/* * This file is part of Cleanflight and Betaflight. * * Cleanflight and Betaflight are free software. You can redistribute * this software and/or modify this software under the terms of the * GNU General Public License as published by the Free Software * Foundation, either version 3 of the License, or (at your option) * any later version. * * Cleanflight and Betaflight are distributed in the hope that they * will be useful, but WITHOUT ANY WARRANTY; without even the implied * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this software. * * If not, see . */ #include #include #include #include #include "platform.h" #ifdef USE_PWM_OUTPUT #include "drivers/io.h" #include "drivers/motor.h" #include "drivers/pwm_output.h" #include "drivers/time.h" #include "drivers/timer.h" #include "pg/motor.h" FAST_DATA_ZERO_INIT pwmOutputPort_t motors[MAX_SUPPORTED_MOTORS]; static void pwmOCConfig(TIM_TypeDef *tim, uint8_t channel, uint16_t value, uint8_t output) { #if defined(USE_HAL_DRIVER) TIM_HandleTypeDef* Handle = timerFindTimerHandle(tim); if (Handle == NULL) return; TIM_OC_InitTypeDef TIM_OCInitStructure; TIM_OCInitStructure.OCMode = TIM_OCMODE_PWM1; TIM_OCInitStructure.OCIdleState = TIM_OCIDLESTATE_SET; TIM_OCInitStructure.OCPolarity = (output & TIMER_OUTPUT_INVERTED) ? TIM_OCPOLARITY_LOW : TIM_OCPOLARITY_HIGH; TIM_OCInitStructure.OCNIdleState = TIM_OCNIDLESTATE_SET; TIM_OCInitStructure.OCNPolarity = (output & TIMER_OUTPUT_INVERTED) ? TIM_OCNPOLARITY_LOW : TIM_OCNPOLARITY_HIGH; TIM_OCInitStructure.Pulse = value; TIM_OCInitStructure.OCFastMode = TIM_OCFAST_DISABLE; HAL_TIM_PWM_ConfigChannel(Handle, &TIM_OCInitStructure, channel); #else TIM_OCInitTypeDef TIM_OCInitStructure; TIM_OCStructInit(&TIM_OCInitStructure); TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; if (output & TIMER_OUTPUT_N_CHANNEL) { TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable; TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Reset; TIM_OCInitStructure.TIM_OCNPolarity = (output & TIMER_OUTPUT_INVERTED) ? TIM_OCNPolarity_Low : TIM_OCNPolarity_High; } else { TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set; TIM_OCInitStructure.TIM_OCPolarity = (output & TIMER_OUTPUT_INVERTED) ? TIM_OCPolarity_Low : TIM_OCPolarity_High; } TIM_OCInitStructure.TIM_Pulse = value; timerOCInit(tim, channel, &TIM_OCInitStructure); timerOCPreloadConfig(tim, channel, TIM_OCPreload_Enable); #endif } void pwmOutConfig(timerChannel_t *channel, const timerHardware_t *timerHardware, uint32_t hz, uint16_t period, uint16_t value, uint8_t inversion) { #if defined(USE_HAL_DRIVER) TIM_HandleTypeDef* Handle = timerFindTimerHandle(timerHardware->tim); if (Handle == NULL) return; #endif configTimeBase(timerHardware->tim, period, hz); pwmOCConfig(timerHardware->tim, timerHardware->channel, value, inversion ? timerHardware->output ^ TIMER_OUTPUT_INVERTED : timerHardware->output ); #if defined(USE_HAL_DRIVER) if (timerHardware->output & TIMER_OUTPUT_N_CHANNEL) HAL_TIMEx_PWMN_Start(Handle, timerHardware->channel); else HAL_TIM_PWM_Start(Handle, timerHardware->channel); HAL_TIM_Base_Start(Handle); #else TIM_CtrlPWMOutputs(timerHardware->tim, ENABLE); TIM_Cmd(timerHardware->tim, ENABLE); #endif channel->ccr = timerChCCR(timerHardware); channel->tim = timerHardware->tim; *channel->ccr = 0; } static FAST_DATA_ZERO_INIT motorDevice_t motorPwmDevice; static void pwmWriteUnused(uint8_t index, float value) { UNUSED(index); UNUSED(value); } static void pwmWriteStandard(uint8_t index, float value) { /* TODO: move value to be a number between 0-1 (i.e. percent throttle from mixer) */ *motors[index].channel.ccr = lrintf((value * motors[index].pulseScale) + motors[index].pulseOffset); } void pwmShutdownPulsesForAllMotors(void) { for (int index = 0; index < motorPwmDevice.count; index++) { // Set the compare register to 0, which stops the output pulsing if the timer overflows if (motors[index].channel.ccr) { *motors[index].channel.ccr = 0; } } } void pwmDisableMotors(void) { pwmShutdownPulsesForAllMotors(); } static motorVTable_t motorPwmVTable; bool pwmEnableMotors(void) { /* check motors can be enabled */ return (motorPwmVTable.write != &pwmWriteUnused); } bool pwmIsMotorEnabled(uint8_t index) { return motors[index].enabled; } static void pwmCompleteOneshotMotorUpdate(void) { for (int index = 0; index < motorPwmDevice.count; index++) { if (motors[index].forceOverflow) { timerForceOverflow(motors[index].channel.tim); } // Set the compare register to 0, which stops the output pulsing if the timer overflows before the main loop completes again. // This compare register will be set