[axis] = DTerm; #endif } } void pidSetController(pidControllerType_e type) { switch (type) { default: case PID_CONTROLLER_MWREWRITE: pid_controller = pidMultiWiiRewrite; break; #ifndef SKIP_PID_LUXFLOAT case PID_CONTROLLER_LUX_FLOAT: pid_controller = pidLuxFloat; #endif } }