/*
* This file is part of Cleanflight and Betaflight.
*
* Cleanflight and Betaflight are free software. You can redistribute
* this software and/or modify this software under the terms of the
* GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option)
* any later version.
*
* Cleanflight and Betaflight are distributed in the hope that they
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software.
*
* If not, see .
*/
#include
#include
#include
#include
#include "platform.h"
#ifdef USE_PWM_OUTPUT
#include "drivers/io.h"
#include "drivers/motor.h"
#include "drivers/pwm_output.h"
#include "drivers/time.h"
#include "drivers/timer.h"
#include "pg/motor.h"
FAST_DATA_ZERO_INIT pwmOutputPort_t motors[MAX_SUPPORTED_MOTORS];
static void pwmOCConfig(TIM_TypeDef *tim, uint8_t channel, uint16_t value, uint8_t output)
{
#if defined(USE_HAL_DRIVER)
TIM_HandleTypeDef* Handle = timerFindTimerHandle(tim);
if (Handle == NULL) return;
TIM_OC_InitTypeDef TIM_OCInitStructure;
TIM_OCInitStructure.OCMode = TIM_OCMODE_PWM1;
TIM_OCInitStructure.OCIdleState = TIM_OCIDLESTATE_SET;
TIM_OCInitStructure.OCPolarity = (output & TIMER_OUTPUT_INVERTED) ? TIM_OCPOLARITY_LOW : TIM_OCPOLARITY_HIGH;
TIM_OCInitStructure.OCNIdleState = TIM_OCNIDLESTATE_SET;
TIM_OCInitStructure.OCNPolarity = (output & TIMER_OUTPUT_INVERTED) ? TIM_OCNPOLARITY_LOW : TIM_OCNPOLARITY_HIGH;
TIM_OCInitStructure.Pulse = value;
TIM_OCInitStructure.OCFastMode = TIM_OCFAST_DISABLE;
HAL_TIM_PWM_ConfigChannel(Handle, &TIM_OCInitStructure, channel);
#else
TIM_OCInitTypeDef TIM_OCInitStructure;
TIM_OCStructInit(&TIM_OCInitStructure);
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
if (output & TIMER_OUTPUT_N_CHANNEL) {
TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Reset;
TIM_OCInitStructure.TIM_OCNPolarity = (output & TIMER_OUTPUT_INVERTED) ? TIM_OCNPolarity_Low : TIM_OCNPolarity_High;
} else {
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set;
TIM_OCInitStructure.TIM_OCPolarity = (output & TIMER_OUTPUT_INVERTED) ? TIM_OCPolarity_Low : TIM_OCPolarity_High;
}
TIM_OCInitStructure.TIM_Pulse = value;
timerOCInit(tim, channel, &TIM_OCInitStructure);
timerOCPreloadConfig(tim, channel, TIM_OCPreload_Enable);
#endif
}
void pwmOutConfig(timerChannel_t *channel, const timerHardware_t *timerHardware, uint32_t hz, uint16_t period, uint16_t value, uint8_t inversion)
{
#if defined(USE_HAL_DRIVER)
TIM_HandleTypeDef* Handle = timerFindTimerHandle(timerHardware->tim);
if (Handle == NULL) return;
#endif
configTimeBase(timerHardware->tim, period, hz);
pwmOCConfig(timerHardware->tim,
timerHardware->channel,
value,
inversion ? timerHardware->output ^ TIMER_OUTPUT_INVERTED : timerHardware->output
);
#if defined(USE_HAL_DRIVER)
if (timerHardware->output & TIMER_OUTPUT_N_CHANNEL)
HAL_TIMEx_PWMN_Start(Handle, timerHardware->channel);
else
HAL_TIM_PWM_Start(Handle, timerHardware->channel);
HAL_TIM_Base_Start(Handle);
#else
TIM_CtrlPWMOutputs(timerHardware->tim, ENABLE);
TIM_Cmd(timerHardware->tim, ENABLE);
#endif