to the output value on the next main loop. *motors[index].channel.ccr = 0; } } static float pwmConvertFromExternal(uint16_t externalValue) { return (float)externalValue; } static uint16_t pwmConvertToExternal(float motorValue) { return (uint16_t)motorValue; } static motorVTable_t motorPwmVTable = { .postInit = motorPostInitNull, .enable = pwmEnableMotors, .disable = pwmDisableMotors, .isMotorEnabled = pwmIsMotorEnabled, .shutdown = pwmShutdownPulsesForAllMotors, .convertExternalToMotor = pwmConvertFromExternal, .convertMotorToExternal = pwmConvertToExternal, }; motorDevice_t *motorPwmDevInit(const motorDevConfig_t *motorConfig, uint16_t idlePulse, uint8_t motorCount, bool useUnsyncedPwm) { motorPwmDevice.vTable = motorPwmVTable; float sMin = 0; float sLen = 0; switch (motorConfig->motorPwmProtocol) { default: case PWM_TYPE_ONESHOT125: sMin = 125e-6f; sLen = 125e-6f; break; case PWM_TYPE_ONESHOT42: sMin = 42e-6f; sLen = 42e-6f; break; case PWM_TYPE_MULTISHOT: sMin = 5e-6f; sLen = 20e-6f; break; case PWM_TYPE_BRUSHED: sMin = 0; useUnsyncedPwm = true; idlePulse = 0; break; case PWM_TYPE_STANDARD: sMin = 1e-3f; sLen = 1e-3f; useUnsyncedPwm = true; idlePulse = 0; break; } motorPwmDevice.vTable.write = pwmWriteStandard; motorPwmDevice.vTable.decodeTelemetry = motorDecodeTelemetryNull; motorPwmDevice.vTable.updateComplete = useUnsyncedPwm ? motorUpdateCompleteNull : pwmCompleteOneshotMotorUpdate; for (int motorIndex = 0; motorIndex < MAX_SUPPORTED_MOTORS && motorIndex < motorCount; motorIndex++) { const unsigned reorderedMotorIndex = motorConfig->motorOutputReordering[motorIndex]; const ioTag_t tag = motorConfig->ioTags[reorderedMotorIndex]; const timerHardware_t *timerHardware = timerAllocate(tag, OWNER_MOTOR, RESOURCE_INDEX(reorderedMotorIndex)); if (timerHardware == NULL) { /* not enough motors initialised for the mixer or a break in the motors */ motorPwmDevice.vTable.write = &pwmWriteUnused; motorPwmDevice.vTable.updateComplete = motorUpdateCompleteNull; /* TODO: block arming and add reason system cannot arm */ return NULL; } motors[motorIndex].io = IOGetByTag(tag); IOInit(motors[motorIndex].io, OWNER_MOTOR, RESOURCE_INDEX(reorderedMotorIndex)); IOConfigGPIOAF(motors[motorIndex].io, IOCFG_AF_PP, timerHardware->alternateFunction); /* standard PWM outputs */ // margin of safety is 4 periods when unsynced const unsigned pwmRateHz = useUnsyncedPwm ? motorConfig->motorPwmRate : ceilf(1 / ((sMin + sLen) * 4)); const uint32_t clock = timerClock(timerHardware->tim); /* used to find the desired timer frequency for max resolution */ const unsigned prescaler = ((clock / pwmRateHz) + 0xffff) / 0x10000; /* rounding up */ const uint32_t hz = clock / prescaler; const unsigned period = useUnsyncedPwm ? hz / pwmRateHz : 0xffff; /* if brushed then it is the entire length of the period. TODO: this can be moved back to periodMin and periodLen once mixer outputs a 0..1 float value. */ motors[motorIndex].pulseScale = ((motorConfig->motorPwmProtocol == PWM_TYPE_BRUSHED) ? period : (sLen * hz)) / 1000.0f; motors[motorIndex].pulseOffset = (sMin * hz) - (motors[motorIndex].pulseScale * 1000); pwmOutConfig(&motors[motorIndex].channel, timerHardware, hz, period, idlePulse, motorConfig->motorPwmInversion); bool timerAlreadyUsed = false; for (int i = 0; i < motorIndex; i++) { if (motors[i].channel.tim == motors[motorIndex].channel.tim) { timerAlreadyUsed = true; break; } } motors[motorIndex].forceOverflow = !timerAlreadyUsed; motors[motorIndex].enabled = true; } return &motorPwmDevice; } pwmOutputPort_t *pwmGetMotors(void) { return motors; } #ifdef USE_SERVOS static pwmOutputPort_t servos[MAX_SUPPORTED_SERVOS]; void pwmWriteServo(uint8_t index, float value) { if (index < MAX_SUPPORTED_SERVOS && servos[index].channel.ccr) { *servos[index].channel.ccr = lrintf(value); } } void servoDevInit(const servoDevConfig_t *servoConfig) { for (uint8_t servoIndex = 0; servoIndex < MAX_SUPPORTED_SERVOS; servoIndex++) { const ioTag_t tag = servoConfig->ioTags[servoIndex]; if (!tag) { break; } servos[servoIndex].io = IOGetByTag(tag); IOInit(servos[servoIndex].io, OWNER_SERVO, RESOURCE_INDEX(servoIndex)); const timerHardware_t *timer = timerAllocate(tag, OWNER_SERVO, RESOURCE_INDEX(servoIndex)); if (timer == NULL) { /* flag failure and disable ability to arm */ break; } IOConfigGPIOAF(servos[servoIndex].io, IOCFG_AF_PP, timer->alternateFunction); pwmOutConfig(&servos[servoIndex].channel, timer, PWM_TIMER_1MHZ, PWM_TIMER_1MHZ / servoConfig->servoPwmRate, servoConfig->servoCenterPulse, 0); servos[servoIndex].enabled = true; } } #endif // USE_SERVOS #endif // USE_PWM_OUTPUT