channel->ccr = timerChCCR(timerHardware);
channel->tim = timerHardware->tim;
*channel->ccr = 0;
}
static FAST_DATA_ZERO_INIT motorDevice_t motorPwmDevice;
static void pwmWriteUnused(uint8_t index, float value)
{
UNUSED(index);
UNUSED(value);
}
static void pwmWriteStandard(uint8_t index, float value)
{
/* TODO: move value to be a number between 0-1 (i.e. percent throttle from mixer) */
*motors[index].channel.ccr = lrintf((value * motors[index].pulseScale) + motors[index].pulseOffset);
}
void pwmShutdownPulsesForAllMotors(void)
{
for (int index = 0; index < motorPwmDevice.count; index++) {
// Set the compare register to 0, which stops the output pulsing if the timer overflows
if (motors[index].channel.ccr) {
*motors[index].channel.ccr = 0;
}
}
}
void pwmDisableMotors(void)
{
pwmShutdownPulsesForAllMotors();
}
static motorVTable_t motorPwmVTable;
bool pwmEnableMotors(void)
{
/* check motors can be enabled */
return (motorPwmVTable.write != &pwmWriteUnused);
}
bool pwmIsMotorEnabled(uint8_t index)
{
return motors[index].enabled;
}
static void pwmCompleteOneshotMotorUpdate(void)
{
for (int index = 0; index < motorPwmDevice.count; index++) {
if (motors[index].forceOverflow) {
timerForceOverflow(motors[index].channel.tim);
}
// Set the compare register to 0, which stops the output pulsing if the timer overflows before the main loop completes again.
// This compare register will be set to the output value on the next main loop.
*motors[index].channel.ccr = 0;
}
}
static float pwmConvertFromExternal(uint16_t externalValue)
{
return (float)externalValue;
}
static uint16_t pwmConvertToExternal(float motorValue)
{
return (uint16_t)motorValue;
}
static motorVTable_t motorPwmVTable = {
.postInit = motorPostInitNull,
.enable = pwmEnableMotors,
.disable = pwmDisableMotors,
.isMotorEnabled = pwmIsMotorEnabled,
.shutdown = pwmShutdownPulsesForAllMotors,
.convertExternalToMotor = pwmConvertFromExternal,
.convertMotorToExternal = pwmConvertToExternal,
};
motorDevice_t *motorPwmDevInit(const motorDevConfig_t *motorConfig, uint16_t idlePulse, uint8_t motorCount, bool useUnsyncedPwm)
{
motorPwmDevice.vTable = motorPwmVTable;
float sMin = 0;
float sLen = 0;
switch (motorConfig->motorPwmProtocol) {
default:
case PWM_TYPE_ONESHOT125:
sMin = 125e-6f;
sLen = 125e-6f;
break;
case PWM_TYPE_ONESHOT42:
sMin = 42e-6f;
sLen = 42e-6f;
break;
case PWM_TYPE_MULTISHOT:
sMin = 5e-6f;
sLen = 20e-6f;
break;
case PWM_TYPE_BRUSHED:
sMin = 0;
useUnsyncedPwm = true;
idlePulse = 0;
break;
case PWM_TYPE_STANDARD:
sMin = 1e-3f;
sLen = 1e-3f;
useUnsyncedPwm = true;
idlePulse = 0;
break;
}
motorPwmDevice.vTable.write = pwmWriteStandard;
motorPwmDevice.vTable.decodeTelemetry = motorDecodeTelemetryNull;
motorPwmDevice.vTable.updateComplete = useUnsyncedPwm ? motorUpdateCompleteNull : pwmCompleteOneshotMotorUpdate;
for (int motorIndex = 0; motorIndex < MAX_SUPPORTED_MOTORS && motorIndex < motorCount; motorIndex++) {
const unsigned reorderedMotorIndex = motorConfig->motorOutputReordering[motorIndex];
const ioTag_t tag = motorConfig->ioTags[reorderedMotorIndex];
const timerHardware_t *timerHardware = timerAllocate(tag, OWNER_MOTOR, RESOURCE_INDEX(reorderedMotorIndex));
if (timerHardware == NULL) {
/* not enough motors initialised for the mixer or a break in the motors */
motorPwmDevice.vTable.write = &pwmWriteUnused;
motorPwmDevice.vTable.updateComplete = motorUpdateCompleteNull;
/* TODO: block arming and add reason system cannot arm */
return NULL;
}
motors[motorIndex].io = IOGetByTag(tag);
IOInit(motors[motorIndex].io, OWNER_MOTOR, RESOURCE_INDEX(reorderedMotorIndex));
IOConfigGPIOAF(motors[motorIndex].io, IOCFG_AF_PP, timerHardware->alternateFunction);
/* standard PWM outputs */
// margin of safety is 4 periods when unsynced
const unsigned pwmRateHz = useUnsyncedPwm ? motorConfig->motorPwmRate : ceilf(1 / ((sMin + sLen) * 4));
const uint32_t clock = timerClock(timerHardware->tim);
/* used to find the desired timer frequency for max resolution */
const unsigned prescaler = ((clock / pwmRateHz) + 0xffff) / 0x10000; /* rounding up */
const uint32_t hz = clock / prescaler;
const unsigned period = useUnsyncedPwm ? hz / pwmRateHz : 0xffff;
/*
if brushed then it is the entire length of the period.
TODO: this can be moved back to periodMin and periodLen
once mixer outputs a 0..1 float value.
*/
motors[motorIndex].pulseScale = ((motorConfig->motorPwmProtocol == PWM_TYPE_BRUSHED) ? period : (sLen * hz)) / 1000.0f;
motors[motorIndex].pulseOffset = (sMin * hz) - (motors[motorIndex].pulseScale * 1000);
pwmOutConfig(&motors[motorIndex].channel, timerHardware, hz, period, idlePulse, motorConfig->motorPwmInversion);
bool timerAlreadyUsed = false;
for (int i = 0; i < motorIndex; i++) {
if (motors[i].channel.tim == motors[motorIndex].channel.tim) {
timerAlreadyUsed = true;
break;
}
}
motors[motorIndex].forceOverflow = !timerAlreadyUsed;
motors[motorIndex].enabled = true;
}
return &motorPwmDevice;
}
pwmOutputPort_t *pwmGetMotors(void)
{
return motors;
}
#ifdef USE_SERVOS
static pwmOutputPort_t servos[MAX_SUPPORTED_SERVOS];
void pwmWriteServo(uint8_t index, float value)
{
if (index < MAX_SUPPORTED_SERVOS && servos[index].channel.ccr) {
*servos[index].channel.ccr = lrintf(value);
}
}
void servoDevInit(const servoDevConfig_t *servoConfig)
{
for (uint8_t servoIndex = 0; servoIndex < MAX_SUPPORTED_SERVOS; servoIndex++) {
const ioTag_t tag = servoConfig->ioTags[servoIndex];
if (!tag) {
break;
}
servos[servoIndex].io = IOGetByTag(tag);
IOInit(servos[servoIndex].io, OWNER_SERVO, RESOURCE_INDEX(servoIndex));
const timerHardware_t *timer = timerAllocate(tag, OWNER_SERVO, RESOURCE_INDEX(servoIndex));
if (timer == NULL) {
/* flag failure and disable ability to arm */
break;
}
IOConfigGPIOAF(servos[servoIndex].io, IOCFG_AF_PP, timer->alternateFunction);
pwmOutConfig(&servos[servoIndex].channel, timer, PWM_TIMER_1MHZ, PWM_TIMER_1MHZ / servoConfig->servoPwmRate, servoConfig->servoCenterPulse, 0);
servos[servoIndex].enabled = true;
}
}
#endif // USE_SERVOS
#endif // USE_PWM_OUTPUT